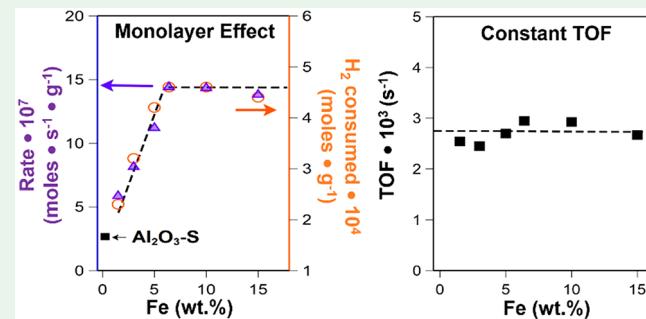


1 Sulfur Tolerant Subnanometer Fe/Alumina Catalysts for Propane 2 Dehydrogenation

3 Lohit Sharma, Stephen C. Purdy, Katharine Page, Srinivas Rangarajan, Hien Pham, Abhaya Datye,
4 and Jonas Baltrusaitis*

Cite This: <https://doi.org/10.1021/acsanm.1c01366>

Read Online


ACCESS |

Metrics & More

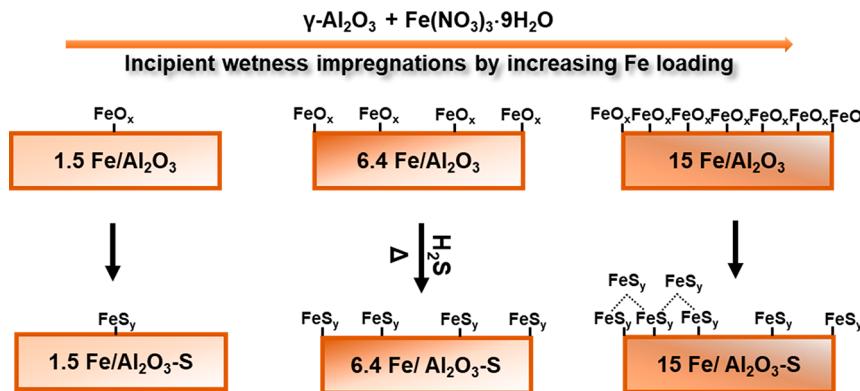
Article Recommendations

Supporting Information

5 ABSTRACT: A series of Al_2O_3 -supported Fe-containing catalysts
6 were synthesized by incipient wetness impregnation. The iron
7 surface density was varied from 1 to 13 Fe atoms/ nm^2 spanning
8 submonolayer to above-monolayer coverage. The resulting
9 supported Fe-catalysts were characterized by N_2 physisorption, *ex*
10 *situ* XRD, PDF, XAS, and AC-STEM and chemically probed by H_2 -
11 TPR. The results suggest that over this entire range of loadings, Fe
12 was present as dispersed species, with only a very small fraction of
13 Fe_2O_3 aggregates, at the highest Fe loading. The *in situ* sulfidation
14 of $\text{Fe}/\text{Al}_2\text{O}_3$ resulted in the formation of a highly active and
15 selective PDH catalyst. The highest activity with 52% propane
16 conversion and \sim 99% propylene selectivity at 560 °C was obtained
17 for the 6.4 $\text{Fe}/\text{Al}_2\text{O}_3$ catalyst, suggesting that this is the highest amount of Fe that could be fully dispersed on the support in sulfided
18 form. XRD and AC-STEM indicated the absence of any crystalline iron sulfide aggregates after sulfidation and reaction. H_2 -TPR
19 results indicated that the amount of the reducible Fe sites in the sulfided catalyst remained constant above monolayer coverage, and
20 increasing loading did not increase the number of reducible Fe sites. Consistent with these results, the reactivity per gram of catalyst
21 showed no increase with Fe loading above monolayer coverage, suggesting that additional Fe remains conformal to the alumina
22 surface.

23 **KEYWORDS:** *Fe/alumina, propane dehydrogenation, Fe catalyst, alumina surface, sulfidation*

1. INTRODUCTION


24 The demand for alkenes, such as propylene, has increased by a
25 4% compounded annual growth rate during the past decade. It
26 is further expected to increase in the upcoming years.^{1–3} The
27 nonoxidative dehydrogenation of propane (PDH) can
28 selectively produce propylene from abundant natural gas
29 resources.⁴ During the PDH, activation of propane C–H
30 bonds governs the overall catalytic performance. However,
31 propylene, once formed, is more reactive than propane. This
32 leads to further side reactions including cracking, deep
33 dehydrogenation, and polymerization, typically resulting in
34 low process selectivity and catalyst deactivation. Significant
35 research efforts have focused on Cr and Pt alloys to achieve
36 and sustain the activity of the catalysts as well as their
37 selectivity and stability.⁵ However, the high cost of Pt, its
38 propensity to sinter at high temperatures, and its susceptibility
39 to poisoning in the presence of sulfur compounds have led to
40 research into catalyst material alternatives. In particular, there
41 has been a growing interest in earth-abundant and environ-
42 mentally benign catalytic materials, such as oxides of Fe, Cu,
43 Co, Ga, Zn, V, Mo, Zr, and Sn, for selective dehydrogenation
44 of propane.^{6–15} However, these metal oxide-based catalysts (i)
45 are not sufficiently active, (ii) suffer from low selectivity, (iii)

rapidly deactivate with coke formation, and (iv) need their 46
stability to be further improved.^{5,16}

47

An alternative to improve the activity and selectivity is the 48
addition of sulfur species over some PDH catalysts. For 49
example, Resasco et al.¹⁷ determined that when $\text{Ni}/\text{Al}_2\text{O}_3$ was 50
treated with dimethyl sulfoxide, it exhibited improved 51
selectivity and decreased coke formation during the isobutane 52
(i-C₄) dehydrogenation. Wang et al.^{18,19} have studied 53
supported metals of Co, Cu, Mo, Mn, Zn, Fe on SiO₂ and 54
determined that these $\text{H}_2/\text{H}_2\text{S}$ pretreated catalysts exhibited 55
higher propane selectivity. For example, the selectivity of about 56
87% was observed compared to 43% in the case of 13 Fe/SiO₂, 57
and activity was 5 times higher than the corresponding oxide 58
phase during i-C₄ dehydrogenation. A more recent work by 59
Cheng and co-workers has investigated bulk and supported 60
MoS₂ and showed that the rate of i-C₄ dehydrogenation over 61

Received: May 24, 2021

Figure 1. Schematic diagram showing the nature of the Fe subnanometer species in catalysts prepared via incipient wetness impregnation. After sulfidation, these dispersed Fe sites are active and selective for propane dehydrogenation, in the presence of H_2S .

the supported catalyst was ~ 7 times higher than over the bulk catalyst.²⁰ Recently, several studies examined the propensity and stability of a Fe-based catalyst for nonoxidative and oxidative PDH. For example, Fe-based catalysts (such as Fe/ZSM-5) were used for oxidative propane dehydrogenation.^{21,22} Fe-based catalysts were also studied for nonoxidative propane dehydrogenation.^{6,23,24} Lobo et al.²⁵ demonstrated that isolated Fe in a zeolite framework (Fe-ZSM-5) is an efficient PDH catalyst. A series of works by Li and co-workers^{26,27} investigated the nonoxidative PDH over 20% $\text{Fe}/\text{SO}_4^{2-}/\text{Al}_2\text{O}_3$. It was proposed that the addition of the sulfur species as SO_4^{2-} was responsible for improved catalytic performance due to the electron-withdrawing effect of SO_4^{2-} species from metal ions. Recently, Watanabe et al.^{28,29} investigated SiO_2 supported Fe, Ni, and Co for PDH in the presence of H_2S . Their study showed that 20 Fe/SiO_2 after exposure to H_2S could selectively activate propane. The authors proposed that $\text{Fe}_{(1-x)}\text{S}$ was the active phase for the reaction based on XRD, XPS, and XAS techniques. These experiments were performed using the catalyst with a high fixed Fe metal loading of 20 wt % supported on SiO_2 . At this Fe loading, the active catalytic phase can consist of Fe as monomers, oligomers, as well as crystalline FeS_x . It is generally accepted that at high loadings, Fe can result in 3d Fe_2O_3 -like aggregates in oxide phase.³⁰ In contrast, Fe at low loadings leads to highly dispersed iron oxide clusters.^{24,31,32} For example, it was determined that the catalytic activity during SCR is closely related to the number of Fe sites, particularly dispersed and oligomeric clusters,^{31,32} whereas aggregated moieties reveal relatively low activity.³³ Presently, all the state-of-the-art work is performed at fixed Fe loading for the chemistry.^{6,23–29} The catalytic behavior of dispersed and aggregated Fe species on supports for PDH has yet to be determined, especially in the presence of H_2S . In this context, we have performed a systematic study of Fe loading over Al_2O_3 with incipient wetness impregnation. As shown in Figure 1, we find that the Fe species remain atomically dispersed, essentially in subnanometer form, over the entire range of Fe loadings we studied. We explored the potential of $\text{Fe}/\text{Al}_2\text{O}_3$ as an earth-abundant and relatively inexpensive catalyst for propane activation in the presence of H_2S . In this study, we have synthesized catalysts with a known weight loading of Fe metal and determined their local atomic coordination to develop insights regarding the structure and the oxidation states. Further, the number of reducible iron species was determined using H_2 -TPR. Here, we report that $\text{Fe}/\text{Al}_2\text{O}_3$ is very selective for propane dehydrogenation.

ation (>99% at 52% conversion at $T = 560^\circ\text{C}$ and $\text{C}_3\text{H}_8:\text{H}_2:\text{H}_2\text{S}:\text{N}_2 = 1.1:1:0.1:97.8$) upon pretreatment with and cofeed of H_2S (especially 0.1 mol % cofeed), underlining the high activity-selectivity potential of the catalyst. This systematic study of Fe-based catalysts shows the vital role of dispersed Fe sites for the PDH chemistry. It will help design improved catalysts for PDH from a molecular perspective.

2. EXPERIMENTAL METHODS

2.1. Materials and Reagents. $\gamma\text{-Al}_2\text{O}_3$ (Sasol, Catalox SBA-150) was received from Sasol. 10% H_2 , 10% C_3H_8 , and 1% H_2S (all diluted with N_2) were purchased from Airgas. $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ and FeS were purchased from Acros Organics. Fe_3O_4 and Fe_2O_3 were purchased from Aldrich.

2.2. Catalyst Synthesis and Activation with H_2S for Propane Dehydrogenation Reaction. The $\gamma\text{-Al}_2\text{O}_3$ was calcined at 600°C for 4 h under flowing air before impregnation. $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ was dissolved in 0.5 M HNO_3 solution in DI water. The $\text{Fe}/\text{Al}_2\text{O}_3$ catalysts were prepared by incipient wetness impregnation of an aqueous solution of $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ onto calcined $\gamma\text{-Al}_2\text{O}_3$ support. The impregnation step was performed under ambient conditions, and the impregnated mixture was stirred for ~ 30 min to maximize FeO_x dispersion. The catalyst was then dried overnight in ambient conditions. Later, the catalyst was dried with flowing air (1 L/min) at 120°C for 4 h and calcined at 600°C for 4 h under flowing air and a 1.33 °C/min ramp rate using a programmable furnace. The final synthesized catalysts are denoted as $x\text{ Fe}/\text{Al}_2\text{O}_3$, where x is the weight percent of Fe impregnated on the support. Before the reaction, as synthesized $x\text{ Fe}/\text{Al}_2\text{O}_3$ oxide catalysts were exposed to the stream of H_2S ($P_{\text{H}_2\text{S}} = 0.01$ atm, the balance N_2) at 600°C for 4 h. Alternatively, the catalysts were pretreated in H_2 ($P_{\text{H}_2} = 0.01$ atm, balance N_2) at 600°C for 4 h. The calcined catalysts are referred to as $x\text{ Fe}/\text{Al}_2\text{O}_3$ (e.g., 10 $\text{Fe}/\text{Al}_2\text{O}_3$ or 10 Fe), whereas H_2S pretreated catalysts are referred to as $x\text{ Fe}/\text{Al}_2\text{O}_3\text{-S}$ (e.g., 10 $\text{Fe}/\text{Al}_2\text{O}_3\text{-S}$ or 10 Fe (S)). The H_2 pretreated catalysts are referred to as $x\text{ Fe}/\text{Al}_2\text{O}_3\text{-H}_2$. Finally, if catalysts were characterized after one PDH cycle, they are referred to as $x\text{ Fe}/\text{Al}_2\text{O}_3\text{-S1}$ (e.g., 10 $\text{Fe}/\text{Al}_2\text{O}_3\text{-S1}$ or 10 Fe (S1)).

2.3. N₂-Physisorption Studies. The surface areas of the catalysts were measured via nitrogen physisorption (-196°C) using a Micromeritics ASAP 2020 instrument.³⁴ Pore size distributions were calculated using the Barret, Joyner, Halenda (BJH) model.³⁵

2.4. Transmission Electron Microscopy (TEM). The air-exposed, powder samples were dispersed in ethanol and supported on holey carbon films on Cu grids for TEM. A JEOL NeoARM 200 CF microscope, operated at 200 kV, was used for this study. The spherical aberration corrector in this microscope provides a resolution of 0.71 Å. A JEOL dual EDS system using Oxford AZTEC software was used for elemental analysis via X-ray fluorescence in the TEM. Images using a 30 μm condenser aperture and 8 cm detector camera

155 length in annular dark field (ADF) mode images were recorded
156 simultaneously with annular bright field (ABF) images.

157 **2.5. X-ray Diffraction (XRD).** The powder XRD and X-ray pair
158 distribution function (PDF) measurements were performed at the
159 PDF beamline (ID-28-1) of the National Synchrotron Light Source II.
160 Samples were loaded into 1 mm OD Kapton tubes and sealed at both
161 ends with epoxy. Measurements were made using an X-ray wavelength
162 of 0.16635 Å and a PerkinElmer large area detector. The sample to
163 detector distance for XRD and PDF measurements was 240 and 840
164 cm, respectively. For both distances, a CeO₂ standard was used for
165 detector calibration.

166 Detector calibration, 2D pattern masking, and 2D pattern
167 integration were performed using DIOPTAS software.³⁶ The reduced
168 pair distribution function, $G(r)$, was extracted from $I(q)$ data using
169 the program PDFgetx3.³⁷ A q range of 0.9–23.0 Å⁻¹ was used for all
170 samples for the Fourier transform, and the R_{poly} value was set to 0.9.
171 Background subtraction was done using a scan of an empty polyimide
172 capillary. Small box simulation of PDF data was done using PDFgui
173 software.³⁸

174 **2.6. X-ray Absorption Spectroscopy.** X-ray absorption spec-
175 troscopy at the iron K edge (7110.7 eV) was performed at the
176 MRCAT bending magnet line (10-BM) of the Advanced Photon
177 Source, Argonne National Laboratory.³⁹ Catalysts for XAS were
178 ground into a fine powder and pressed into a self-supporting pellet.
179 Catalysts were mounted in a nylon washer and secured with Kapton
180 tape. Measurements were performed in fluorescence mode using a
181 vortex 4 element detector. The monochromator energy was calibrated
182 using the inflection point of iron foil, with the absolute energy taken
183 from literature.⁴⁰ Scans were taken in step scanning mode over an
184 energy range of 6910–7657 eV, giving a k -max of 11.8 Å⁻¹. Each
185 catalyst was scanned 3 times and averaged to give the analyzed
186 spectra.

187 Data reduction and analysis were performed using the Demeter
188 software suite. The edge energy was taken as the first derivative
189 maximum of the rising edge of the X-ray absorption near edge
190 structure (XANES). The pre-edge energy was taken as the point of
191 maximum intensity (first derivative zero) of the pre-edge peak. The
192 absolute energy resolution of the monochromator (Si 111) at the Fe
193 K-edge is 0.8 eV ($1 \times 10^{-4} \Delta E/E$), and the sample-to-sample
194 variation in energy was better than 0.1 eV. Self-absorption artifacts
195 were removed using the FLUO algorithm implemented in Athena.⁴¹
196 The nominal composition of the catalyst and the sample to beam
197 angle (45°) were used as inputs for the correction. Normalization was
198 performed using a first-order polynomial for the pre-edge (-200 to 30
199 eV) and a third-order polynomial for the postedge (125 to 535 eV).
200 Bare atom absorption was subtracted using a spline fit over the entire
201 measured k range and using an R_{bkg} value of 1.0. Extended X-ray
202 absorption fine structure (EXAFS) fitting was performed in R -space
203 over a k -range of 2.7–11.0 Å⁻¹ and an R range of 1.0–3.0 Å, giving 10
204 free parameters. All models used fewer free parameters than were
205 available based on Nyquist theorem.

206 Models were constructed using a bulk crystallographic reference of
207 Fe₂O₃. All paths shared an E_0 correction, and all bond distances were
208 correlated through an isotropic lattice expansion coefficient ϵ , where
209 the bond distance for each path was defined as

$$210 \quad R = R_{\text{eff}}(1 + \epsilon) \quad (1)$$

211 For samples with Fe-Al scattering, the Fe₂O₃ FEFF input file
212 generated by Artemis was modified by replacing neighboring Fe
213 atoms with Al. The first shell oxygen scattering was fit using two
214 separate oxygen paths sharing a single Debye-Waller factor. Similarly,
215 the second shell was fit using two Fe-Al single scattering paths with a
216 single Debye-Waller factor. Each path was given a separate
217 coordination number. Allowing for separate Debye-Waller factors
218 for each oxygen path did not significantly improve fit statistics or
219 change the fit coordination numbers for each path. The amplitude
220 reduction factor S_0^2 for all samples and paths was fixed to the value fit
221 iron foil using a bulk BCC Fe model. Full details of the Fe foil fit are
222 given in the Supporting Information.

223 **2.7. H₂ Temperature-Programmed Reduction (H₂-TPR).** H₂-
224 TPR was performed using the same steady-state reactor used for
225 kinetic studies equipped with an MKS Cirrus 2 mass spectrometer.
226 ~75 mg of the catalyst was loaded into the reactor and pretreated at
227 300 °C for 1 h with a 20 °C/min ramping rate under 30 mL/min 2%
228 O₂/N₂ flow for the as-synthesized catalyst (non-H₂S-treated). After
229 cooling down to 30 °C in N₂, N₂ was replaced with 2% H₂/N₂ at 25
230 mL/min for 15 min. In the following step, the temperature was
231 ramped to 800 °C at 10 °C/min in 2% H₂/N₂. The sulfided catalyst
232 was prepared by pretreating at 600 °C for 4 h in 1% H₂S/N₂.
233 Subsequently, the catalyst was flushed in N₂ for 15 min. After cooling
234 down to 30 °C in N₂, 2% H₂/N₂ was flowed at 30 mL/min for 15
235 min. In the following step, the temperature was ramped to 800 °C at
236 10 °C/min in 2% H₂/N₂ flow. The calibrated H₂-TPR was utilized to
237 calculate the number (moles) of H₂ consumed. For calibration, at
238 least four different CuO amounts were utilized to determine the
239 number of H₂ atoms consumed.⁴² The standard error was estimated
240 to be about 4% based on the calibration curve obtained using CuO,
241 Fe₂O₃, and Fe₃O₄ standards. It was observed that catalyst after H₂S
242 pretreatment resulted in the evolution of H₂S during H₂-TPR (Fe-S +
243 H₂ → Fe + H₂S). Concurrently, the number of H₂ molecules
244 consumed was calculated and used to determine the number of
245 reducible Fe present on the surface, assuming H₂:Fe was 1:1.

246 **2.8. Steady-State Catalytic Reactivity Testing.** The steady-
247 state kinetic experiments were performed in a quartz tube reactor (6.8
248 mm i.d.). All reported steady-state experiments were carried out using
249 either 200 mg or 30 mg of catalyst, with the reactor operating at 1 atm
250 with negligible pressure drop. Quartz wool was placed in the reactor
251 to support the catalyst bed. The temperature was ramped at 20 °C/
252 min to 600 °C. Typically, the catalyst was pretreated in a stream of
253 H₂S ($P_{\text{H}_2\text{S}} = 0.01$ atm, the balance N₂) at 600 °C for 4 h. More details
254 regarding the experimental setup can be found in the previous
255 work.^{43,44} The number of reducible [Fe] sites was determined using
256 H₂-TPR. The rate (based on C₃H₈ conversion per second per gram of
257 catalyst) and selectivity were calculated according to eqs 2–6. The
258 reaction rate represented is multiplied by 10⁷, and the conversion is
259 extensively reported in the Supporting Information.

$$260 \quad \text{rate} \left(\frac{\text{mol}}{\text{g} \cdot \text{s}} \right) = \\ \left[\text{conversion} \times \text{inlet concentration (C}_3\text{H}_8) \times \text{flow rate} \left(\frac{\text{mL}}{\text{min}} \right) \right. \\ \left. \times \left(\frac{1}{60} \frac{\text{min}}{\text{s}} \right) \times \left(\frac{1}{1000} \frac{\text{L}}{\text{mL}} \right) \right] \left[\frac{1}{(22.4 \frac{\text{L}}{\text{mol}}) \times \text{loading weight (g)}} \right] \quad (2)$$

$$261 \quad \text{selectivity (\%)} = \frac{[\text{C}_3\text{H}_6]_{\text{out}}}{[\text{C}_3\text{H}_8]_{\text{in}} - [\text{C}_3\text{H}_8]_{\text{out}}} \times 100 \quad (3)$$

$$262 \quad \text{conversion (\%)} = \frac{[\text{C}_3\text{H}_8]_{\text{in}} - [\text{C}_3\text{H}_8]_{\text{out}}}{[\text{C}_3\text{H}_8]_{\text{in}}} \times 100 \quad (4)$$

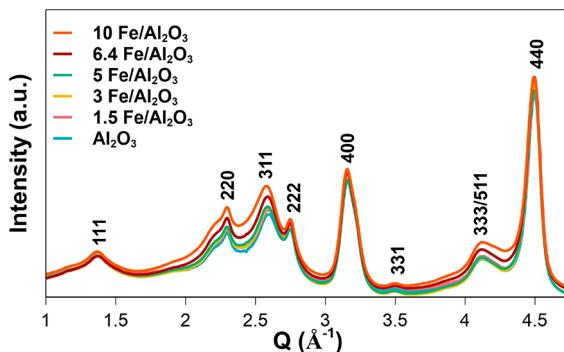
$$263 \quad \text{TOF (s}^{-1}\text{)} = \frac{\text{rate}}{\text{number of reducible sites [Fe]}} \quad (5)$$

$$264 \quad F/I = \frac{\text{final reaction rate (TOS} = 10 \text{ h)}}{\text{initial rate (TOS} = 5 \text{ min)}} \quad (6)$$

265 The carbon balance for the reaction was 100% within experimental
266 error. The reaction temperature of 560 °C was selected for the study.
267 A low concentration of C₃H₈ (1.1 mol %) was used to conduct
268 experiments safely to reduce the flow and concentration of H₂S in the
269 cofeed while maintaining the C₃H₈:H₂S (1:0.1) ratio in the reactant
270 stream.⁴⁵ This is consistent with the literature where propane
271 dehydrogenation reactions are carried out between 450 and 650 °C
272

272 with C_3H_8 feed concentration varying from 1.5 to 20 mol %.¹ The first
 273 data point was collected after 5 min time-on-stream (TOS) under
 274 given reaction conditions. Replicate experiments reproduced reaction
 275 rates within $\pm 5\%$, and selectivity can be reproduced within $\pm 2\%$. The
 276 reaction studies typically were performed using N_2 dilution (1.1%
 277 C_3H_8 , 97.8% inert (N_2), 1% H_2 , and 0.1% H_2S). Therefore, the mole
 278 change during the reaction was ignored, and it was assumed that the
 279 volumetric flow rate remains constant.⁴⁶ High conversion data were
 280 obtained using 200 mg catalyst and a total volumetric flow rate of 50
 281 mL/min. The catalyst amount was reduced to 30 mg to obtain data
 282 under differential conditions. The total volumetric flow rate was also
 283 increased to 75 mL/min. At the same time, the gas composition was
 284 maintained as indicated above by adjusting the flow rate. The catalyst
 285 was uniformly mixed with 150 mg of sand. The thermal conversion
 286 was low (<0.1%). However, at low conversion, the moles of CH_4 and
 287 C_2H_4 formed due to gas phase reaction were comparable. The
 288 selectivity value has been corrected for background contributions
 289 from thermal cracking of propane, as measured over sand under the
 290 same conditions. At 560 °C, propane conversion due to cracking
 291 amounts to 0.1% and is ~60% selective to propene. At the end of the
 292 reaction, the catalyst was purged, cooled to room temperature under
 293 N_2 , removed from the reactor, and stored in a glass vial for spectral
 294 characterization.

3. RESULTS


295 **3.1. Catalyst Textural Property Characterization.** N_2
 296 sorption has been used to measure the textural properties of
 297 the as-synthesized catalysts. The N_2 adsorption–desorption
 298 isotherms shown in Figure S1a followed type IV isotherms
 299 with distinct hysteresis loops indicating their mesoporosity
 300 which are observed when monolayer and multilayer adsorption
 301 of N_2 occurs.⁴⁷ Increasing the Fe loading led to a continuous
 302 decrease in the BET surface area. The loss of surface area can
 303 be explained by a conformal layer of the Fe species which only
 304 add weight to the catalyst but do not increase the physical
 305 surface area. The loss of pore volume is likewise consistent
 306 with this picture, since the pore sizes remained unchanged with
 307 Fe loading as shown in Figure S1b.³⁵ The formation of second
 308 feature around 8 nm at the highest weight loading is consistent
 309 with the likely presence of a small fraction of Fe_2O_3 aggregates
 310 (resulting in pore blocking), as we show later. The
 311 corresponding surface area, pore volume, pore size, and the
 312 Fe loading (atoms·nm⁻²) are summarized in Table 1.

313 **3.2. Powder X-ray Diffraction (XRD) and X-ray Pair
 314 Distribution Function (PDF).** Synchrotron XRD patterns
 315 were used to analyze the phase composition of the as-
 316 synthesized catalysts, and the bare γ - Al_2O_3 support is shown in
 317 Figure 2. Peaks characteristic of γ - Al_2O_3 are seen, and no

Table 1. Summary of Textural Properties of Various Fe Loading (wt %) over Al_2O_3 after Calcination in Air at 600 °C for 4 h

catalyst	surface area ^a (m ² /g)	pore volume (cm ³ /g)	pore size (nm)	Fe loading (atoms·nm ⁻²) ^b
Al_2O_3	142	0.45	15	0
1.5 Fe/Al_2O_3	142	0.45	15	1.14
3 Fe/Al_2O_3	140	0.42	15	2.28
5 Fe/Al_2O_3	138	0.41	8.15	3.91
6.4 Fe/Al_2O_3	134	0.38	8.15	5
10 Fe/Al_2O_3	132	0.37	8.15	8.17
15 Fe/Al_2O_3	120	0.31	8.15	13.26

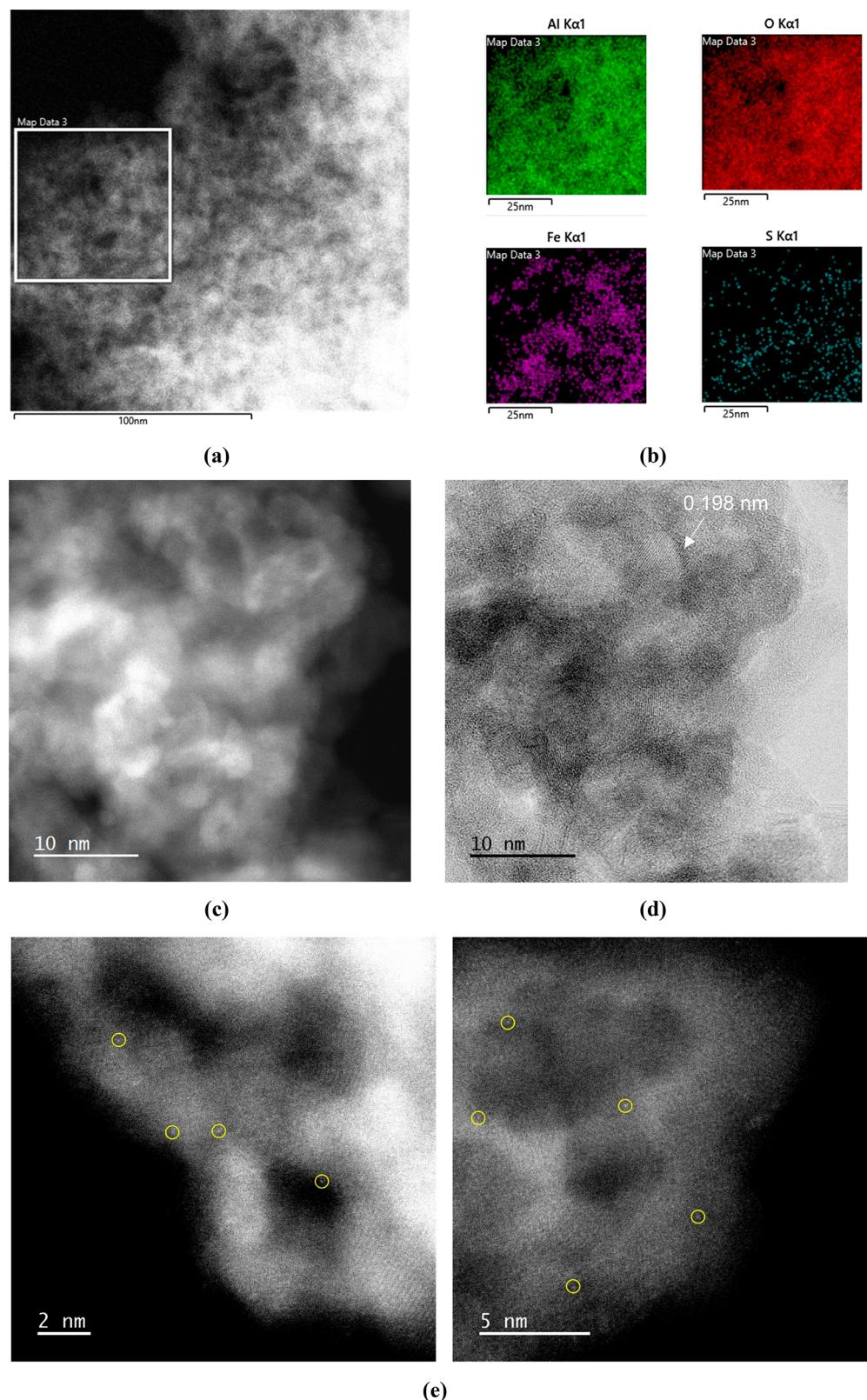

^aThe surface area is based on the BET method. Pore size is based on the BJH method. ^bValues for Fe loading (atoms·nm⁻²) were estimated on the assumption that all Fe is fully dispersed over Al_2O_3 .

Figure 2. Synchrotron XRD patterns of Fe/Al_2O_3 catalysts. Fe/Al_2O_3 represents as-synthesized catalyst after calcination in air at 600 °C for 4 h.

contribution from other crystalline phases is evident. 318 Diffraction peaks in the patterns associated with the aluminum 319 sublattice, (111), (220), (311), and (222), are broadened and 320 asymmetric due to antiphase and rotational boundaries, while 321 the well-ordered oxygen sublattice peaks (400) and (440) are 322 sharper and more symmetric.⁴⁸ As Fe loading is increased, 323 several of the broad asymmetric peaks increase in intensity 324 relative to the oxygen lattice peaks. This is attributed to iron 325 adsorption onto different surface planes of alumina, which 326 modifies the structure factor of their respective Bragg peak. 327 Note that despite the increase in structure factor for the 328 aluminum sublattice peaks, there is no peak shift, which 329 suggests that iron is not incorporated into the bulk of Al_2O_3 . 330 These results suggest that iron species on alumina are only 331 ordered over a very short-range at all loadings. Subsequently, 332 nonsynchrotron XRD was also utilized to study the as- 333 synthesized form, and the spent catalyst and the results are 334 discussed in Figure S2. The diffraction peaks related to the 335 Fe_2O_3 crystalline phase were absent even for the highest 336 loading of 15% Fe, indicating either an amorphous nature or 337 dispersed state with no long-range order.⁴⁹ TEM results 338 confirm this picture and show that there are no detectable 339 crystalline phases other than alumina (Figures S3, S4, and S5). 340 The STEM ADF images are ideal for detecting the presence of 341 the heavier element (Fe) on the lighter Al_2O_3 support. While 342 higher contrast regions were seen, they did not reveal any 343 lattice fringes corresponding to iron oxides. The only 344 crystalline phase detected was γ alumina. The EDS map 345 (Figure S6) shows that Fe is well dispersed even in the 15 wt % 346 Fe sample. Some regions show higher concentration of Fe. 347 These regions, however, do not yield any lattice fringes 348 corresponding to iron oxides, so we infer that they could be 349 due to amorphous or poorly crystallized Fe oxide. The absence 350 of any visible large particles confirms that the Fe is well 351 dispersed, even on the 15 wt % Fe sample. This sample was 352 also studied in its sulfided form (Figures S7–S9) showing very 353 similar structure; i.e., Fe is well dispersed while EDS confirms 354 the sample is sulfided. 355

To gain further insight into the local iron structure, a locally 356 sensitive technique, pair distribution function was measured on 357 the catalysts. The X-ray pair distribution functions (PDFs) of 358 Fe/Al_2O_3 catalysts and the bare Al_2O_3 support are plotted in 359 Figure S10a. Below 8 Å, the series shows several peaks that 360 have changed in intensity relative to the bare support, whereas 361 at longer length scales, the patterns only show minor variation. 362 This result is in line with the XRD results showing only 363

Figure 3. (a) ADF image of the spent 6.4 Fe/Al₂O₃-S1 sample after sulfiding and one cycle of PDH. (b) The EDS map of the region in the box shows Fe and S are well dispersed and no distinct Fe nanophases are visible in the image. (c) ADF image and (d) ABF image of the 6.4 Fe/Al₂O₃-S1 sample after one cycle of PDH. While regions of higher contrast are seen via ADF, they are not associated with any Fe containing crystalline phases. The prominent visible lattice fringes come from alumina, in this case the (400) reflection from γ alumina, with a *d*-space of 0.198 nm. (e) Higher magnification ADF images of the 6.4 Fe/Al₂O₃-S1 sample after one cycle of PDH. We observe single Fe atoms, as indicated by the yellow circles.

364 changes in the relative intensity of a subset of diffraction peaks
 365 and the diffuse scattering background. The changes in relative
 366 intensity are due to scattering pairs involving iron, which due
 367 to having a higher X-ray atomic form factor, leads to higher
 368 intensity peaks. To determine whether the local Fe structure is
 369 better represented by substitution of alumina or by a
 370 subnanometer sized iron oxide phase, a difference analysis
 371 was performed by subtracting the scaled Al_2O_3 pattern from
 372 each $\text{Fe}/\text{Al}_2\text{O}_3$ catalyst.

373 Figure S10b shows the difference patterns for $\text{Fe}/\text{Al}_2\text{O}_3$
 374 catalysts. The Fe loading for 1.5 $\text{Fe}/\text{Al}_2\text{O}_3$ was too low to
 375 produce a difference spectra signal above the noise and hence
 376 was not included. The residual peaks left after the difference
 377 represent the modification of the support due to Fe loading.
 378 Qualitatively, this allows the determination of the coherent
 379 length scale of iron species on the catalyst. Looking at the first
 380 5 \AA , the largest residual peaks align well with the local structure
 381 of Fe_2O_3 , which suggests that iron has not substituted into the
 382 Al_2O_3 structure but rather is present as subnanometer surface
 383 Fe_2O_3 species. Past 5 \AA , the Fe_2O_3 and difference patterns do
 384 not match, which suggests that the length scale of iron species
 385 on the support is on the order of 1–2 coordination polyhedra.
 386 Residual signal not associated with the iron structure reflects
 387 subtle structural changes of the Al_2O_3 support, the features of
 388 which appear highly similar in all samples.

389 Previously, Xie et al.⁵⁰ suggested that iron oxides form a
 390 monolayer on the $\gamma\text{-Al}_2\text{O}_3$ surface. They reported a Fe loading
 391 threshold of 0.052 g Fe_2O_3 per 100 $\text{m}^2 \text{Al}_2\text{O}_3$ or \sim 4 Fe atoms
 392 nm^{-2} to form monolayer coverage. Of note, the authors also
 393 estimated the theoretical coverage of 0.13 g per 100 $\text{m}^2 \text{Al}_2\text{O}_3$
 394 or \sim 11 Fe atoms nm^{-2} to form monolayer coverage. Similarly,
 395 other studies also suggested that iron can be dispersed between
 396 4 and 5.5 Fe atoms nm^{-2} over $\gamma\text{-Al}_2\text{O}_3$ support.^{30,51}
 397 Accordingly, the XRD and PDF results in this work indicate
 398 the possibility of forming a highly dispersed Fe-phase. Notably,
 399 temperatures higher than 1000 °C are usually required to form
 400 aluminate spinel (FeAlO_3) or crystalline hercynite (FeAl_2O_4)
 401 from Fe_2O_3 and Al_2O_3 .^{52,53} The XRD patterns of the $\text{Fe}/$
 402 Al_2O_3 -S1 catalysts after one complete PDH cycle (Figure S2d)
 403 with H_2S cofeed were also acquired. Similar to the fresh
 404 catalysts, no diffraction peaks for crystalline phases other than
 405 $\gamma\text{-Al}_2\text{O}_3$, such as FeS_x ,⁵⁴ were observed. The results indicate
 406 the lack of any bulk like FeS_x species. Of note, the spent
 407 catalyst was exposed to air before the examination, which may
 408 result in partial oxidation of the catalyst. The 6.4 Fe catalyst
 409 was also studied via AC-STEM after one reaction cycle of
 410 PDH. While regions of higher contrast are seen in the EDS
 411 map (Figure 3), there is no corresponding crystalline phase
 412 detected in the images, the only crystalline structures observed
 413 correspond to the alumina as seen in the higher magnification
 414 images. Higher magnification images show contrast ascribed to
 415 single atoms of Fe, confirming that the Fe remains atomically
 416 dispersed in this sample after reaction. These catalysts were
 417 also air exposed, but EDS shows evidence for Fe and S
 418 (Figures S8 and S9). After recording images from 50 regions of
 419 this sample, we found only one that contained a crystalline Fe
 420 particle (Figure S11). While not representative of the sample
 421 as a whole, this image demonstrates that such species would be
 422 readily visible in the AC-STEM images, since the microscope
 423 resolution is 0.71 \AA . These results confirm the absence of any
 424 crystalline Fe phases in the spent catalyst.

425 3.3. X-ray Absorption Spectroscopy To Determine 426 the Structure of the As-Synthesized Catalyst. Figure 4a

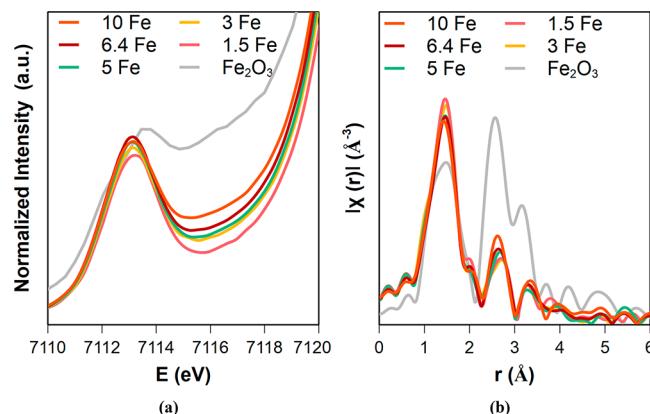


Figure 4. *Ex situ* (a) Fe K edge XANES and (b) *R* space EXAFS magnitude of as-synthesized 1.5–10 Fe/ Al_2O_3 catalysts.

427 shows the Fe K-edge XANES for the series of $\text{Fe}/\text{Al}_2\text{O}_3$ 427
 428 catalysts with increasing Fe loading. XANES edge energies 428
 429 and pre-edge peak positions for Fe_2O_3 reference and $\text{Fe}/\text{Al}_2\text{O}_3$ 429
 430 catalysts are tabulated in Table S1. The edge energy and pre- 430
 431 edge peak position did not vary significantly with Fe loading, 431
 432 with the pre-edge peak position being 7113.2 eV and the edge 432
 433 position being 7121.5 eV. This edge position and pre-edge 433
 434 peak were close in value to Fe_2O_3 , consistent with the Fe^{3+} 434
 435 oxidation state for all catalysts. The pre-edge peak position of 435
 436 the catalysts is shifted to slightly lower energy and is different 436
 437 in shape compared to the Fe_2O_3 reference, and this is likely 437
 438 due to a difference in point group symmetry of the absorber. 438
 439 Across the loading series, there were systematic changes in the 439
 440 intensity in the pre-edge region. The pre-edge peak intensity 440
 441 increased with Fe loading, and in the region between the pre- 441
 442 edge peak maximum and the main edge, the intensity 442
 443 systematically increased with Fe loading. This trend has 443
 444 previously been documented in dispersed Fe on Al_2O_3 and was 444
 445 attributed to the formation of extended iron oxide species, and 445
 446 the current results are consistent with this interpretation.³⁰ On 446
 447 the basis of the surface area of Al_2O_3 used in this study, 447
 448 monolayer coverage of iron is expected to be reached at a Fe 448
 449 loading of 6.4 wt %; however, the intensity increase between 449
 450 7115 and 7118 eV appears to increase proportionally with 450
 451 loading rather than abruptly when Fe loading surpasses 451
 452 monolayer coverage. The gradual trend can be rationalized 452
 453 through the formation of a minority species of crystalline 453
 454 Fe_2O_3 or 2D/oligomeric iron oxide species, both of which 454
 455 would allow for Fe–Fe orbital hybridization responsible for the 455
 456 intensity increase, consistent with STEM results.⁵⁵ As the 456
 457 fraction of iron atoms with a nearby iron atom nearby 457
 458 increases, the XANES intensity between 7115 and 7118 eV 458
 459 increases.

Figure 4b shows the *R*-space EXAFS spectra $\text{Fe}/\text{Al}_2\text{O}_3$ 460
 461 catalysts with increasing Fe loading and reference spectra of 461
 Fe_2O_3 . Fe_2O_3 has three distinct peaks in the local structure 462
 463 seen by EXAFS corresponding to its immediate oxygen 463
 464 environment (1.5 \AA phase uncorrected distance) and its 464
 465 second and third nearest neighbor iron atoms (2.7 and 3.2 \AA 465
 466 phase uncorrected distance). In contrast, the $\text{Fe}/\text{Al}_2\text{O}_3$ 466
 467 catalysts have a more symmetric Fe–O scattering peak and a 467
 468 weak second shell peak. As iron loading increases, the Fe–O 468
 469 scattering peak decreases in intensity, and the second shell 469
 470 peak increases in intensity. On the basis of the qualitative 470
 471 trends, a model was constructed for the catalysts using the local 471

472 environment of Fe_2O_3 with Al as the second nearest neighbor.
 473 Fitting results are summarized in **Table S2**.

474 Two models were tested for the first shell Fe–O scattering
 475 in 1.5 $\text{Fe}/\text{Al}_2\text{O}_3$, having either one or two Fe–O paths, with
 476 results shown in **Figure S12** and **Table S3**. Including a second
 477 Fe–O path with a longer bond distance improved the *r*-factor
 478 and reduced χ^2 value of the fit and was then used to model the
 479 entire series. Several trends emerged from the fitting results.
 480 First, the total Fe–O coordination for the $\text{Fe}/\text{Al}_2\text{O}_3$ catalysts
 481 was about 5, except for 10 $\text{Fe}/\text{Al}_2\text{O}_3$, which was closer to 6.
 482 Unlike Fe_2O_3 , the number of short Fe–O bonds and the
 483 number of long Fe–O bonds were not equal, instead having
 484 four short bonds (1.92–1.94 Å) and one long bond (2.09–
 485 2.11 Å). A previous report on $\text{Fe}/\text{Al}_2\text{O}_3$ EXAFS similarly
 486 modeled one short and one long Fe–O bond distance and
 487 obtained similar Fe–O coordination numbers reported here.³⁰
 488 For the short Fe–O bond, the coordination number decreased
 489 from 3.9 to 3.3 as Fe loading was increased from 1.5 to 6.4%.
 490 The long Fe–O bond also showed small variation between the
 491 catalysts (0.9–1.3) though the change was not systematic. The
 492 trend in the total Fe–O coordination number could reflect
 493 multiple sites of iron adsorption on the Al_2O_3 surface with
 494 different oxygen environments that are filled progressively as
 495 the Fe loading is increased.

496 The EXAFS magnitude of the second nearest neighbor of
 497 the $\text{Fe}/\text{Al}_2\text{O}_3$ catalysts is similar in position to that of Fe–Fe
 498 scattering in Fe_2O_3 at 2.7 Å (phase uncorrected distance).
 499 Examination of the imaginary component of the catalyst
 500 (**Figure S13** and **Table S4**) and the *Q* space real component of
 501 the peak (**Figure S14**) suggests a lighter scatter such as
 502 aluminum. The total Fe–Al coordination number varied
 503 between 2 and 3 among both paths. The lack of Fe–Fe
 504 coordination in the second shell of catalysts with Fe loading
 505 below 6.4% confirms that most Fe is present as single (or
 506 dispersed) sites in these catalysts. The short Fe–Al path
 507 coordination number varied from 0.6 to 0.9, and the long path
 508 varied from 1.2 to 2.3. This suggests that 2–3 of the oxygen
 509 bonds to iron come from bonding with the support, while the
 510 remaining (1–2) Fe–O bonds come from an adsorbate or
 511 ligand, such as a hydroxyl group or water. EXAFS fittings for
 512 Fe foil and $\text{Fe}/\text{Al}_2\text{O}_3$ catalysts are shown in **Table S5** and
 513 **Figures S15–S20**.

514 In line with the monolayer iron coverage predictions, the 10
 515 $\text{Fe}/\text{Al}_2\text{O}_3$ catalyst could not be modeled using aluminum
 516 second nearest neighbors. Instead, a model using Fe–Fe
 517 scattering from Fe_2O_3 was used to model the EXAFS. In
 518 addition to the Fe–Fe coordination numbers being lower than
 519 that of the bulk oxide, the iron environment around the
 520 absorber is quite distorted relative to that of bulk Fe_2O_3 . In
 521 bulk $\alpha\text{-Fe}_2\text{O}_3$, iron has Fe neighbors at 2.899 Å (1 neighbor),
 522 2.968 Å (3 neighbors), and 3.361 Å (3 neighbors). In contrast,
 523 10 $\text{Fe}/\text{Al}_2\text{O}_3$ was fit with 0.9 neighbors at 3.03 Å and with 2.3
 524 neighbors at 3.56 Å. The lengthening of the Fe–Fe bonds
 525 relative to Fe_2O_3 is indicative of lattice expansion. This
 526 phenomenon is common in nanoscale oxides, as the
 527 diminishing Madelung potential near the oxide surface causes
 528 the lattice to expand.³⁶ While the Fe–O bond distances are in
 529 line with Fe_2O_3 , the coordination numbers are not. In bulk
 530 Fe_2O_3 , Fe has 3 Fe–O bonds at 1.944 Å and 3 bonds at 2.114
 531 Å. In contrast, 10 $\text{Fe}/\text{Al}_2\text{O}_3$ has 3.9 Fe–O bonds at 1.93 Å and
 532 1.6 Fe–O bonds at 2.11 Å. As EXAFS is a bulk average
 533 technique, these numbers likely reflect a mixture of different
 534 Fe–O coordination environments. Given the trend of the

535 XANES showing a gradual increase in Fe–Fe orbital
 536 hybridization, the simplest explanation is that the 10 $\text{Fe}/\text{Al}_2\text{O}_3$
 537 contains a mixture of Fe single sites, which have a Fe–O
 538 coordination number below 6, and small oligomeric Fe_2O_3
 539 species that are 6 coordinate with oxygen. The presence of
 540 crystalline $\alpha\text{-Fe}_2\text{O}_3$ was further ruled out via *ex situ* Raman
 541 measurements shown in **Figure S21**.

542 **3.4. H₂ Temperature-Programmed Reduction (H₂-
 543 TPR) Experiments.** It is known that the reduction behavior
 544 of a supported Fe species changes depending on its dispersion,
 545 size, and metal–support interaction.^{57–59} Al_2O_3 was utilized as
 546 a control, and it showed a negligible peak due to its strong
 547 metal–oxygen bonds. H₂-TPR profile of bulk iron metal oxide
 548 is shown in **Figure 5a**. For Fe_2O_3 , at least two distinct peaks
 549 are observed at $T = 375$ and 650 °C. For bulk hematite ($\alpha\text{-Fe}_2\text{O}_3$),
 550 a distinct peak at ~ 375 °C was assigned to $\text{Fe}_2\text{O}_3 \rightarrow \text{Fe}_3\text{O}_4$ reduction
 551 while the broad peak ~ 650 °C to $\text{Fe}_3\text{O}_4 \rightarrow \text{FeO} \rightarrow \text{Fe}$ reduction,
 552 similar to the reduction determined by *in situ* XRD.⁶⁰ For bulk magnetite
 553 (Fe_3O_4), one high-temperature broad peak with the highest peak
 554 intensity centered around ~ 760 °C was observed. The reduction of magnetite
 555 is expected to follow via $\text{Fe}_3\text{O}_4 \rightarrow \text{FeO} \rightarrow \text{Fe}$.⁶⁰ The multistep reduction
 556 generally causes broad reduction envelopes during the second
 557 and subsequent reduction step.^{6,61}

558 To determine the reducibility of the as-synthesized catalysts,
 559 H₂-TPR experiments were carried out, and the corresponding
 560 plots are shown in **Figure 5b**. Only one broad peak with T_p
 561 between 350 and 450 °C was observed for $\text{Fe}/\text{Al}_2\text{O}_3$ catalysts
 562 with no broad peak at $T > 450$ °C, indicating that the catalysts
 563 do not possess bulk-like Fe_2O_3 or Fe_3O_4 crystals, consistent
 564 with XRD experiments shown in **Figure S2**. The low-
 565 temperature peak at ~ 430 °C can be associated with the
 566 reduction of surface Fe^{3+} species. The broad peak at 450–700
 567 °C has previously been attributed to reduction of FeO and
 568 Fe_3O_4 to Fe metal.⁶ For 15 $\text{Fe}/\text{Al}_2\text{O}_3$, a satellite peak at 650 °C
 569 was observed which may be due to the formation of a minority
 570 3D- Fe_2O_3 species due to the higher coverage.^{30,50,51} This is
 571 consistent with XAS results presented in **section 3.3**, which
 572 indicates some agglomeration at higher Fe loading. From
 573 **Figure 5b**, it is observed that the peak temperature (T_p) of the
 574 supported Fe oxide species appears to be relatively
 575 independent of Fe loading over Al_2O_3 .

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

577 The activated catalysts after H_2S pretreatment ($\text{Fe}/\text{Al}_2\text{O}_3\text{-S}$)
 578 were generated and analyzed *in situ* using $\text{H}_2\text{-TPR}$. $\text{Al}_2\text{O}_3\text{-S}$
 579 showed a reduction peak at 450°C , ascribed to loss of surface
 580 sulfur species, as shown in Figure 6a.⁴³ The reduction peak of

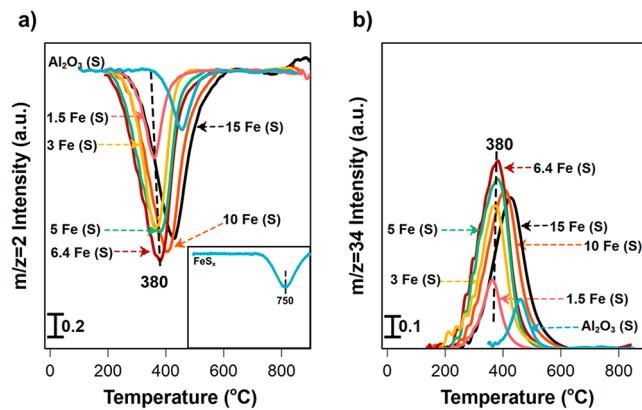
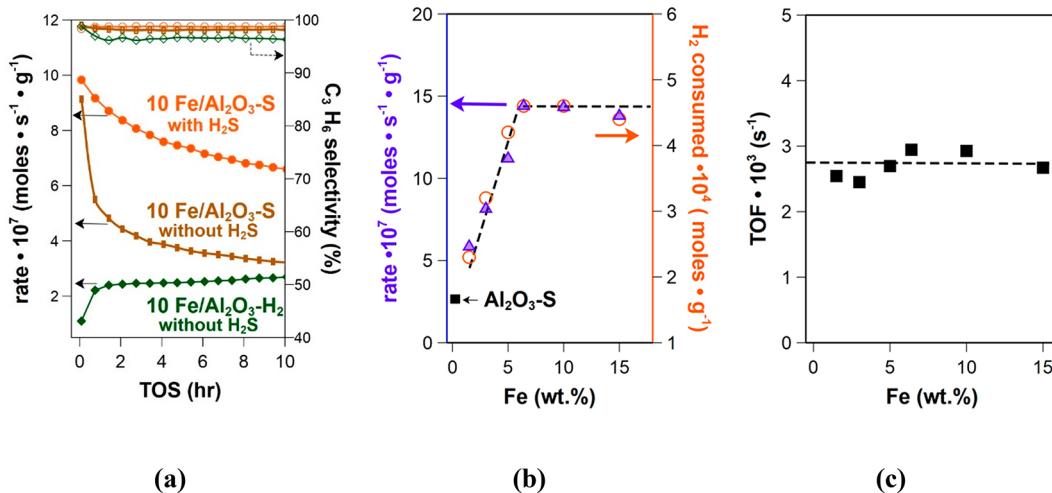


Figure 6. (a) H_2 consumption observed during $\text{H}_2\text{-TPR}$ profile of various Fe loading (wt %) over Al_2O_3 after H_2S pretreatment. (b) H_2S evolution observed during $\text{H}_2\text{-TPR}$ over various Fe loading (wt %) over Al_2O_3 after H_2S pretreatment. Fe (S) represents catalyst after H_2S pretreatment at 600°C for 4 h. Inset represents $\text{H}_2\text{-TPR}$ profile for reference FeS sample after H_2S pretreatment at 600°C for 4 h.

581 bulk FeS, on the other hand, was observed at $\sim 750^\circ\text{C}$ (Figure
 582 6a inset).⁶² In Figure 6a, a single reduction peak was observed
 583 during $\text{H}_2\text{-TPR}$ for all the $\text{Fe}/\text{Al}_2\text{O}_3\text{-S}$ catalysts. The peak at
 584 $\sim 380^\circ\text{C}$ for 1.5–6.4 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ catalysts shifted to a higher
 585 temperature for 10 and 15 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ at 420°C . The peak
 586 shift to a higher temperature for 10 and 15 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ could
 587 be due to the formation of an extended structure on the surface
 588 of the catalyst. The peak around $380\text{--}430^\circ\text{C}$ can be attributed
 589 to the reduction of dispersed (available) iron sites. The lack of
 590 high-temperature peak evolution ($\sim 750^\circ\text{C}$) indicates that Fe/
 591 $\text{Al}_2\text{O}_3\text{-S}$ catalysts are free of bulk FeS nanoparticles on the
 592 surface. The lower H_2 consumption per gram of catalyst for
 593 H_2S pretreated samples as evinced by $\text{H}_2\text{-TPR}$ is likely due to
 594 formation of the conformal iron coating as indicated in the
 595 Figure 1. It is also plausible that iron species undergo reduction
 596 during H_2S pretreatment. It was observed that H_2
 597 consumption during $\text{H}_2\text{-TPR}$, as observed in Figure 6a, leads
 598 to the formation of the H_2S for all catalysts, as shown in Figure
 599 6b at the same peak temperature. It suggests that the Fe surface
 600 species reduction proceeded via $\text{Fe-S} + \text{H}_2 \rightarrow \text{Fe} + \text{H}_2\text{S}$, which
 601 indicates that the FeS_x species are present on the surface after
 602 H_2S pretreatment. These results suggest that after H_2S
 603 pretreatment, oxygen neighbor to Fe species is replaced by a
 604 sulfur atom.

605 In Table 2, the mmole of H_2 consumed per gram of catalyst
 606 is reported. It can be seen that increasing Fe loading up to 6.4
 607 wt % resulted in an increasing amount of H_2 consumed.
 608 Interestingly, it was observed that the amount of H_2 consumed
 609 increases on as-synthesized catalyst but remains constant at
 610 $\sim 0.46 \text{ mmol g}^{-1}$ after 6.4 wt % Fe loading in H_2S pretreated. It
 611 indicates that increasing Fe loading above 6.4 wt % does not
 612 increase the number of reducible FeS_x species. These results
 613 are consistent with the presence of a conformal coating of the
 614 Fe species on the alumina, over the entire range of loadings.
 615 The Fe species remain bound to the alumina and do not form
 616 a separate phase. This is why the number of reducible Fe sites
 617 do not increase as the loading exceeds the monolayer capacity

Table 2. H_2 Consumed in Millimole per Gram of Catalyst As Obtained from $\text{H}_2\text{-TPR}$


Fe (wt %)	H_2 mmole consumed per gram of catalyst (H_2 consumed per mole of Fe atoms)	
	as synthesized	H_2S pretreated
0	0.12	0.12
1.5	0.24 (0.89)	0.23 (0.87)
3	0.32 (0.59)	0.32 (0.6)
5	0.45 (0.49)	0.42 (0.46)
6.4	0.54 (0.47)	0.46 (0.4)
10	0.77 (0.42)	0.46 (0.26)
15	1.12 (0.42)	0.44 (0.16)

of alumina for the sulfided Fe species (Figure 1). The monolayer capacity for the sulfided catalyst is reached at the 6.4 Fe catalyst loading.

3.5. Fixed Bed Catalytic PDH Studies for 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ and 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ under Different H_2S Cofeed Conditions.

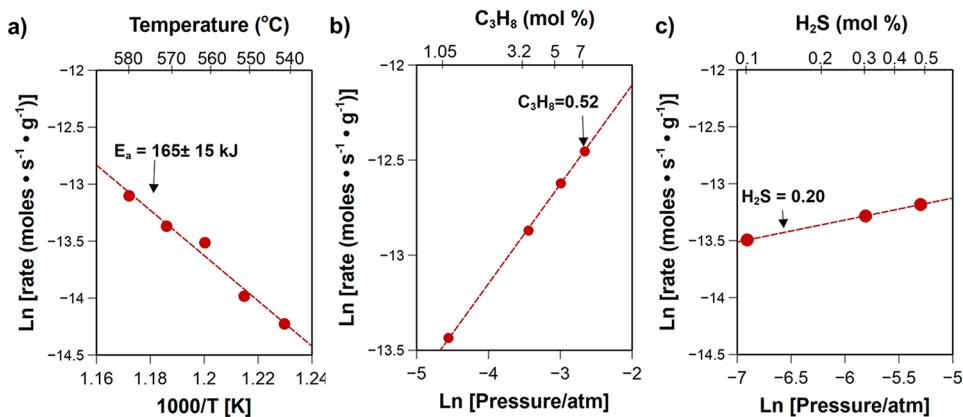
The catalytic activity for PDH and selectivity toward C_3H_6 with time on stream (TOS) for 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ and 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ catalysts in a fixed bed reactor are shown in Figure 7. The reaction rate, defined using eq 1, was measured in terms of moles of C_3H_8 consumed per gram of catalyst per second. The corresponding propane conversion is reported in Figure S22. The 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ shows an initial activity of $\sim 1.1 \times 10^{-7} \text{ mol g}^{-1} \text{ s}^{-1}$, and the initial conversion was 5.6%. An induction period over 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ was observed, resulting in higher activity ($2.69 \times 10^{-7} \text{ mol g}^{-1} \text{ s}^{-1}$, conversion = 13.5% at TOS – 10 h) with TOS. The induction period of about 2 h before attaining steady-state for 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ could be due to *in situ* formation of the iron carbide phase.⁶ Previously, Tan et al.⁶ showed that 10 Fe–P/ Al_2O_3 could perform PDH with up to 82% C_3H_6 selectivity at 600 °C. They postulated that the *in situ* Fe_3C phase formation was responsible for high selectivity by comparing pre- and postreaction XRD. Recently, Wang and Senftle, based on electronic structure analyses, suggested that the high selectivity of Fe_3C originates from the disruption of surface ensembles via carbon species.⁶³

Previously, Wang et al.¹⁸ showed that supported metal oxides (such as Fe, Ni, Co, Mo, Mn, and Cu) upon H_2S pretreatment could perform selective i-C₄ dehydrogenation. Similarly, Sharma et al.⁴³ showed that H_2S pretreatment and cofeed could dramatically improve the catalytic performance of $\gamma\text{-Al}_2\text{O}_3$. Therefore, the effect of H_2S pretreatment and cofeed was studied for 10 Fe/ Al_2O_3 and shown in Figure 7 and Figure S22. The maximum reaction rate ($\sim 1 \text{ } \mu\text{mol g}^{-1} \text{ s}^{-1}$) and conversion (43.3%) for 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ without H_2S cofeed were observed after 5 min of TOS. Afterward, it gradually decreased by ~60% at the end of 10 h cycle. The effect of different pretreatment conditions can be seen on both selectivity and activity. Notably, the activity is much higher upon H_2S pretreatment. Further, the propylene selectivity for the 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ (>98%) catalyst was higher than the 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$ (~96%). The increase in rate and selectivity of 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ could be attributed to *in situ* sulfidation of 10 Fe/ Al_2O_3 during H_2S pretreatment, as supported by the temperature program reduction results. The gradual decrease in the observed rate for 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ was different from 10 Fe/ $\text{Al}_2\text{O}_3\text{-H}_2$. The dramatic drop in activity for 10 Fe/ $\text{Al}_2\text{O}_3\text{-S}$ in the absence of H_2S cofeed could be due to loss of sulfur as

Figure 7. (a) Rate of C_3H_8 consumption and C_3H_6 selectivity for different pretreatments for 10 Fe/Al₂O₃. The feed contained 1.1% C_3H_8 , 1% H_2 , with (0.1%) and without H₂S cofeed, and the reaction temperature was 560 °C. The 10 Fe/Al₂O₃-S catalyst was pretreated in 1% H₂ at 600 °C for 4 h. The 10 Fe/Al₂O₃-H₂ catalyst was pretreated in 1% H₂S at 600 °C for 4 h. The total volumetric flow rate was 50 mL/min, and 200 mg of catalyst was used to achieve high conversion (~50%). Solid diamonds, squares, and octagon represent reaction rate, while empty diamonds, squares, and octagon represent C_3H_6 selectivity. (b) Rate of C_3H_8 and H_2 consumption as a function of Fe loading wt % for Fe/Al₂O₃-S catalysts. (c) Turnover frequencies (TOF) for C_3H_8 dehydrogenation as a function of Fe loading wt %. The feed contained 1.05% C_3H_8 , 1% H_2 , 0.1% H₂S with the balance being N₂, and the reaction temperature was 560 °C. The total volumetric flow rate was 75 mL/min, and 30 mg of catalyst was used to achieve differential conversion (<8%). The catalysts were pretreated in a 1 mol % H₂S stream at 600 °C for 4 h. The initial rates at TOS = 5 min are reported in the figure. Dashed lines are a guide to the eye.

666 reported in other work.¹⁸ We attribute the deactivation to loss
667 of S and possible coke deposition.

668 Figure 7 also shows the effect of H₂S cofeed on PDH over
669 the 10 Fe/Al₂O₃-S catalyst. The initial selectivity slightly
670 improved from 97.8% in the absence of H₂S to 98.5% in the
671 presence of H₂S cofeed. The deactivation in the presence of
672 H₂S cofeed was also substantially lower. These results indicate
673 that the presence of H₂S is necessary for catalytic stability, and
674 the deactivation could be due to gradual loss of sulfur with
675 time on stream resulting in loss of active sites or formation of
676 an inactive phase.¹⁸ Importantly, the bulk FeS is not active or
677 possessed a very low rate (selectivity ~65%) compared to the
678 supported Fe/Al₂O₃-S catalysts (Table S6). This is in line with
679 Cheng et al.'s²⁰ observation where bulk MoS₂ was much less
680 active than supported MoS₂ by a factor of 7 toward i-C₄H₈
681 dehydrogenation.


682 Several side reactions can occur at such high operating
683 temperatures, such as coking, thermal cracking to CH₄ and
684 C₂H₄, and hydrogenolysis (via *in situ* H₂ produced during
685 dehydrogenation reaction) to crack C₃H₈ to CH₄, C₂H₆.
686 Interestingly, only CH₄ and C₂H₄ were observed as the
687 byproducts, indicating cracking is the primary side reaction in
688 the presence of H₂S cofeed.⁴³ The thermal conversion was
689 found to be low (<0.1%), and the values are provided for
690 reference in Table S6.

691 To study the effect of Fe loading, the reaction conditions
692 such as volumetric flow rate and catalyst mass were optimized
693 to achieve differential conversion <8% (see Figure S23) and
694 initial rates are plotted in Figure 7b. The high conversion data
695 are also reported in Table S7. Figure 7b shows the dependence
696 of the rate of C₃H₈ dehydrogenation (at 1.05% C₃H₈, 1% H₂,
697 and 0.1% H₂S at 560 °C) as a function of Fe loading up to 15
698 wt %. The C₃H₆ selectivity for Fe/Al₂O₃-S catalysts was about
699 98.5 ± 0.5, reported in Table S7. A linear increase in the rate of
700 C₃H₆ dehydrogenation was observed up to 6.4 wt % Fe

701 loading, beyond which these rates are essentially independent
702 of the Fe content.

703 According to previous structural studies, it is reported that
704 the Fe at low loadings leads to highly dispersed iron
705 species.^{24,31,32} In contrast, at high loadings (above monolayer,
706 i.e., 5 Fe atoms nm⁻²), it can result in hematite-like
707 aggregates.^{30,50,51} As pointed out using XAS (section 3.3),
708 the catalyst contains single Fe sites at low loading and can form
709 a minority Fe₂O₃ nanoparticles at higher loading. The plateau
710 in the activity at high loading is indicative of the formation of
711 an inactive phase at high loadings, possibly due to the
712 formation of conformal Fe coating. Furthermore, the bulk FeS
713 was determined to be inactive toward propane dehydrogen-
714 ation (see Table S6). Also, a similar selectivity was obtained for
715 all Fe loadings, which indicates that similar sites are responsible
716 for chemistry at all loadings (Tables S6 and S7). The H₂
717 consumption also increased linearly and remains constant at
718 higher loading, i.e., >6.4 wt % Fe (shown in Table 2) after H₂S
719 pretreatment. The constant rate and H₂ consumption at higher
720 loading (>6.4 wt % Fe) reveal that increasing iron loading
721 beyond monolayer capacity does not result in more active sites.

722 The C₃H₆ dehydrogenation rate normalized per H₂
723 molecule (TOF) was determined using H₂-TPR and is
724 shown in Figure 7c. The TOF's invariance with Fe loading
725 suggests that the dehydrogenation of C₃H₈ to C₃H₆ involves
726 only dispersed Fe (FeS_x) site and the rate is dependent on the
727 number of exposed Fe sites. This also indicates that the active
728 sites are reducible by H₂-TPR and H₂ can selectively titrate the
729 active sites. Importantly, it suggests that the aggregated iron
730 species (such as Fe₂O₃, FeO_xS_y, FeS) are not as active as
731 dispersed Fe sites. It is generally accepted that propane
732 conversion to propylene can occur over an individual active
733 site of noble metal/metal alloys (such as Pt or Pd) and is a
734 structure-insensitive reaction, whereas large ensembles of
735 active sites can also induce structure-sensitive side reac-
736 tions.^{1,64–67} It implies that the rate of PDH reaction strongly

Figure 8. Observed kinetics of propane dehydrogenation reaction on 6.4 Fe/Al₂O₃-S. (a) Arrhenius plot (540–580 °C), with the feed containing 1.05% C₃H₈, 1% H₂, 0.1% H₂S with the balance being N₂. Partial pressure dependence of PDH kinetics on (b) propane (varied 1–7 mol %) and (c) H₂S (varied 0.1–0.5 mol %) is also shown. The reference concentrations of H₂ and H₂S were 1 and 0.1%, with the balance being N₂, such that the 30 mg of catalyst and total flow rate of 75 mL/min were ensured; the temperature was fixed at 560 °C to achieve differential conversion (<10%). The catalysts were pretreated in a 1 mol % H₂S stream at 600 °C for 4 h. The initial rates at TOS = 5 min are reported in the figure. The dashed lines are the linear fits to the data.

depends on the number of the active sites, and thus, the rate is directly proportional to the number of exposed atoms. Previously, Kim and Wachs studied vanadium oxide catalysts with different VO_x loading for selective methanol oxidation to formaldehyde.⁶⁸ It was reported in the study that the TOF on these catalysts is independent of the vanadium loading. Similar conclusions were reached for propane ODH over supported vanadium and chromium catalysts.^{69–71} The constant TOF for propane consumption as a function of surface vanadia coverage indicates that only one surface VO_x site is involved in the rate-determining step of propane activation. The sum of these previous works suggests that a single surface site can perform selective propane dehydrogenation. In this study, similarly, a linear increase in rate up to 6.4 wt % Fe loading results from the increasing concentration of surface Fe sites. Similar selectivity and TOF at all loadings indicate that a single or dispersed site is required for the chemistry.

The kinetics of propane dehydrogenation was investigated on 6.4 Fe/Al₂O₃-S to determine apparent activation barriers and partial pressure dependence for propane in Figure 8. The C₃H₈ conversions of less than 12% are utilized in the temperature range between 540 and 580 °C for plotting the Arrhenius plot. The activation energy value determined was 165 kJ/mol in the temperature range from 540 to 580 °C. The apparent activation energy was similar to that obtained for Co- and Ru-based catalysts.^{72,73} The reaction order for C₃H₈ was 0.52. A half order in propane for a single Fe site suggests reaction intermediates (or products) of the reaction, such as propyl or propylene, cover a significant fraction of sites and that either first or second C–H scission is rate determining. The corresponding selectivity and rate are plotted in Figure S24 for reference. Next, the effect of H₂S on the reaction kinetics was studied. The reaction order for H₂S was determined to be ~0.20, indicating a promoting effect. It is likely that increasing H₂S concentration in the feed (or sulfur potential) leads to an increase in the number of available Fe sites. The reaction order of ~0.20 for H₂S at either 560 or 600 °C (Figure S25) indicates that the effect of H₂S on kinetics is not strongly dependent on the reaction temperature. Of note, high selectivity can be maintained at high temperature and

partial pressure of propane, showing the Fe/Al₂O₃-S catalyst potential for industrial applications.

Finally, summary of the catalytic data available in the literature for mixed or platinum group metal-free catalysts including Sn, Co, Fe, V, Ru for PDH is provided in Table S8. While direct comparison is difficult due to the variety of reaction temperatures, feed compositions, and H₂S pretreatment (if any), the best catalyst obtained in this work, 6.4 Fe/Al₂O₃-S, exhibited rates and TOF comparable to other nonprecious catalysts, chiefly used without H₂S cofeed. These catalysts can be partially or fully regenerated by a combination of H₂S or H₂S + O₂ treatments, as shown in the Figure S26.

4. CONCLUSIONS

A series of Fe loading (0–15 wt %) supported over Al₂O₃ catalysts were prepared via the incipient wetness impregnation method. XAS, AC-STEM, BET surface area confirm that the Fe remains atomically dispersed with no bulk nanophases detected. Additionally, EXAFS analysis showed that the second nearest neighbor of iron was aluminum, confirming the single-site nature of iron. Past monolayer coverage, the formation of iron oxide clusters as a minority species was suggested. H₂-TPR was utilized to study the reducibility of the catalyst in as-synthesized form and after H₂S pretreatment. In the oxide form, H₂-TPR scaled with loading, but H₂-TPR results on the sulfided catalyst indicate that the number of exposed Fe sites after H₂S pretreatment increases linearly up to 6.4 wt % and becomes constant at higher loading for H₂S pretreated samples. This result is explained by the Fe species remaining as a conformal coating on the alumina. Fe/Al₂O₃-S (pretreated with H₂S) showed improved performance compared to Fe/Al₂O₃-H₂; 52% propylene yield along with ~99% C₃H₆ selectivity was obtained over 6.4 Fe/Al₂O₃-S. Like H₂-TPR, the reaction rate as a function of iron loading showed a plateau at higher loading, which corresponds to predicted monolayer coverage of sulfided Fe over Al₂O₃. At loadings above a monolayer, the number of sites does not increase because the Fe remains strongly bound to the alumina, without forming a separate phase. Importantly, it was determined that the TOF was constant irrespective of Fe loading, indicating that propane

816 dehydrogenation rate is constant per Fe site. The constant
817 TOF values demonstrate that the dispersed Fe site is
818 responsible for the PDH reaction to propylene. The loss of
819 sulfur and some coke deposition was believed to be the main
820 reason for the deactivation of the catalyst since regeneration
821 could be performed utilizing treatment in H₂S with and
822 without oxygen to form the unique and reactive surface sites.

823 ■ ASSOCIATED CONTENT

824 ■ Supporting Information

825 The Supporting Information is available free of charge at
826 <https://pubs.acs.org/doi/10.1021/acsanm.1c01366>.

827 Catalyst characterization such as TEM, XRD, PDF,
828 EXAFS fitting; additional kinetic data such as con-
829 version, rate, selectivity, and reaction orders at different
830 reaction conditions ([PDF](#))

831 ■ AUTHOR INFORMATION

832 Corresponding Author

833 **Jonas Baltrusaitis** — *Department of Chemical and*
834 *Biomolecular Engineering, Lehigh University, Bethlehem,*
835 *Pennsylvania 18015, United States;* [0000-0001-5634-955X](https://orcid.org/0000-0001-5634-955X); Email: job314@lehigh.edu

837 Authors

838 **Lohit Sharma** — *Department of Chemical and Biomolecular*
839 *Engineering, Lehigh University, Bethlehem, Pennsylvania*
840 *18015, United States;* [0000-0003-1405-1688](https://orcid.org/0000-0003-1405-1688)

841 **Stephen C. Purdy** — *Neutron Scattering Division, Oak Ridge*
842 *National Laboratory, Oak Ridge, Tennessee 37830, United*
843 *States;* [0000-0002-9870-1029](https://orcid.org/0000-0002-9870-1029)

844 **Katharine Page** — *Neutron Scattering Division and Shull*
845 *Wollan Center, Oak Ridge National Laboratory, Oak Ridge,*
846 *Tennessee 37830, United States; Materials Science and*
847 *Engineering Department, University of Tennessee, Knoxville,*
848 *Tennessee 37996, United States;* [0000-0002-9071-3383](https://orcid.org/0000-0002-9071-3383)

849 **Srinivas Rangarajan** — *Department of Chemical and*
850 *Biomolecular Engineering, Lehigh University, Bethlehem,*
851 *Pennsylvania 18015, United States;* [0000-0002-6777-9421](https://orcid.org/0000-0002-6777-9421)

852 **Hien Pham** — *Center for Microengineered Materials and*
853 *Department of Chemical & Biological Engineering, University*
854 *of New Mexico, Albuquerque, New Mexico 87131, United*
855 *States*

856 **Abhaya Datye** — *Center for Microengineered Materials and*
857 *Department of Chemical & Biological Engineering, University*
858 *of New Mexico, Albuquerque, New Mexico 87131, United*
859 *States;* [0000-0002-7126-8659](https://orcid.org/0000-0002-7126-8659)

860 Complete contact information is available at:

861 <https://pubs.acs.org/10.1021/acsanm.1c01366>

864 Author Contributions

865 L.S.: investigation (lead); conceptualization (supporting);
866 writing of original draft (equal); manuscript review and editing
867 (equal). S.C.P.: investigation (supporting); writing of original
868 draft (equal); manuscript review and editing (equal). K.P.:
869 investigation (supporting); writing of original draft (equal);
870 manuscript review and editing (equal). S.R.: supervision
871 (supporting); conceptualization (supporting); writing of
872 original draft (equal); manuscript review and editing (equal).
873 H.P.: investigation. A.D.: investigation; methodology; manu-

874 script review and editing. J.B.: conceptualization (lead);
875 methodology (supporting); funding acquisition; supervision
876 (lead); writing of original draft (equal); manuscript review and
877 editing (equal). 877

878 Notes

879 The authors declare no competing financial interest.

880 **Data Availability.** The data that support the findings of this
881 study are available from the corresponding author upon
882 request. 882

883 ■ ACKNOWLEDGMENTS

884 This work is supported by the Center for Understanding and
885 Control of Acid Gas-Induced Evolution of Materials for Energy
886 (UNCAGE-ME), an Energy Frontier Research Center funded
887 by the U.S. Department of Energy, Office of Science, Basic
888 Energy Sciences under Grant DE-SC0012577. S.R. acknowl-
889 edges support from the American Chemical Society Petroleum
890 Research Fund (Grant 57946-DN15). A.D. acknowledges
891 support from the NSF/ERC CISTAR under Cooperative
892 Agreement EEC-1647722 and for microscope acquisition
893 under Grant DMR-1828731. MRCAT operations are sup-
894 ported by the Department of Energy and the MRCAT member
895 institutions. This research used resources of the Advanced
896 Photon Source, a U.S. Department of Energy (DOE) Office of
897 Science User Facility operated for the DOE Offices of Science
898 by Argonne National Laboratory under Contract DE-AC02-
899 06CH11357. This research used resources at 28-ID-1 of the
900 National Synchrotron Light Source II, a U.S. Department of
901 Energy (DOE) Office of Science User Facility operated for the
902 DOE Office of Science by Brookhaven National Laboratory
903 under Contract DE-SC0012704. 903

904 ■ REFERENCES

- (1) Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. *Chem. Rev.* **2014**, *114* (20), 10613–10653.
- (2) Degnan, T. Commercial Catalytic Propane Dehydrogenation (PDH) Technology Offerings Broadened. *Focus Catal.* **2019**, *2019* (11), 1.
- (3) Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. *ACS Catal.* **2021**, *11*, 2182–2234.
- (4) Siirila, J. J. The Impact of Shale Gas in the Chemical Industry. *AIChE J.* **2014**, *60* (3), 810–819.
- (5) Otroshchenko, T.; Jiang, G.; Kondratenko, V. A.; Rodemerck, U.; Kondratenko, E. V. Current Status and Perspectives in Oxidative, Non-Oxidative and CO₂-Mediated Dehydrogenation of Propane and Isobutane over Metal Oxide Catalysts. *Chem. Soc. Rev.* **2021**, *50* (1), 473–527.
- (6) Tan, S.; Hu, B.; Kim, W.-G.; Pang, S. H.; Moore, J. S.; Liu, Y.; Dixit, R. S.; Pendergast, J. G.; Sholl, D. S.; Nair, S.; Jones, C. W. Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. *ACS Catal.* **2016**, *6* (9), 5673–5683.
- (7) Schäferhans, J.; Gómez-Quero, S.; Andreeva, D. V.; Rothenberg, G. Novel and Effective Copper–Aluminum Propane Dehydrogenation Catalysts. *Chem. - Eur. J.* **2011**, *17* (44), 12254–12256.
- (8) Hu, B.; Kim, W.-G.; Sulmonetti, T. P.; Sarazen, M. L.; Tan, S.; So, J.; Liu, Y.; Dixit, R. S.; Nair, S.; Jones, C. W. A Mesoporous Cobalt Aluminate Spinel Catalyst for Nonoxidative Propane Dehydrogenation. *ChemCatChem* **2017**, *9* (17), 3330–3337.

935 (9) Mitchell, P. C. H.; Wass, S. A. Propane Dehydrogenation over 936 Molybdenum Hydrotalcite Catalysts. *Appl. Catal., A* **2002**, 225 (1), 937 153–165.

938 (10) Schweitzer, N. M.; Hu, B.; Das, U.; Kim, H.; Greeley, J.; 939 Curtiss, L. A.; Stair, P. C.; Miller, J. T.; Hock, A. S. Propylene 940 Hydrogenation and Propane Dehydrogenation by a Single-Site Zn²⁺ 941 on Silica Catalyst. *ACS Catal.* **2014**, 4 (4), 1091–1098.

942 (11) Xiong, C.; Chen, S.; Yang, P.; Zha, S.; Zhao, Z.-J.; Gong, J. 943 Structure–Performance Relationships for Propane Dehydrogenation 944 over Aluminum Supported Vanadium Oxide. *ACS Catal.* **2019**, 9 (7), 945 5816–5827.

946 (12) Szeto, K. C.; Jones, Z. R.; Merle, N.; Rios, C.; Gallo, A.; Le 947 Quemener, F.; Delevoye, L.; Gauvin, R. M.; Scott, S. L.; Taoufik, M. 948 A Strong Support Effect in Selective Propane Dehydrogenation 949 Catalyzed by Ga(i-Bu)₃ Grafted onto γ -Alumina and Silica. *ACS 950 Catal.* **2018**, 8 (8), 7566–7577.

951 (13) Wang, H.; Huang, H.; Bashir, K.; Li, C. Isolated Sn on 952 Mesoporous Silica as a Highly Stable and Selective Catalyst for the 953 Propane Dehydrogenation. *Appl. Catal., A* **2020**, 590, 117291.

954 (14) Han, S.; Zhao, D.; Otroshchenko, T.; Lund, H.; Bentrup, U.; 955 Kondratenko, V. A.; Rockstroh, N.; Bartling, S.; Doronkin, D. E.; 956 Grunwaldt, J.-D.; Rodemerck, U.; Linke, D.; Gao, M.; Jiang, G.; 957 Kondratenko, E. V. Elucidating the Nature of Active Sites and 958 Fundamentals for Their Creation in Zn-Containing ZrO₂-Based 959 Catalysts for Nonoxidative Propane Dehydrogenation. *ACS Catal.* 960 **2020**, 10 (15), 8933–8949.

961 (15) Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; 962 Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E. V. 963 Control of Coordinatively Unsaturated Zr Sites in ZrO₂ for Efficient 964 C–H Bond Activation. *Nat. Commun.* **2018**, 9 (1), 3794.

965 (16) Chen, S.; Chang, X.; Sun, G.; Zhang, T.; Xu, Y.; Wang, Y.; Pei, 966 C.; Gong, J. Propane Dehydrogenation: Catalyst Development, New 967 Chemistry, and Emerging Technologies. *Chem. Soc. Rev.* **2021**, 50, 968 3315.

969 (17) Resasco, D. E.; Marcus, B. K.; Huang, C. S.; Durante, V. A. 970 Isobutane Dehydrogenation over Sulfided Nickel Catalysts. *J. Catal.* 971 **1994**, 146 (1), 40–55.

972 (18) Wang, G.; Li, C.; Shan, H. Highly Efficient Metal Sulfide 973 Catalysts for Selective Dehydrogenation of Isobutane to Isobutene. 974 *ACS Catal.* **2014**, 4 (4), 1139–1143.

975 (19) Wang, G.; Gao, C.; Zhu, X.; Sun, Y.; Li, C.; Shan, H. Isobutane 976 Dehydrogenation over Metal (Fe, Co, and Ni) Oxide and Sulfide 977 Catalysts: Reactivity and Reaction Mechanism. *ChemCatChem* **2014**, 978 6 (8), 2305–2314.

979 (20) Cheng, E.; McCullough, L.; Noh, H.; Farha, O.; Hupp, J.; 980 Notestein, J. Isobutane Dehydrogenation over Bulk and Supported 981 Molybdenum Sulfide Catalysts. *Ind. Eng. Chem. Res.* **2020**, 59 (3), 982 1113–1122.

983 (21) Bulánek, R.; Wichterlová, B.; Novoveská, K.; Kreibich, V. 984 Oxidation of Propane with Oxygen and/or Nitrous Oxide over Fe- 985 ZSM-5 with Low Iron Concentrations. *Appl. Catal., A* **2004**, 264 (1), 986 13–22.

987 (22) Kondratenko, E. V.; Pérez-Ramírez, J. Oxidative Functionaliza- 988 tion of Propane over FeMFI Zeolites: Effect of Reaction Variables and 989 Catalyst Constitution on the Mechanism and Performance. *Appl. 990 Catal., A* **2004**, 267 (1), 181–189.

991 (23) Sarazen, M. L.; Jones, C. W. MOF-Derived Iron Catalysts for 992 Nonoxidative Propane Dehydrogenation. *J. Phys. Chem. C* **2018**, 122 993 (50), 28637–28644.

994 (24) Hu, B.; Schweitzer, N. M.; Zhang, G.; Kraft, S. J.; Childers, D. 995 J.; Lenci, M. P.; Miller, J. T.; Hock, A. S. Isolated FeII on Silica As a 996 Selective Propane Dehydrogenation Catalyst. *ACS Catal.* **2015**, 5 (6), 997 3494–3503.

998 (25) Yun, J. H.; Lobo, R. F. Catalytic Dehydrogenation of Propane 999 over Iron-Silicate Zeolites. *J. Catal.* **2014**, 312, 263–270.

1000 (26) Sun, Y.; Wu, Y.; Tao, L.; Shan, H.; Wang, G.; Li, C. Effect of 1001 Pre-Reduction on the Performance of Fe2O3/Al2O3 Catalysts in 1002 Dehydrogenation of Propane. *J. Mol. Catal. A: Chem.* **2015**, 397, 120– 1003 126.

1004 (27) Sun, Y.; Wu, Y.; Shan, H.; Wang, G.; Li, C. Studies on the 1005 Promoting Effect of Sulfate Species in Catalytic Dehydrogenation of 1006 Propane over Fe2O3/Al2O3 Catalysts. *Catal. Sci. Technol.* **2015**, 5 1006 (2), 1290–1298.

1007 (28) Watanabe, R.; Hirata, N.; Miura, K.; Yoda, Y.; Fushimi, Y.; 1008 Fukuhara, C. Formation of Active Species for Propane Dehydrogen- 1009 ation with Hydrogen Sulfide Co-Feeding over Transition Metal 1010 Catalyst. *Appl. Catal., A* **2019**, 587, 117238.

1011 (29) Watanabe, R.; Hirata, N.; Fukuhara, C. Active Species of 1012 Sulfated Metal Oxide Catalyst for Propane Dehydrogenation. *J. Jpn. 1013 Pet. Inst.* **2017**, 60 (5), 223–231.

1014 (30) Tomita, A.; Miki, T.; Tango, T.; Murakami, T.; Nakagawa, H.; 1015 Tai, Y. Fe K-Edge X-Ray Absorption Fine Structure Determination of 1016 γ -Al2O3-Supported Iron-Oxide Species. *ChemPhysChem* **2015**, 16 1017 (9), 2015–2020.

1018 (31) Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. The 1019 Determination of the Activities of Different Iron Species in Fe-ZSM-5 1020 for SCR of NO by NH₃. *Appl. Catal., B* **2010**, 95 (3), 348–357.

1021 (32) Høj, M.; Beier, M. J.; Grunwaldt, J.-D.; Dahl, S. The Role of 1022 Monomeric Iron during the Selective Catalytic Reduction of NO_x by 1023 NH₃ over Fe-BEA Zeolite Catalysts. *Appl. Catal., B* **2009**, 93 (1), 1024 166–176.

1025 (33) Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. The 1026 State of the Art in Selective Catalytic Reduction of NO_x by Ammonia 1027 Using Metal-Exchanged Zeolite Catalysts. *Catal. Rev.: Sci. Eng.* **2008**, 1028 50 (4), 492–531.

1029 (34) Sharma, L.; Brigaityte, O.; Honer, K.; Kalfaoglu, E.; Slinksiene, 1030 R.; Streimikis, V.; Sviklas, A. M.; Baltrusaitis, J. Carnallite-Derived 1031 Solid Waste as Potassium (K) and Magnesium (Mg) Source in 1032 Granulated Compound NPK Fertilizers. *ACS Sustainable Chem. Eng.* 1033 **2018**, 6 (7), 9427–9433.

1034 (35) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. The Determination 1035 of Pore Volume and Area Distributions in Porous Substances. I. 1036 Computations from Nitrogen Isotherms. *J. Am. Chem. Soc.* **1951**, 73 1037 (1), 373–380.

1038 (36) Prescher, C.; Prakapenka, V. B. DIOPTAS: A Program for 1039 Reduction of Two-Dimensional X-Ray Diffraction Data and Data 1040 Exploration. *High Pressure Res.* **2015**, 35 (3), 223–230.

1041 (37) Juhás, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: 1042 A Rapid and Highly Automatable Program for Processing Powder 1043 Diffraction Data into Total Scattering Pair Distribution Functions. *J. 1044 Appl. Crystallogr.* **2013**, 46 (2), 560–566.

1045 (38) Farrow, C. L.; Juhás, P.; Liu, J. W.; Bryndin, D.; Bozin, E. S.; 1046 Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: Computer 1047 Programs for Studying Nanostructure in Crystals. *J. Phys.: Condens. 1048 Matter* **2007**, 19 (33), 335219.

1049 (39) Kropf, A. J.; Katsoudas, J.; Chattopadhyay, S.; Shibata, T.; 1050 Lang, E. A.; Zyryanov, V. N.; Ravel, B.; McIvor, K.; Kemner, K. M.; 1051 Scheckel, K. G.; Bare, S. R.; Terry, J.; Kelly, S. D.; Bunker, B. A.; 1052 Segre, C. U. The New MRCAT (Sector 10) Bending Magnet 1053 Beamline at the Advanced Photon Source. *AIP Conf. Proc.* **2009**, 1234 1054 (1), 299–302.

1055 (40) Kraft, S.; Stümpel, J.; Becker, P.; Kuetgens, U. High Resolution 1056 X-Ray Absorption Spectroscopy with Absolute Energy Calibration for 1057 the Determination of Absorption Edge Energies. *Rev. Sci. Instrum.* 1058 **1996**, 67 (3), 681–687.

1059 (41) Haskel, D. FLUO: Correcting XANES for Self-Absorption in 1060 Fluorescence Measurements. University of Washington: Seattle, WA, 1061 1999.

1062 (42) Kiani, D.; Sourav, S.; Wachs, I. E.; Baltrusaitis, J. Synthesis and 1063 Molecular Structure of Model Silica-Supported Tungsten Oxide 1064 Catalysts for Oxidative Coupling of Methane (OCM). *Catal. Sci. 1065 Technol.* **2020**, 10 (10), 3334–3345.

1066 (43) Sharma, L.; Jiang, X.; Wu, Z.; Baltrus, J.; Rangarajan, S.; 1067 Baltrusaitis, J. Elucidating the Origin of Selective Dehydrogenation of 1068 Propane on γ -Alumina under H₂S Treatment and Co-Feed. *J. Catal.* 1069 **2021**, 394, 142–156.

1070 (44) Sharma, L.; Upadhyay, R.; Rangarajan, S.; Baltrusaitis, J. 1071 Inhibitor, Co-Catalyst, or Co-Reactant? Probing the Different Roles 1072

1073 of H₂S during CO₂ Hydrogenation on the MoS₂ Catalyst. *ACS Catal.* 1074 **2019**, 9 (11), 10044–10059.

1075 (45) Tischler, L. G.; Wing, M. S.. Process for Dehydrogenation of 1076 Propane. U.S. Patent 3,773,850, 1973.

1077 (46) Xiong, H.; Lin, S.; Goetze, J.; Pletcher, P.; Guo, H.; Kovarik, L.; 1078 Artyushkova, K.; Weckhuysen, B. M.; Datye, A. K. Thermally Stable 1079 and Regenerable Platinum–Tin Clusters for Propane Dehydrogena- 1080 tion Prepared by Atom Trapping on Ceria. *Angew. Chem.* **2017**, 129, 1081 9114–9119.

1082 (47) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; 1083 Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of 1084 Gases, with Special Reference to the Evaluation of Surface Area and 1085 Pore Size Distribution (IUPAC Technical Report). *Pure Appl. Chem.* 1086 **2015**, 87 (9–10), 1051–1069.

1087 (48) Rudolph, M.; Motylenko, M.; Rafaja, D. Structure Model of γ - 1088 Al₂O₃ Based on Planar Defects. *IUCrJ* **2019**, 6, 116–127.

1089 (49) Yan, W.; Luo, J.; Kouk, Q.-Y.; Zheng, J.; Zhong, Z.; Liu, Y.; 1090 Borgna, A. Improving Oxidative Dehydrogenation of 1-Butene to 1,3- 1091 Butadiene on Al₂O₃ by Fe₂O₃ Using CO₂ as Soft Oxidant. *Appl. 1092 Catal., A* **2015**, 508, 61–67.

1093 (50) Xie, Y.; Xu, X.; Zhao, B.; Tang, Y.; Wu, G. Studies on the 1094 Dispersion States of Fe₂O₃ on γ -Al₂O₃ by Means of Mössbauer 1095 Spectroscopy and XRD. *Catal. Lett.* **1992**, 13 (3), 239–245.

1096 (51) Hoffmann, D. P.; Houalla, M.; Proctor, A.; Fay, M. J.; Hercules, 1097 D. M. Quantitative Characterization of Fe/Al₂O₃ Catalysts. Part I: 1098 Oxidic Precursors. *Appl. Spectrosc.* **1992**, 46 (2), 208–218.

1099 (52) Botta, P. M.; Aglietti, E. F.; Porto López, J. M. 1100 Mechanochemical Synthesis of Hercynite. *Mater. Chem. Phys.* **2002**, 1101 76 (1), 104–109.

1102 (53) Lee, H.-Y.; Pack, Y.-K.; Lee, B.-K.; Kang, S.-J. L. Discontinuous 1103 Dissolution of Iron Aluminate Spinel in the Al₂O₃–Fe₂O₃ System. *J. 1104 Am. Ceram. Soc.* **1995**, 78 (8), 2149–2152.

1105 (54) Hoffmann, D. P.; Houalla, M.; Proctor, A.; Hercules, D. M. 1106 Quantitative Characterization of Fe/Al₂O₃ Catalysts. Part II: 1107 Reduction, Sulfidation, and CO/Hydrogenation Activity. *Appl. 1108 Spectrosc.* **1992**, 46 (3), 489–497.

1109 (55) Yang, M.; You, F. Comparative Techno-Economic and 1110 Environmental Analysis of Ethylene and Propylene Manufacturing 1111 from Wet Shale Gas and Naphtha. *Ind. Eng. Chem. Res.* **2017**, 56 (14), 1112 4038–4051.

1113 (56) Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect 1114 of Crystal Size Reduction on Lattice Symmetry and Cooperative 1115 Properties. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1995**, 51 (9), 1116 6135–6138.

1117 (57) Cagnoli, M. V.; Marchetti, S. G.; Gallegos, N. G.; Alvarez, A. 1118 M.; Mercader, R. C.; Yeramian, A. A. Influence of the Support on the 1119 Activity and Selectivity of High Dispersion Fe Catalysts in the 1120 Fischer–Tropsch Reaction. *J. Catal.* **1990**, 123 (1), 21–30.

1121 (58) Park, J.-Y.; Lee, Y.-J.; Khanna, P. K.; Jun, K.-W.; Bae, J. W.; 1122 Kim, Y. H. Alumina-Supported Iron Oxide Nanoparticles as Fischer– 1123 Tropsch Catalysts: Effect of Particle Size of Iron Oxide. *J. Mol. Catal. 1124 A: Chem.* **2010**, 323 (1), 84–90.

1125 (59) Wan, H.; Wu, B.; Xiang, H.; Li, Y. Fischer–Tropsch Synthesis: 1126 Influence of Support Incorporation Manner on Metal Dispersion, 1127 Metal–Support Interaction, and Activities of Iron Catalysts. *ACS 1128 Catal.* **2012**, 2 (9), 1877–1883.

1129 (60) Jozwiak, W. K.; Kaczmarek, E.; Maniecki, T. P.; Ignaczak, W.; 1130 Maniukiewicz, W. Reduction Behavior of Iron Oxides in Hydrogen 1131 and Carbon Monoxide Atmospheres. *Appl. Catal., A* **2007**, 326 (1), 1132 17–27.

1133 (61) Ren-Yuan, T.; Su, Z.; Chengyu, W.; Dongbai, L.; Liwu, L. An in 1134 Situ Combined Temperature-Programmed Reduction-Mössbauer 1135 Spectroscopy of Alumina-Supported Iron Catalysts. *J. Catal.* **1987**, 1136 106 (2), 440–448.

1137 (62) Li, H.; Liu, J.; Li, J.; Hu, Y.; Wang, W.; Yuan, D.; Wang, Y.; 1138 Yang, T.; Li, L.; Sun, H.; Ren, S.; Zhu, X.; Guo, Q.; Wen, X.; Li, Y.; 1139 Shen, B. Promotion of the Inactive Iron Sulfide to an Efficient 1140 Hydrodesulfurization Catalyst. *ACS Catal.* **2017**, 7 (7), 4805–4816.

(63) Wang, P.; Senftle, T. P. Theoretical Insights into Non- 1141 Oxidative Propane Dehydrogenation over Fe₃C. *Phys. Chem. Chem. Phys.* **2021**, 23 (2), 1401–1413.

(64) Childers, D. J.; Schweitzer, N. M.; Shahari, S. M. K.; Rioux, R. 1144 M.; Miller, J. T.; Meyer, R. J. Modifying Structure-Sensitive Reactions 1145 by Addition of Zn to Pd. *J. Catal.* **2014**, 318, 75–84.

(65) Purdy, S. C.; Seemakurthi, R. R.; Mitchell, G. M.; Davidson, 1147 M.; Lauderback, B. A.; Deshpande, S.; Wu, Z.; Wegener, E. C.; 1148 Greeley, J.; Miller, J. T. Structural Trends in the Dehydrogenation 1149 Selectivity of Palladium Alloys. *Chem. Sci.* **2020**, 11 (19), 5066–5081.

(66) Cortright, R. D.; Goddard, S. A.; Rekoske, J. E.; Dumesic, J. A. 1151 Kinetic Study of Ethylene Hydrogenation. *J. Catal.* **1991**, 127 (1), 1152 342–353.

(67) Chen, S.; Pei, C.; Sun, G.; Zhao, Z.-J.; Gong, J. Nanostructured 1154 Catalysts toward Efficient Propane Dehydrogenation. *Accounts Mater. 1155 Res.* **2020**, 1 (1), 30–40.

(68) Kim, T.; Wachs, I. E. CH₃OH Oxidation over Well-Defined 1157 Supported V₂O₅/Al₂O₃ Catalysts: Influence of Vanadium Oxide 1158 Loading and Surface Vanadium–Oxygen Functionalities. *J. Catal.* **2008**, 255 (2), 197–205.

(69) Carrero, C. A.; Schloegl, R.; Wachs, I. E.; Schomaecker, R. 1161 Critical Literature Review of the Kinetics for the Oxidative 1162 Dehydrogenation of Propane over Well-Defined Supported Vanadium 1163 Oxide Catalysts. *ACS Catal.* **2014**, 4 (10), 3357–3380.

(70) Grant, J. T.; Carrero, C. A.; Love, A. M.; Verel, R.; Hermans, I. 1165 Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on 1166 Silica. *ACS Catal.* **2015**, 5 (10), 5787–5793.

(71) Cherian, M.; Rao, M. S.; Hirt, A. M.; Wachs, I. E.; Deo, G. 1168 Oxidative Dehydrogenation of Propane over Supported Chromia 1169 Catalysts: Influence of Oxide Supports and Chromia Loading. *J. Catal.* **2002**, 211 (2), 482–495.

(72) Dai, Y.; Gu, J.; Tian, S.; Wu, Y.; Chen, J.; Li, F.; Du, Y.; Peng, 1172 L.; Ding, W.; Yang, Y. γ -Al₂O₃ Sheet-Stabilized Isolate Co²⁺ for 1173 Catalytic Propane Dehydrogenation. *J. Catal.* **2020**, 381, 482–492.

(73) Otroschenko, T.; Kondratenko, V. A.; Rodemerck, U.; Linke, 1175 D.; Kondratenko, E. V. ZrO₂-Based Unconventional Catalysts for 1176 Non-Oxidative Propane Dehydrogenation: Factors Determining 1177 Catalytic Activity. *J. Catal.* **2017**, 348, 282–290.