This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-12163C

IScale System Modeling
of Single Event Induced
Faults in Advanced Node

Presented By

Matthew Cannon

- - = = @cNEReY IS4
Collaborators

Arun Rodrigues, Dolores Black, Jeff Black, Luis Bustamante, Ben Feinberg, Heather Quinn Sandia National Laboratories is a multimission
. . laboratory managed and operated by National
Lawrence Clark, John Brunhaver, Hugh Barnaby, Michael McLain, Sapan Agarwal Technology & Engineering Slutons o Sandia,

, @ Who! owned subsidiary of joneywe!
and Matthew Mar]nella Internationalylnc., for the U.STyDeparthnt of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

2 | Introduction

SEEs are a key radiation susceptibility for modern, highly scaled process technologies

Understanding SEEs are difficult for microprocessors
o Number of SEE locations

o Inability to observe the architecture fully
o Susceptible to SDC, crashes and halts from SEUs and SETs

System designers have a need to understand how errors flow through microprocessors

Fault modeling for large-scale systems integration is necessary, but does not exist
currently

3 ‘ SEE Testing on Processors and Heterogeneous Systems

Few options:
> Fault injection

o Radiation testing (run benchmark, compare to golden),
current standard

o Fault emulation/simulation

But there are drawbacks to each technique:
o Fault injection
o Limited to accessible registers/architecture exposed over the debug port
o Radiation testing
o Limited insight
> Developing understanding can be complex and time consuming
> Fault emulation/simulation
> Abstracted architectural models

Rad testing of soft-core processor

+ I Proposed Solution

Leverage simulator models of components/modules for
reliability testing
o Match registers/logic in hardware to architectural models

> Use new tools to convert synthesized netlists into C
simulator code (future work)

Fault injection rates determined by:
o Target technology (e.g. 14nm Fin-Fet)

> Voltage and circuit timing
> Logic masking (from the gates)

Improvement over previous work
o SEU/SET cross-sections determined from physic models

> Full pipeline model of the processor

o Fault tracking built into register data structures (insight into
failure behavior)

ALGORITHM
ﬂ SIMULATION
Algorithm Int Sequence

- 2+ 11 PROCESSOR PIPELINE

= | [ERE
o glﬁ_m_ Discrete event sim of functional

=l /) !

| — 1 S
o o |
F—— Tl BT T
o A ——— -

GATE MODELS

' Gate-gate interactions, transients

M 247" CIRCUIT MODELS
j_ ‘Eurrent-voltage, timing of circuits

|

DEVICE MODELS

Finite element models of electrical,
thermal, and radiation effects

s | Fault Injection Algorithm and Technology Investigations

Discrete Event Simulation of
@ Processor Pipeline
Structural Simulation Toolkit - SST

" _
CPU Instructions, Pipeline stage
Assembly error model
C/C++ code R 1 IS VEl faults,
e T - bit flipping
o _
Algorithm Transistor level

radiation models

Nested sensitive
volume sizes
and efficiencies

3D TCAD Simulation

o SEE implemented as a
track of charge

> Drift and diffusion charge
transport -> determine
sensitive volume sizes,
locations, and efficiencies

Collected
charge

Critical
charge

Monte-Carlo Radiative Energy
Deposition (MRED) Simulation

o SEE implemented as radiation
particles

> Accurately simulates
radiative energy deposition in
collection volumes derived
from TCAD

>

Circuit Simulation

> SEE implemented as
current sources

> Simulates circuit effect
based on charge
collection determined
in MRED custom scripts

Goal is to reduce design cycles and avoid potential layout issues

7 1 Case Study: 14 nm DFF MRED Study

Compute SEU cross-section of 14nm D Flip-
Flop vs LET and compare against
experimentally measured cross-section (from
Vanderbilt University)

o Sample environment is Adams 90% worst-case
in an isotropic space environment

TCAD simulation of a single fin NFET and
single fin PFET connected to an inverter

Simulated monoenergetic particles at normal
incidence matching test conditions

o Results plotted in figure against experimentally
measured data

SEU Cross-Section (cm?/FF)

1077

1010 4

1011

® MRED

% Vanderbilt e

T T T T
10 20 30 40
LET MeV-cm?/mg

T
50

T
60

s I Logic Masking

Adder Operation 64% Correct Logical Or Operation 76% Correct

=
N
1

=
o
Il

o
o

o
s

Probability Error(%)
&
o

Probability Error(%)
o
[o)]

o
J
()
o
N

0.00- 0.0

ON < O 0 o N © OO N T © © O i
H oo e H H NN NN N M °N¢‘°°°3N<r©ooo~<rggg

N = ~ A N N N

Cout
Cout

Output Register Output Register

Create model of SEU probabilities on the output register of each pipeline stage (but
effective cross-section is dominated by the registers themselves and not the
combinational logic)

Logical masking can quash some SETs before they are latched as faults

Figures considers logic masking on a 32-bit RISC ALU

o Assume SET on each gate has the same probability
o Add (left) and or (right) shown

o I Microprocessor & Fault Simulation

We employ a high performance computing simulator
called SST (http://sst-simulator.org/)

o Uses “components” connected by links

Modified to allow fault injection & tracking
o Track current (maybe faulty) data

o Track “correct” data

Fault can be tracked for impact
> Was it quashed (and how)?
> How far does it spread?

> Can determine failure trace | patavat | oxro0s321)
| CorrectDataval: | 0x00004321 |
Reg. A | Dpatava | ox01004322 |
' sl [comectDatavat | 000004322 |
| Dpatava: | oxoo000001 | Reg. C

| CorrectDataval: | 0x00000001 |
Reg. B

http://sst-simulator.org/

0o I Case Study : HERMES Processor

Radiation hardened by design

Faster and lower energy then triple
redundancy, reports errors to algorithm

Caches are dual redundant and
invalidated on an error

Logic that can be re-run if incorrect is
protected by dual redundancy (DMR)

Correction is software controlled

Critical logic is protected by triple
redundancy (TMR)

| Control Logic] Front End PC Back End PC External Data Bus(es)
Speculative
HilLo Reo Plosline Instruction Fetch Unit (IFU)
JTLB Fill Buffer
Instruction | p-ITLE R b
Multiply | Decode | AA I-cache |_Address |
Divide Unit - > Data T
(MDU)
Register [
File (RF) Data Cache Unit (DCU)
Instruction B b 4 Fill Buffer
Execution et |
Onit (EV) |] - | DTLB (| Dcache [« | Address LL{]
* Data ;
CPo 4_' f Write Buffer
Registers
Store Buffer Address .._b
- Data w
TMR DMR ||, Sit"g'e Bus Interface
nstance Clock/Power Miscellaneous Unit (BIU)
L M t | ‘ Control Logi |
Sgend e~ sk e External Address Bus

Arizona State

University

i+ 1| Fault Injection Capabilities

Can inject faults at the beginning of every clock cycle
o Randomly for form a precomputed table (for repeatability)
> Precomputed table is generated randomly based on the environment

Error probability table can be adjusted for environment/technology
> Probabilities calculated from logical masking, register size, etc.

Allows for targeted or system wide fault injection

Error Probability Table

Machine State & 10
Performance
Model # Faults
Errors
#Fault Corrections

Application (MIPS MIPS 4Kc / Hermes

Assembly)

Network

Register Modeling

INST_ADDR Pét}—

MEM_BYPASS

Ad P MEM_PRE
OHF
Instruction Addr
Heg_ister Memory
F|+Ie Value
INST_TYPE MEM_POST
iy D we
WB_ADDHAr
Instruction Instruction Execute Memo Write
Fetch Decode y Back

T T T
ALU 64 52

CONTROL

INST_ADDR DATA 40 INST_ADDR CTRL 16
INST_TYPE DATA 32 INST_TYPE CTRL 5
MDU DATA 233 MDU CTRL 122
MEM_POST DATA 160 MEM_POST CTRL 8
RF DATA 992 RF CTRL 5
MEM_PRE_ADDR DATA 203 MEM_PRE_ADDR CTRL 48
MEM_PRE_DATA DATA 256 MEM_PRE_DATA CTRL 8
MEM_PRE_ADDR BYTE 16 MEM_PRE_DATA BYTE 23
MEM_BP_VAL DATA 32 WB 32

PC 64

3 1 Software Benchmarks

B Per Fault
| Per Computation
Matrix Multiply (12x12 w/ 32-bit unsigned integers)
o Uses triple-nested loop 1.2
>
Variations of MM used = 1.0
o Compiler optimizations (O3) _g
> Software redundancy (DMR, TMR) 2 0.8
e e s v
Initial findings demonstrate expected results z 0.6
o Optimizations make each instruction more vulnerable =
L 2 0.4
> But optimizations make program less vulnerable (fewer
instructions/faster execution) 0.2
S
.&b Ng N
& &S
O O . AT
S O

14 ‘ Fault Injection Results

Sensitivity

Sensitivity

Matrix Multiply

Matrix Multiply O3

Il SDC :
B Terminated
B Timeout

B Failed

MDU INST_TYPE MEM_BP

RF MEM_PRE_D INST_ADDR A _
ALU "MEM PRE A WB_ADDR

MEM_POST WE PC

TMR O3

102
102 i
101
l l I I I I 101 4
lOD L H SDC
B Terminated Z 1004
10-1 . I Timeout B
BB Failed 3 1071
&
10_2 E 10—2 u
10_3 E 10—3 u
T
RF MEM _PRE D INST ADDR MDU INST TYPE MEM BP 1074 -
MEM_POST WwB PC ALl MEM_PRE_A WB_ADDR
101 i
101 i
0
10 T | 10° 4
E SDC =
_1 _ N —_
10 B Terminated E 10-1 4
B Timeout P
1072 3 B Failed & 10-2 4
10-3 3 10_3 3
104 4 107 ;
RF MEM_PRE_D INST_ADDR MDU INST_TYPE MEM_BP
MEM_POST WB PC ALU MEM PRE A WB_ADDR

E SDC
B Terminated |
B Timeout

B Failed

—h

RF MEM_PRE_D INST ADDR
MEM_POST WB PC

MDU

INST_TYPE

MEM_BP

ALU “MEM_PRE_A WB_ADDR

Other Fault Injection Statistics

Average Instruction to Failure

Fraction of Faults Corrected by Math

Avg. Inst. To Failure

107 4
102 5

101 4

101 5

Il

10-2

10-3

104

RF MEM_PRE_D INST_ADDR ALU MEM_PRE_A WB_ADDR
MEM_POST WB PC INST_TYPE MEM_BP

Math Corrections

CONTROL INST_, ADDR MDU INST TYPE MEM BP
MEM _POST™EM_PRE_| D WB ALU MEM_PRE_AWB_ADDR

Average Instruction to Failure

> How many instruction executions until a failure was
observed after a fault.

o Mem pre data took longest to fail
> Mem pre address failed quickly after injection

Math Corrections
> Fraction of faults corrected by math operations

o RF faults most likely to get corrected during math
operations executed during normal program execution

Other Fault Injection Statistics

Faults into unused Components

o o o
NS (=] (o]

o
]

Architectural Masking Factor

o
o

103

102

10l

100

Avg. Number of Additional
Registers with Faults

1071

RF MEM_PRE_D INST_ADDR MDU INST_TYPE MEM_BP
MEM_POST WE PC ALU MEM_PRE_A WE_ADDR

Fault Spreading

Il il

CONTROL INST_ ADDR MDU INST_TYPE MEM_BP
MEM _POSWEM_PRE_| D WB ALU MEM_PRE_, ANB _ADDR

Faults into unused components

> Faults into registers that were not in use during that clock
cycle

o Faults had no impact on program execution

Fault Spreading

> Number of registers corrupted at end of program
execution (either successfully or not)

o RF faults spread to many other registers

o Some faults do not spread (likely to immediate program
termination)

17

Estimated Event Rates

0.30

0.25

0.20

0.15

Composite Probability of Failure

0.00 -

Probability of Failure (given SEU)

0.10 A

0.05 A

matmat dmr
matmatO3

Relative Event Failure Rate

tmr

dmro3

tmro3

gsort
gsortO3

rd

rdO3

2.5

2.0

1.5

Relative Event Rate

0.5 7

0.0 -

1.0 ~

matmat

matmat03

dmr

dmro3

tmr

tmro3

03

Event Failure Rate

le—6

w
o

R
wn

P
o

=
6]

Estimated Event Rate
(failures/device/day)
=
o
1

e
L%
I

o
=]

matmat dmr tmr gsort rd
matmat0o3 dmro3 tmro3 gsort03 03

Composite probability of failure can be obtained from:
o Each registers probability of failure

o Number of bits per register

Probability of failure can be used to calculate event
rate

o Using TCAD/MRED calculations
> Assuming the algorithm runs continuously

Relative failure rates can be calculated using each
versions runtime (in clock cycles)

- DMRO3 perform§ _bes’g (reduces clock cycles while adding

e ol BN |

18 I Conclusion

There is a need for insight into how processors fail in harsh environments
o Minimal insight into architectural state with just JTAG/Debug port access

Our model lets us see architectural state and provides more insight into why some algorithms
perform better than others

- DMR O3 had best relative rate due to decreasing RF errors (DMR) and reducing clock cycles (O3)

Device level physics data enables us to estimate more realistic cross-sections for the
processor and each algorithm

Future Work

Create simulation model directly from synthesized netlist

o Simulation models already exist for post-synthesis debug — extend to allow fault tracking
capabilities

o Tradeoff in hardware fidelity and simulation performance/speed

Perform radiation test on HERMES processor and compare results
> 14nm version of HERMES built

- HERMES has built in commands to allow insight into the internal state of the processor

