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2 | Introduction

SEEs are a key radiation susceptibility for modern, highly scaled process technologies

Understanding SEEs are difficult for microprocessors
o Number of SEE locations

o Inability to observe the architecture fully
o Susceptible to SDC, crashes and halts from SEUs and SETs

System designers have a need to understand how errors flow through microprocessors

Fault modeling for large-scale systems integration is necessary, but does not exist
currently



3 ‘ SEE Testing on Processors and Heterogeneous Systems

Few options:
> Fault injection

o Radiation testing (run benchmark, compare to golden),
current standard

o Fault emulation/simulation

But there are drawbacks to each technique:
o Fault injection
o Limited to accessible registers/architecture exposed over the debug port
o Radiation testing
o Limited insight
> Developing understanding can be complex and time consuming
> Fault emulation/simulation
> Abstracted architectural models

Rad testing of soft-core processor



+ I Proposed Solution

Leverage simulator models of components/modules for
reliability testing
o Match registers/logic in hardware to architectural models

> Use new tools to convert synthesized netlists into C
simulator code (future work)

Fault injection rates determined by:
o Target technology (e.g. 14nm Fin-Fet)

> Voltage and circuit timing
> Logic masking (from the gates)

Improvement over previous work
o SEU/SET cross-sections determined from physic models

> Full pipeline model of the processor

o Fault tracking built into register data structures (insight into
failure behavior)
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s | Fault Injection Algorithm and Technology Investigations

Discrete Event Simulation of
@ Processor Pipeline
Structural Simulation Toolkit - SST
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Nested sensitive
volume sizes
and efficiencies

3D TCAD Simulation

o SEE implemented as a
track of charge

> Drift and diffusion charge
transport -> determine
sensitive volume sizes,
locations, and efficiencies

Collected
charge

Critical
charge

Monte-Carlo Radiative Energy
Deposition (MRED) Simulation

o SEE implemented as radiation
particles

> Accurately simulates
radiative energy deposition in
collection volumes derived
from TCAD

>

Circuit Simulation

> SEE implemented as
current sources

> Simulates circuit effect
based on charge
collection determined
in MRED custom scripts

Goal is to reduce design cycles and avoid potential layout issues




7 1 Case Study: 14 nm DFF MRED Study

Compute SEU cross-section of 14nm D Flip-
Flop vs LET and compare against
experimentally measured cross-section (from
Vanderbilt University)

o Sample environment is Adams 90% worst-case
in an isotropic space environment

TCAD simulation of a single fin NFET and
single fin PFET connected to an inverter

Simulated monoenergetic particles at normal
incidence matching test conditions

o Results plotted in figure against experimentally
measured data
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s I Logic Masking
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Create model of SEU probabilities on the output register of each pipeline stage (but
effective cross-section is dominated by the registers themselves and not the
combinational logic)

Logical masking can quash some SETs before they are latched as faults

Figures considers logic masking on a 32-bit RISC ALU

o Assume SET on each gate has the same probability
o Add (left) and or (right) shown



o I Microprocessor & Fault Simulation

We employ a high performance computing simulator
called SST (http://sst-simulator.org/)

o Uses “components” connected by links

Modified to allow fault injection & tracking
o Track current (maybe faulty) data

o Track “correct” data

Fault can be tracked for impact
> Was it quashed (and how)?
> How far does it spread?

> Can determine failure trace | patavat | oxro0s321 )
| CorrectDataval: |  0x00004321 |
Reg. A | Dpatava | ox01004322 |
' sl [ comectDatavat | 000004322 |
| Dpatava: |  oxoo000001 | Reg. C

| CorrectDataval: |  0x00000001 |
Reg. B



http://sst-simulator.org/

0o I Case Study : HERMES Processor

Radiation hardened by design

Faster and lower energy then triple
redundancy, reports errors to algorithm

Caches are dual redundant and
invalidated on an error

Logic that can be re-run if incorrect is
protected by dual redundancy (DMR)

Correction is software controlled

Critical logic is protected by triple
redundancy (TMR)
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i+ 1| Fault Injection Capabilities

Can inject faults at the beginning of every clock cycle
o Randomly for form a precomputed table (for repeatability)
> Precomputed table is generated randomly based on the environment

Error probability table can be adjusted for environment/technology
> Probabilities calculated from logical masking, register size, etc.

Allows for targeted or system wide fault injection

Error Probability Table

Machine State & 10
Performance
Model # Faults
# Errors
#Fault Corrections

Application (MIPS MIPS 4Kc / Hermes

Assembly)

Network




Register Modeling
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3 1 Software Benchmarks

B Per Fault
| Per Computation
Matrix Multiply (12x12 w/ 32-bit unsigned integers)
o Uses triple-nested loop 1.2
>
Variations of MM used = 1.0
o Compiler optimizations (O3) _g
> Software redundancy (DMR, TMR) 2 0.8
e e s v
Initial findings demonstrate expected results z 0.6
o Optimizations make each instruction more vulnerable =
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14 ‘ Fault Injection Results

Sensitivity

Sensitivity
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Other Fault Injection Statistics

Average Instruction to Failure

Fraction of Faults Corrected by Math

Avg. Inst. To Failure
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Average Instruction to Failure

> How many instruction executions until a failure was
observed after a fault.

o Mem pre data took longest to fail
> Mem pre address failed quickly after injection

Math Corrections
> Fraction of faults corrected by math operations

o RF faults most likely to get corrected during math
operations executed during normal program execution



Other Fault Injection Statistics

Faults into unused Components
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Faults into unused components

> Faults into registers that were not in use during that clock
cycle

o Faults had no impact on program execution

Fault Spreading

> Number of registers corrupted at end of program
execution (either successfully or not)

o RF faults spread to many other registers

o Some faults do not spread (likely to immediate program
termination)
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Estimated Event Rates

0.30

0.25

0.20

0.15

Composite Probability of Failure

0.00 -

Probability of Failure (given SEU)

0.10 A

0.05 A

matmat dmr
matmatO3

Relative Event Failure Rate

tmr

dmro3

tmro3

gsort
gsortO3

rd

rdO3

2.5

2.0

1.5

Relative Event Rate

0.5 7

0.0 -

1.0 ~

matmat

matmat03

dmr

dmro3

tmr

tmro3

03

Event Failure Rate

le—6

w
o

R
wn

P
o

=
6]

Estimated Event Rate
(failures/device/day)
=
o
1

e
L%
I

o
=]

matmat dmr tmr gsort rd
matmat0o3 dmro3 tmro3 gsort03 03

Composite probability of failure can be obtained from:
o Each registers probability of failure

o Number of bits per register

Probability of failure can be used to calculate event
rate

o Using TCAD/MRED calculations
> Assuming the algorithm runs continuously

Relative failure rates can be calculated using each
versions runtime (in clock cycles)

- DMRO3 perform§ _bes’g (reduces clock cycles while adding

e ol BN |



18 I Conclusion

There is a need for insight into how processors fail in harsh environments
o Minimal insight into architectural state with just JTAG/Debug port access

Our model lets us see architectural state and provides more insight into why some algorithms
perform better than others

- DMR O3 had best relative rate due to decreasing RF errors (DMR) and reducing clock cycles (O3)

Device level physics data enables us to estimate more realistic cross-sections for the
processor and each algorithm

Future Work

Create simulation model directly from synthesized netlist

o Simulation models already exist for post-synthesis debug — extend to allow fault tracking
capabilities

o Tradeoff in hardware fidelity and simulation performance/speed

Perform radiation test on HERMES processor and compare results
> 14nm version of HERMES built

- HERMES has built in commands to allow insight into the internal state of the processor



