
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Multiscale System Modeling
of Single Event Induced
Faults in Advanced Node
Processors

Matthew Cannon
 P r e s e n t e d B y

1

 C o l l a b o r a t o r s
Arun Rodrigues, Dolores Black, Jeff Black, Luis Bustamante, Ben Feinberg, Heather Quinn
Lawrence Clark, John Brunhaver, Hugh Barnaby, Michael McLain, Sapan Agarwal
and Matthew Marinella

SAND2020-12163C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Introduction

 SEEs are a key radiation susceptibility for modern, highly scaled process technologies

 Understanding SEEs are difficult for microprocessors
◦ Number of SEE locations
◦ Inability to observe the architecture fully
◦ Susceptible to SDC, crashes and halts from SEUs and SETs

 System designers have a need to understand how errors flow through microprocessors

 Fault modeling for large-scale systems integration is necessary, but does not exist
currently

2

SEE Testing on Processors and Heterogeneous Systems

 Few options:
◦ Fault injection
◦ Radiation testing (run benchmark, compare to golden),

current standard
◦ Fault emulation/simulation

 But there are drawbacks to each technique:
◦ Fault injection

◦ Limited to accessible registers/architecture exposed over the debug port

◦ Radiation testing
◦ Limited insight
◦ Developing understanding can be complex and time consuming

◦ Fault emulation/simulation
◦ Abstracted architectural models

3

Rad testing of soft-core processor

Proposed Solution

 Leverage simulator models of components/modules for
reliability testing

◦ Match registers/logic in hardware to architectural models
◦ Use new tools to convert synthesized netlists into C

simulator code (future work)

 Fault injection rates determined by:
◦ Target technology (e.g. 14nm Fin-Fet)
◦ Voltage and circuit timing
◦ Logic masking (from the gates)

 Improvement over previous work
◦ SEU/SET cross-sections determined from physic models
◦ Full pipeline model of the processor
◦ Fault tracking built into register data structures (insight into

failure behavior)

4

DEVICE MODELS
Finite element models of electrical,

thermal, and radiation effects

CIRCUIT MODELS
Current-voltage, timing of circuits

PROCESSOR PIPELINE
Discrete event sim of functional

blocks

GATE MODELS
Gate-gate interactions, transients

ALGORITHM
SIMULATION

Algorithm Event Sequence

Fault Injection Algorithm and Technology Investigations5

Discrete Event Simulation of
Processor Pipeline

Structural Simulation Toolkit – SST

CPU Instructions,
Assembly

C/C++ code

Algorithm

Pipeline stage
error model

Gate level faults,
bit flipping

Transistor level
radiation models

Single Event Modeling Framework: TCAD to Circuit6

3D TCAD Simulation

◦ SEE implemented as a
track of charge

◦ Drift and diffusion charge
transport –> determine
sensitive volume sizes,
locations, and efficiencies

Monte-Carlo Radiative Energy
Deposition (MRED) Simulation

◦ SEE implemented as radiation
particles

◦ Accurately simulates
radiative energy deposition in
collection volumes derived
from TCAD

Circuit Simulation

◦ SEE implemented as
current sources

◦ Simulates circuit effect
based on charge
collection determined
in MRED custom scripts

Nested sensitive
volume sizes

and efficiencies

Collected
charge

Critical
charge

Goal is to reduce design cycles and avoid potential layout issues

Case Study: 14 nm DFF MRED Study7

 Compute SEU cross-section of 14nm D Flip-
Flop vs LET and compare against
experimentally measured cross-section (from
Vanderbilt University)

◦ Sample environment is Adams 90% worst-case
in an isotropic space environment

 TCAD simulation of a single fin NFET and
single fin PFET connected to an inverter

 Simulated monoenergetic particles at normal
incidence matching test conditions

◦ Results plotted in figure against experimentally
measured data

Logic Masking8

 Create model of SEU probabilities on the output register of each pipeline stage (but
effective cross-section is dominated by the registers themselves and not the
combinational logic)

 Logical masking can quash some SETs before they are latched as faults
 Figures considers logic masking on a 32-bit RISC ALU

◦ Assume SET on each gate has the same probability
◦ Add (left) and or (right) shown

Microprocessor & Fault Simulation

 We employ a high performance computing simulator
called SST (http://sst-simulator.org/)

◦ Uses “components” connected by links

 Modified to allow fault injection & tracking
◦ Track current (maybe faulty) data
◦ Track “correct” data

 Fault can be tracked for impact
◦ Was it quashed (and how)?
◦ How far does it spread?
◦ Can determine failure trace

9

SST
Component
Type: CPU

Core

SST
Component
Type: CPU

Cache

SST
Component

Type: AIB

SST Link
Latency:

5ns

SST Link
Latency:

20ns

SST Link
Latency:

1us

SST
Component
Type: NVM

Bus

SST Link
Latency:
500 ns

SST
Component

Type:
DRAM

Data Val:

Correct Data Val:

0x01004321

0x00004321

Reg. A

Data Val:

Correct Data Val:

0x00000001

0x00000001

Reg. B

Data Val:

Correct Data Val:

0x01004322

0x00004322

Reg. C

http://sst-simulator.org/

Case Study : HERMES Processor

 Radiation hardened by design

 Faster and lower energy then triple
redundancy, reports errors to algorithm

 Caches are dual redundant and
invalidated on an error

 Logic that can be re-run if incorrect is
protected by dual redundancy (DMR)

 Correction is software controlled

 Critical logic is protected by triple
redundancy (TMR)

10

Fault Injection Capabilities

 Can inject faults at the beginning of every clock cycle
◦ Randomly for form a precomputed table (for repeatability)

◦ Precomputed table is generated randomly based on the environment

 Error probability table can be adjusted for environment/technology
◦ Probabilities calculated from logical masking, register size, etc.

 Allows for targeted or system wide fault injection

11

MIPS 4Kc / Hermes
Model

Error Probability Table

Application (MIPS
Assembly)

Machine State & IO
Performance

Faults
Errors

#Fault CorrectionsNetwork

Register Modeling12

Location Bit Location Bit

ALU 64 CONTROL 52

INST_ADDR DATA 40 INST_ADDR CTRL 16

INST_TYPE DATA 32 INST_TYPE CTRL 5

MDU DATA 233 MDU CTRL 122

MEM_POST DATA 160 MEM_POST CTRL 8

RF DATA 992 RF CTRL 5

MEM_PRE_ADDR DATA 203 MEM_PRE_ADDR CTRL 48

MEM_PRE_DATA DATA 256 MEM_PRE_DATA CTRL 8

MEM_PRE_ADDR BYTE 16 MEM_PRE_DATA BYTE 23

MEM_BP_VAL DATA 32 WB 32

PC 64

Software Benchmarks

 Matrix Multiply (12x12 w/ 32-bit unsigned integers)
◦ Uses triple-nested loop

 Variations of MM used
◦ Compiler optimizations (O3)
◦ Software redundancy (DMR, TMR)

 Initial findings demonstrate expected results
◦ Optimizations make each instruction more vulnerable
◦ But optimizations make program less vulnerable (fewer

instructions/faster execution)

13

Un
op

tim
ize

d
-O

3
Co

m
pi

le
r

Op
tim

iza
tio

n

Per Fault
Per Computation

Re
la

ti
ve

 P
ro

ba
bi

lit
y

0.2

0.8

0.4

0.6

1.0

1.2

Fault Injection Results14

Matrix Multiply Matrix Multiply O3

DMR O3 TMR O3

Other Fault Injection Statistics15

Avg. Inst. To Failure

Math Corrections

 Average Instruction to Failure
◦ How many instruction executions until a failure was

observed after a fault.
◦ Mem pre data took longest to fail
◦ Mem pre address failed quickly after injection

 Math Corrections
◦ Fraction of faults corrected by math operations
◦ RF faults most likely to get corrected during math

operations executed during normal program execution

Other Fault Injection Statistics16

Faults into unused Components

Fault Spreading

 Faults into unused components
◦ Faults into registers that were not in use during that clock

cycle
◦ Faults had no impact on program execution

 Fault Spreading
◦ Number of registers corrupted at end of program

execution (either successfully or not)
◦ RF faults spread to many other registers
◦ Some faults do not spread (likely to immediate program

termination)

Estimated Event Rates17

Probability of Failure (given SEU)

Relative Event Failure Rate

Event Failure Rate

 Composite probability of failure can be obtained from:
◦ Each registers probability of failure
◦ Number of bits per register

 Probability of failure can be used to calculate event
rate

◦ Using TCAD/MRED calculations
◦ Assuming the algorithm runs continuously

 Relative failure rates can be calculated using each
versions runtime (in clock cycles)

◦ DMRO3 performs best (reduces clock cycles while adding
moderate SEU mitigation)

Conclusion

 There is a need for insight into how processors fail in harsh environments
◦ Minimal insight into architectural state with just JTAG/Debug port access

 Our model lets us see architectural state and provides more insight into why some algorithms
perform better than others

◦ DMR O3 had best relative rate due to decreasing RF errors (DMR) and reducing clock cycles (O3)

 Device level physics data enables us to estimate more realistic cross-sections for the
processor and each algorithm

 Future Work
 Create simulation model directly from synthesized netlist

◦ Simulation models already exist for post-synthesis debug – extend to allow fault tracking
capabilities

◦ Tradeoff in hardware fidelity and simulation performance/speed

 Perform radiation test on HERMES processor and compare results
◦ 14nm version of HERMES built
◦ HERMES has built in commands to allow insight into the internal state of the processor

18

