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Introduction

 SEEs are a key radiation susceptibility for modern, highly scaled process technologies

 Understanding SEEs are difficult for microprocessors
◦ Number of SEE locations
◦ Inability to observe the architecture fully
◦ Susceptible to SDC, crashes and halts from SEUs and SETs

 System designers have a need to understand how errors flow through microprocessors

 Fault modeling for large-scale systems integration is necessary, but does not exist 
currently
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SEE Testing on Processors and Heterogeneous Systems

 Few options:
◦ Fault injection
◦ Radiation testing (run benchmark, compare to golden), 

current standard
◦ Fault emulation/simulation

 But there are drawbacks to each technique:
◦ Fault injection

◦ Limited to accessible registers/architecture exposed over the debug port

◦ Radiation testing
◦ Limited insight
◦ Developing understanding can be complex and time consuming

◦ Fault emulation/simulation
◦ Abstracted architectural models
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Rad testing of soft-core processor



Proposed Solution

 Leverage simulator models of components/modules for 
reliability testing

◦ Match registers/logic in hardware to architectural models
◦ Use new tools to convert synthesized netlists into C 

simulator code (future work)

 Fault injection rates determined by:
◦ Target technology (e.g. 14nm Fin-Fet)
◦ Voltage and circuit timing
◦ Logic masking (from the gates)

 Improvement over previous work
◦ SEU/SET cross-sections determined from physic models
◦ Full pipeline model of the processor
◦ Fault tracking built into register data structures (insight into 

failure behavior)
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DEVICE MODELS
Finite element models of electrical, 

thermal, and radiation effects

CIRCUIT MODELS
Current-voltage, timing of circuits

PROCESSOR PIPELINE
Discrete event sim of functional 

blocks

GATE MODELS
Gate-gate interactions, transients

ALGORITHM 
SIMULATION

Algorithm Event Sequence



Fault Injection Algorithm and Technology Investigations5

Discrete Event Simulation of 
Processor Pipeline 

Structural Simulation Toolkit – SST

CPU Instructions, 
Assembly

C/C++ code

Algorithm

Pipeline stage 
error model

Gate level faults, 
bit flipping

Transistor level 
radiation models



Single Event Modeling Framework:  TCAD to Circuit6

3D TCAD Simulation

◦ SEE implemented as a 
track of charge

◦ Drift and diffusion charge 
transport –> determine 
sensitive volume sizes, 
locations, and efficiencies

Monte-Carlo Radiative Energy 
Deposition (MRED) Simulation

◦ SEE implemented as radiation 
particles

◦ Accurately simulates 
radiative energy deposition in 
collection volumes derived 
from TCAD

Circuit Simulation

◦ SEE implemented as 
current sources

◦ Simulates circuit effect 
based on charge 
collection determined 
in MRED custom scripts

Nested sensitive 
volume sizes 

and efficiencies

Collected 
charge

Critical 
charge

Goal is to reduce design cycles and avoid potential layout issues



Case Study: 14 nm DFF MRED Study7

 Compute SEU cross-section of 14nm D Flip-
Flop vs LET and compare against 
experimentally measured cross-section (from 
Vanderbilt University)

◦ Sample environment is Adams 90% worst-case 
in an isotropic space environment

 TCAD simulation of a single fin NFET and 
single fin PFET connected to an inverter 

 Simulated monoenergetic particles at normal 
incidence matching test conditions

◦ Results plotted in figure against experimentally 
measured data



Logic Masking8

 Create model of SEU probabilities on the output register of each pipeline stage (but 
effective cross-section is dominated by the registers themselves and not the 
combinational logic)

 Logical masking can quash some SETs before they are latched as faults
 Figures considers logic masking on a 32-bit RISC ALU 

◦ Assume SET on each gate has the same probability
◦ Add (left) and or (right) shown



Microprocessor & Fault Simulation 

 We employ a high performance computing simulator 
called SST (http://sst-simulator.org/)

◦ Uses “components” connected by links

 Modified to allow fault injection & tracking
◦ Track current (maybe faulty) data
◦ Track “correct” data

 Fault can be tracked for impact
◦ Was it quashed (and how)?
◦ How far does it spread?
◦ Can determine failure trace
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Case Study : HERMES Processor

 Radiation hardened by design

 Faster and lower energy then triple 
redundancy, reports errors to algorithm

 Caches are dual redundant and 
invalidated on an error

 Logic that can be re-run if incorrect is 
protected by dual redundancy (DMR)

 Correction is software controlled

 Critical logic is protected by triple 
redundancy (TMR)
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Fault Injection Capabilities

 Can inject faults at the beginning of every clock cycle
◦ Randomly for form a precomputed table (for repeatability)

◦ Precomputed table is generated randomly based on the environment

 Error probability table can be adjusted for environment/technology
◦ Probabilities calculated from logical masking, register size, etc.

 Allows for targeted or system wide fault injection
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MIPS 4Kc / Hermes 
Model

Error Probability Table

Application (MIPS 
Assembly)

Machine State & IO
Performance

# Faults
# Errors

#Fault CorrectionsNetwork



Register Modeling12

Location Bit Location Bit

ALU 64 CONTROL 52

INST_ADDR DATA 40 INST_ADDR CTRL 16

INST_TYPE DATA 32 INST_TYPE CTRL 5

MDU DATA 233 MDU CTRL 122

MEM_POST DATA 160 MEM_POST CTRL 8

RF DATA 992 RF CTRL 5

MEM_PRE_ADDR DATA 203 MEM_PRE_ADDR CTRL 48

MEM_PRE_DATA DATA 256 MEM_PRE_DATA CTRL 8

MEM_PRE_ADDR BYTE 16 MEM_PRE_DATA BYTE 23

MEM_BP_VAL DATA 32 WB 32

PC 64



Software Benchmarks

 Matrix Multiply (12x12 w/ 32-bit unsigned integers)
◦ Uses triple-nested loop

 Variations of MM used
◦ Compiler optimizations (O3)
◦ Software redundancy (DMR, TMR)

 Initial findings demonstrate expected results
◦ Optimizations make each instruction more vulnerable
◦ But optimizations make program less vulnerable (fewer 

instructions/faster execution) 
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Fault Injection Results14

Matrix Multiply Matrix Multiply O3

DMR O3 TMR O3



Other Fault Injection Statistics15

Avg. Inst. To Failure

Math Corrections

 Average Instruction to Failure
◦ How many instruction executions until a failure was 

observed after a fault.
◦ Mem pre data took longest to fail
◦ Mem pre address failed quickly after injection

 Math Corrections
◦ Fraction of faults corrected by math operations
◦ RF faults most likely to get corrected during math 

operations executed during normal program execution



Other Fault Injection Statistics16

Faults into unused Components

Fault Spreading

 Faults into unused components
◦ Faults into registers that were not in use during that clock 

cycle
◦ Faults had no impact on program execution

 Fault Spreading
◦ Number of registers corrupted at end of program 

execution (either successfully or not)
◦ RF faults spread to many other registers
◦ Some faults do not spread (likely to immediate program 

termination)



Estimated Event Rates17

Probability of Failure (given SEU)

Relative Event Failure Rate

Event Failure Rate

 Composite probability of failure can be obtained from:
◦ Each registers probability of failure
◦ Number of bits per register

 Probability of failure can be used to calculate event 
rate

◦ Using TCAD/MRED calculations
◦ Assuming the algorithm runs continuously 

 Relative failure rates can be calculated using each 
versions runtime (in clock cycles)

◦ DMRO3 performs best (reduces clock cycles while adding 
moderate SEU mitigation)



Conclusion

 There is a need for insight into how processors fail in harsh environments
◦ Minimal insight into architectural state with just JTAG/Debug port access

 Our model lets us see architectural state and provides more insight into why some algorithms 
perform better than others

◦ DMR O3 had best relative rate due to decreasing RF errors (DMR) and reducing clock cycles (O3)

 Device level physics data enables us to estimate more realistic cross-sections for the 
processor and each algorithm

 Future Work
 Create simulation model directly from synthesized netlist

◦ Simulation models already exist for post-synthesis debug – extend to allow fault tracking 
capabilities

◦ Tradeoff in hardware fidelity and simulation performance/speed

 Perform radiation test on HERMES processor and compare results
◦ 14nm version of HERMES built
◦ HERMES has built in commands to allow insight into the internal state of the processor
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