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Autonomous Systems, Artificial Intelligence and
Safeguards

* Work originated as result of FY18 study by Risa Haddal et al. that
examined the use of Al for safeguards purposes

* Three use cases were considered
* Process monitoring at bulk handling facilities (reprocessing, enrichment)

* Image recognition for physical inventory verification at fuel fabrication facilities
* Autonomous robots for geological repository safeguards |
* This work focuses on the first use case

* Several potential techniques identified in the original study are utilized or
have been evaluated (SVMs, CNNs, DNNs, KNN, Random Forest)




Elimination of
on-site
laboratories at

reprocessing
facilities is a
long-standing
goal of the IAEA

* Currently on-site laboratories are required for
large throughput bulk handling facilities under
|AEA safeguards, such as PUREX reprocessing
facilities

* Require small measurement uncertainties to have an
acceptable sigma MUF value

* Expensive and time consuming

* Proposed machine learning framework uses non-
destructive analysis (NDA) measurements to
detect facility anomalies such as diversion or
misuse

* Measurements could be unattended except for required
calibration campaigns

* Framework is to aid IAEA safeguards
implementation, not to replace inspectors



Hypothesis:
bulk handling
facilities can

represented as
learnable
functions

Calculate

Classify

eTrain an algorithm to predict output of some unit operation given historical data

e Calculate the difference between the ML prediction and observed values, aka the
“residual”

eUse a second algorithm to determine if residual is normal or off-normal
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earning the facility function — ANN/LSTM




Learning the facility
Mixing Tank Inventory fu nCtion — Unit

\ \ \ \| Operations (1)

\ \ e Certain areas of the facilities
\ require special consideration
\_ \ \ e Mixing/buffer tank outputs are a
function of their entire history
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e Tank may also have non-uniform
output sizes

0 e Feature representing running
average of inventory concentrations
required
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e Feature representing bulk level
measurement required



Calculating the
residual (2)
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Making sense of
residuals — Isolation

Forest (3)
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Making sense of residuals — Isolation
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Determining an overall alarm threshold (4

1.00 1.00 - -
0.75 1 0.75 A
0.50 A 0.50
0.25 A 0.25 A
0.00 0.00
—0.25 A —0.25 A
—0.50 A —0.50 ~
—0.75 A —0.75
—1.00 A —1.00 A —
T

T T T T T
0 10'00 20'00 30b0 40;30 50'00 60'00 0 1000 2000 3000 4000 5000 6000




Can achieve performance beyond traditional
statistical tests, s.t. certain experimental
conditions

Performance of 2-stage ML approach compared to traditional approach
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ML algorithms can be more sensitive to error
representation than traditional approaches

Impact of calibration on LSTM model training
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ML can
enhance
safeguards
when applied
appropriately

Results of current approach work very
well when systematic error is controlled

Good ML performance requires
understanding of underlying process

Working to resolve systematic error
issues and increase TRL

Visit with IAEA in spring to discuss ML
based approaches




Developing Signatures-
Based Safeguards for
Enrichment Facllities

Nathan Shoman, Benjamin Cipiti, and Philip
Honnold




Safeguards for
enrichment
facilities
remains a high
priority

Safeguards at existing enrichment facilities rely on NDA and
weight measurements in addition to unattended methods such as
OLEM.

NDA uncertainties can be large and OLEM relies on accurate
temperature and pressure measurements, which may be provided
by the operator.

Goal of this work is to enhance safeguards at enrichment facilities
while reducing attended measurements by developing a signature
matrix approach.

Signature matrices are constructed from a wide range of existing
process monitoring measurements that, when combined with
machine learning, can be used to detect and locate off-normal
conditions within a facility.




Process model

In-Process Flow
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Inspiration:

(Zhang, et al.)

|dentifying anomalies in real-world
datasets is challenging due to the
temporal nature of anomalies

An ideal algorithm should capture
temporal dependency, be robust to
noise, and provide some metric of
severity

MSCRED demonstrated excellent
performance for detecting anomalies
within a real-world power plant dataset




system signature matricas Convl (stride : 1x1) {a)
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MSCRED is a CNN
autoencoder with
attention layers
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attention (ConvLSTM) is used to
capture correlations and temporal
patterns.
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Initial response to cascade anomaly
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01 02 03

Improve algorithm Evaluate limited Determine required

through sets of data training data
hyperparameter

tuning (kernel sizes

etc)

Near term future work
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