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spatio-temporal patterns of 2016
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: ‘ Can Multiphysics Processes Explain
" the Mechanism Inducing Earthquakes?
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‘ Application: 2016-2018 Pohang
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: ‘ Coupled

vs. Uncoupled Systems
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In addition to regional tectonics and/or nearby natural earthquake
nucleation, human activities may induce large magnitude earthquakes
after shut-in by accumulating poroelastic stressing as well as pore

pressure along the fault.




‘ Sequential Mechanisms
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Can Operational Lontrols litigate
| EQS?
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« Alternate injection-extraction operations through PX-1 and PX-2 can
develop strong gradients in pore-pressure fields across the fault plane.

» Operation locations with respect to fault location may strengthen (or
weaken) pore-pressure diffusion and elastic transfer to the fault through
low-permeability basement rock




‘ Results: Reference Model

Reference case

-3.6 0.4
A 0.3
-3.87 !
0.2 ' 1.5km (H)
E 4l 01 5 o1 ;so.g'c?skl?:n((L&V)
< o 2 A
S 42f o1 3 & ________
aal 02 e )
' 03 \
-4.6 0.4
-3.6 0.4
D 0.3
-3.8¢
0.2 _
E al 0.1 g
s 0o 5 : : :
842 o1 T * Immediate poroelastic shearing
» 02" causes early seismic events.
-03
46 04 » Delayed pore-pressure diffusion and
03 poroelastic stressing accumulates
-3.87 . .
B 02 elastic energy, eventually nucleating
£ g earthquakes (M,>3) after terminating
§'4'2 -0.1 4
44f 0z
. 4 01 2 3 458 ‘ -0.3
46 Earthquake magnitude (¢] 04

0 150 300 450 600 750
At [days] since 29 Jan 2016




‘ Results: Well Location
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‘ Results: Well Location/Number
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Conclusions

« Sequential stimulation activities at the Pohang site could cause

continuous pore-pressure diffusion and poroelastic shearing that
brought about accumulation of substantial energy on the fault,
potentially inducing moderate to large earthquakes even after
shut-in.

Site-specific operational and geological factors can enhance (or
attenuate) the seismogenic response to the stimulation activities,
and the local perturbation in stress states on the fault may be an
additional critical mechanism to induce larger post shut-in
earthquakes.

Interactions between well operations will determine the
direction of preferential flow that may enhance pore-pressure
diffusion and elastic stress transfer to the fault, such that
mitigating wells should be alighed not across the fault to
minimize operational perturbations of the fault stability
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Question & Answer

Contact: kchang@sandia.gov
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