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: I Presentation Structure

1. Motivating national security example and explainability
2. Our approach
3. Application to national security example

4. Concluding thoughts




> I Motivating National Security Example

Objective: Identify explosive device characteristics using optical spectral-temporal
signatures from videos of explosions
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Figure: Example simulated explosion spectral-temporal signatures.




‘ I Motivating National Security Example

Current methods
« Heuristic algorithms

« Subject matter expert direct review

Applying maching learning

« Interest in using machine to improve predictions

« Important model qualities

» Accurate predictions
« Uncertainty quantification
» Understanding of predictive process



: IExplainability

Advantages of interpretability

. Understand model prediction making process
« Assess the model

Disadvantage of machine learning

. Predictive ability of machine learning models make them desirable tools
« Often comes at cost of interpretability

Explaining black-box models

I
« Alternative way to explain non-interpretable model predictions I
. Important with sensitive applications (e.g,, national security) |



‘ IExplainability

Functional Data
» Each observations is a function

« Spectral-temporal signatures are an example

« Collection of functional data easy with modern technology

Functional Data and Explainability

. Many explainability methods proposed [1; 2; 3; 4; 5]
« Methods not focused on functional data

« Would like to account for the functional nature of the data



Explainability

A naive approach for explainability with functional data

« Use each time point as a feature in the model to train a model

. Compute feature importance

« Does not account for structure and correlation in functional data
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Figure: Correlation between every 25th time in simulated spectral-temporal signature data.




s I Our Approach
Overview
Combine techniques of

. functional principal component analysis (fPCA) [6; 7] and

. permutation feature importance (PFI) [8]
in conjunction with

« visualizations of functional principal components

to train and explain a model in a way that accounts for functional nature of data



> B Our Approach

Background on fPCA Background on PFI
. fPCA is essentially PCA with » Originally developed for random
functional data forests [9] and generalized by Fisher,

Rudin, and Dominici [8]
« Transforms original functions in a

way that provides nice properties: « Procedure:
« Independent features « Permute a feature
« First few features capture majority » Determine how model predictions are
of variation in original data affected
» Repeat for all other features
- Eigenvectors are now . Repeat to account for random
"eigenfunctions” variation

« Features that decrease model
performance when permuted are
considered important

I
I
. Biased when features are correlated |
[10; 11; 12]



o Our Approach

Procedure

1. Transform signatures using fPCA
« Removes correlation between features and captures functional aspect of data

2. Train machine learning model using fPCs

3. Apply PFI to identify important fPCs
« No concern of bias in PFI due to correlation
« PFl applicable to any predictive model

4. Visualize and interpret important fPCs
« Interpret variability explained
» Identify functional characteristics important for prediction




Application to National Security Example

Simulated data

Intensity

s

SMEs simulated 10,000 signatures with 1,000 time points
3 explosive device characteristics

. Randomly divided into training (72.25%), testing (15%), and validation (12.75%) sets
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Figure: Pointwise functional means and standard deviations of explosive device characteristics.




n IApplication to National Security Example

Step 1: Transform signatures using fPCA

. fPCA applied to convert 1,000 =
features to 1,000 fPCs

754

« Eigenfunctions used to
transform testing and
validation data sets to fPCs
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Figure: Percent variation explained by first 10 fPCs.




» | Application to National Security Example

Step 2: Train machine learning model using fPCs
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Figure: Model performance metrics.




" IApplication to National Security Example

Step 3: Apply PFI to identify important fPCs
« PFl applied to trained networks 31
2_
. . Y1
« 10 replications used to account for 14 I
random permutation variability 0 —
E 154
& 104 Y2
<o EmmEN__
300 4
200 4 v3
100 4
1 2 3 4 5 6 7 8 9 10
First Ten FPCs
Figure: PFI for first 10 fPCS for each explosive

device characteristic neural network.



= || Application to National Security Example

fPCs important for discrimination identified by PFI
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Figure: Relationships between device characteristic levels and important fPCs.



Step 4: Visualize and interpret important fPCs
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Application to National Security Example
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Figure: Visualizations of important fPCS for interpretation.




" I Concluding Thoughts

Advantages

« Approach provides insight into model predictions while accounting for nature of
functional data

« Able to share findings with an SME who confirmed

« Information about functional characteristics important for prediction could be
distilled and shared with decision makers

Limitation

« Difficult to interpret higher numbered fPCs




« § Concluding Thoughts

Future work
. Change to using joint fPCA [13; 14]

« Accounts for horizontal and vertical
variability of functions

» Application to non-simulated data
« Adjust PFI to account for uncertainty

« For example, what if model is a
Bayesian neural network?
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Figure: Simulated optical spectral-temporal
signatures from explosions with more variability
(top) and signatures after smoothing and
alignment (bottom).
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