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2 Presentation Structure
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3 Motivating National Security Example

Objective: Identify explosive device characteristics using optical spectral-temporal
signatures from videos of explosions
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Figure: Example simulated explosion spectral-temporal signatures.



4 Motivating National Security Example

Current methods

• Heuristic algorithms

• Subject matter expert direct review

Applying maching learning

• Interest in using machine to improve predictions

• Important model qualities

• Accurate predictions
• Uncertainty quantification
• Understanding of predictive process



5 Explainability

Advantages of interpretability

• Understand model prediction making process
• Assess the model

Disadvantage of machine learning

• Predictive ability of machine learning models make them desirable tools
• Often comes at cost of interpretability

Explaining black-box models

• Alternative way to explain non-interpretable model predictions
• Important with sensitive applications (e.g., national security)



6 Explainability

Functional Data

• Each observations is a function

• Spectral-temporal signatures are an example

• Collection of functional data easy with modern technology

Functional Data and Explainability

• Many explainability methods proposed [1; 2; 3; 4; 5]

• Methods not focused on functional data

• Would like to account for the functional nature of the data



7 Explainability

A naive approach for explainability with functional data

• Use each time point as a feature in the model to train a model
• Compute feature importance
• Does not account for structure and correlation in functional data
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Figure: Correlation between every 25th time in simulated spectral-temporal signature data.



8 Our Approach

Overview

Combine techniques of

• functional principal component analysis (fPCA) [6; 7] and

• permutation feature importance (PFI) [8]

in conjunction with

• visualizations of functional principal components

to train and explain a model in a way that accounts for functional nature of data



9 Our Approach
Background on fPCA

• fPCA is essentially PCA with
functional data

• Transforms original functions in a
way that provides nice properties:

• Independent features
• First few features capture majority

of variation in original data

• Eigenvectors are now
”eigenfunctions”

Background on PFI

• Originally developed for random
forests [9] and generalized by Fisher,
Rudin, and Dominici [8]

• Procedure:

• Permute a feature
• Determine how model predictions are

affected
• Repeat for all other features
• Repeat to account for random

variation

• Features that decrease model
performance when permuted are
considered important

• Biased when features are correlated
[10; 11; 12]



10 Our Approach

Procedure

1. Transform signatures using fPCA
• Removes correlation between features and captures functional aspect of data

2. Train machine learning model using fPCs

3. Apply PFI to identify important fPCs
• No concern of bias in PFI due to correlation
• PFI applicable to any predictive model

4. Visualize and interpret important fPCs
• Interpret variability explained
• Identify functional characteristics important for prediction



11 Application to National Security Example

Simulated data

• SMEs simulated 10,000 signatures with 1,000 time points
• 3 explosive device characteristics
• Randomly divided into training (72.25%), testing (15%), and validation (12.75%) sets
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Figure: Pointwise functional means and standard deviations of explosive device characteristics.



12 Application to National Security Example

Step 1: Transform signatures using fPCA

• fPCA applied to convert 1,000
features to 1,000 fPCs

• Eigenfunctions used to
transform testing and
validation data sets to fPCs

Figure: Percent variation explained by first 10 fPCs.



13 Application to National Security Example

Step 2: Train machine learning model using fPCs

• Neural network trained for each
explosive device characteristic

• All 1,000 fPCs used as features

• Model structure: 3 layers with 50, 40,
and 30 nodes, respectively

Figure: Model performance metrics.



14 Application to National Security Example

Step 3: Apply PFI to identify important fPCs

• PFI applied to trained networks

• 10 replications used to account for
random permutation variability

Figure: PFI for first 10 fPCS for each explosive
device characteristic neural network.



15 Application to National Security Example

fPCs important for discrimination identified by PFI
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Figure: Relationships between device characteristic levels and important fPCs.



16 Application to National Security Example
Step 4: Visualize and interpret important fPCs
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Figure: Visualizations of important fPCS for interpretation.



17 Concluding Thoughts

Advantages

• Approach provides insight into model predictions while accounting for nature of
functional data

• Able to share findings with an SME who confirmed

• Information about functional characteristics important for prediction could be
distilled and shared with decision makers

Limitation

• Difficult to interpret higher numbered fPCs



18 Concluding Thoughts

Future work

• Change to using joint fPCA [13; 14]

• Accounts for horizontal and vertical
variability of functions

• Application to non-simulated data

• Adjust PFI to account for uncertainty

• For example, what if model is a
Bayesian neural network?
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Figure: Simulated optical spectral-temporal
signatures from explosions with more variability
(top) and signatures after smoothing and
alignment (bottom).
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