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2 | Temperature sensitivities in water-moderated critical )

experiments
Estimating the k. uncertainty in a water-moderated critical experiment contributed by uncertainty in
the experiment temperature is done by

1. Estimating the sensitivity of k 4 to the temperature of the fuel

2. Estimating the sensitivity of k ¢ to the temperature of the water

3. Combining the two sensitivities and multiplying by the uncertainty in the temperature

The fuel sensitivity is obtained by calculating the system k. at several temperatures accounting for
thermal expansion of the fuel and doppler broadening of the cross section resonances

The water sensitivity is obtained by calculating the system k_ at several temperatures accounting for
the changes in the water density with temperature and the temperature dependence of the thermal
scattering in the water

The two sensitivities are combined to obtain the overall sensitivity of the experiment




3 | Experiments to measure temperature effects 10

Two experiment series are planned to measure temperature effects in the Sandia Critical Experiments

The first series will measure the critical size of a fuel rod configuration at several temperatures

° The temperature of the critical assembly will be set and an approach-to-critical experiment on the number of
tuel rods in the critical assembly will be done

o This series is currently lead by Justin Clarity at Oak Ridge National Laboratory

The second series will measure the inversion temperature of the isothermal reactivity coefficient

° The fuel rod array will be set and the temperature of the critical assembly will be varied to determine the
temperature that yields the highest reactivity of the system

° This series is lead by Sandia

Each experiment in the second series will be preceded by one or more experiments in the first series
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In 2014-2015 Sandia performed watet-

moderated partially-reflected critical
experiments using 6.9 % enriched UO2 fuel

experiments in which the fuel was equally split
into two or four lobes with variable-width
water channels between the lobes

The methods used to calculate the temperature
sensitivity of this configuration are described

approach-to-critical experiment on the depth
in the slides that follow

of the water in the core tank
This configuration was the start of a series of

The experiments are documented as LEU-
COMP-THERM-096

Case 10 was a 36x36 array of fuel rods.
The critical water level was measured in an

4 ‘ LEU-COMP-THERM-096 Case 10



s | LEU-COMP-THERM-096 Case 10
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7 ‘ LEU-COMP-THERM-096 Case 10
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8 ‘ LEU-COMP-THERM-096 Case 10
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International Reactor Physics Experiment Evaluation Project:

International Handbook of Evaluated Reactor Physics
Benchmark Experiments

IPEN(MBO1)-LWR-RESR-017

THE INVERSION POINT OF THE ISOTHERMAL REACTIVITY
COEFFICIENT OF THE IPEN/MB-01 REACTOR

Adimir dos Santos et al.

The experiment was done by measuring the critical control
rod position as a function of reactor temperature

Adimir and his colleagues measured three systems with T,
between 14.99 and 22.36 C

What IS NOT required:
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kinetics parameters of the system
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3 ‘ LEU-COMP-THERM-096 Cases 10,17, 18, and 19
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15 ‘ LEU-COMP-THERM-102 Cases I, |16, 20, and 21

In 2020 Sandia performed water-moderated fully-reflected critical experiments using 6.9 %
enriched UO, fuel with several different fuel-rod spacings

These experiments are being documented as LEU-COMP-THERM-102
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16 ‘ LEU-COMP-THERM-102 Cases I, 16, 20, and 21
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A different way to measure the inversion temperature

The IPEN experiments were done by measuring the critical control rod height as a function of
temperature

° The inversion temperature was the temperature with the lowest control rod height

We propose to perform similar experiments by measuring detector count rates as a function of
temperature in an otherwise static system

The subcritical multiplication and reactivity of a configuration are given by

=— and p = Kerr=1
1=Kerr Keff
Combine to get
. 1 _1-p
A-kess P

When a system 1s near critical, the count rates in detectors near the system are proportional to the

subcritical multiplication of the system.

If the count rates are measured as a function of temperature, the inversion temperature will be the

temperature with the highest count rate




18 ‘ A proposed inversion temperature experiment

The diagram shows a schematic view of the

LEU-COMP-THERM-096 Case 18 but fully

tuel rod layout in a proposed experiment to
reflected

measure the inversion temperature of the

isothermal reactivity coefficient
The experiment configuration 1s similar to

The system will be critical with about 1032 fuel

rods

The incremental fuel rod worth at delayed

critical is about 0.02 §



19 ‘ A proposed inversion temperature
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20 ‘ A proposed inversion temperature experiment
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The peak reactivity of the system can be arbitrarily adjusted within the limitations of the incremental fuel rod
worth

The first plot shows the reactivity of the system for several different values of the peak reactivity
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Using the relationship between the inverse multiplication (count rate) and the reactivity

1_
M=—p l
P |

The second plot shows the inverse multiplication of the system for several different values of the peak
reactivity
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Our ability to pinpoint the inversion temperature depends on the width of the subcritical multiplication vs
temperature curve and on the resolution of our count rate measurements

The third plot shows the inverse multiplication of the system for several different values of the peak reactivity
normalized to the same peak inverse multiplication
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New critical assembly features needed for inversion
temperature experiments

Temperature control of the assembly
> Heater/chiller with significant capacity
o Larger water volume outside the core tank
o Insulation of tanks to limit heat losses

> Homogenization of core moderator/reflector

o Ability to make detailed temperature measurements across core




24 | Conclusion

Two related series of temperature-dependent experiments are being planned at Sandia

The first will measure the number of fuel rods at delayed critical as a function of temperature
o This series is in final design

o Current plans call for execution in 2022

The second will measure the temperature that yields the peak reactivity in a given collection of fuel
rods
o This series is in preliminary design

o Current plans also call for execution in 2022
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