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.| Automatic Target Recognition (ATR)

Automatic Target Recognition (ATR) - an exploitation algorithm for the detection or classification
of items of interest via a remote sensor

Sensed

Detector Indexer Identifier Score
Data

Three-stage ATR block diagram

= Detector - first operates upon the raw sensed data to extract regions which express features or
expressions that there may be a target of interest in the smaller identified sub-region

" Indexer - operates upon this reduced data to compare against the representations of known
targets of interest

= |dentifier - receives regions of interest (ROIs) as well as cues/hypotheses regarding the salient
features (whether template or model based) which are used to determine a quantified score
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lmage Processing

Neural networks have |
enabled many breakthroughs "&Eas Sheepr L
and state-of-the-art il

performance for a variety of § \#% ?
image processing tasks ‘

= Example include — (b) G“?Beggn?ﬁ{zﬂgggﬂmﬂ

detection, classification,
segmentation, tracking,
generation
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(¢) Semantic Segmentation (d) Object Instance Segmetation

Liu, Li, et al. "Deep learning for generic object detection: A survey." International journal of computer
vision 128.2 (2020): 261-318.



| Synthetic Aperture Radar (SAR)

synthetic length of SAR
Radar based alternative to optical images -
® Uses motion of radar antenna to create a
large synthetic aperture enabling high D\ C B A

resolution

" Measures radio frequency reflectivity of the
imaged scene

= Weather robust ¥ )

&-ﬁ

https://lynceans.org/all-posts/synthetic-aperture-radar-sar-and-inverse-sar-isar-enable-
an-amazing-range-of-remote-sensing-applications/



Synthetic Aperture Radar (SAR)

Figure 1. SAR image of a location at Kirtland Air Force Base, Albuquerque, N.M., exhibiting
4-inch (10 centimeter) resolution. Note that the aircraft are better defined by their shadows
than by their direct echo return.
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Figure 6. Coherent change detection map showing mower activity and footprints on Hardin
Field Parade Ground at Kirtland Air Force Base. Dark areas denote regions of decorrelation
caused by a disturbance to the clutter field; light areas denote no disturbance. The foliage
along the right side of the image decorrelates because of wind disturbance.

Doerry, Armin W., and Fred M. Dickey. "Synthetic aperture radar." Optics and photonics news 15.11 (2004): 28-33.




| Synthetic Aperture Radar (SAR)

Advantages but also sensor induced challenges - Signal variability due to:
" Coherence: complex valued measurements encompassing magnitude and phase

= Specularity: radar energy is scattered directionally instead of diffusely as a consequence of the
wavelength and size of objects

= Speckle: multiplicative noise process due to the coherent interaction between multiple scatters in
individual cells




.| Multinomial Pattern Matching (MPM)

. '_; .

Detector Identifier Score

b Sensed [
~ % Data

MPM

Signature-to-template
match score Z

K
1
2= 7, tea
k=1




.| Data Challenge |

MJAGENE |

Deep Neural Networks have greatly
benefit from large, labeled data sets such
as ImageNet

= 14,197,122 images (as of August 2020)

Select all images with mountains.
Click verify once there are none left.

CAPTCHA

= Have provided labels for datasets




AldMars

There’s even a program for
helping to label terrain on e wors 0

T

Mars

But for ATR we do not have
an abundance of data

https://www.zooniverse.org/projects/hiro-ono/ai4mars




. | MSTAR

Moving and Stationary Target
Acquisition and Recognition

= Collection of one-foot resolution
SAR images

= Collected by the Air Force Research
Laboratory, Sandia National
Laboratory, and the Defense
Advanced Research Projects Agency
(DARPA) during the latter half of the

BMP2

BTR70

ZSU_23/4

1990s
ZIL_131
Targets | BMP2 | BTR70 | T72 | BTR60 | 2S1 | BRDM2 | D7 | T62 | ZIL131 | ZSU234
17 233 233 232 256 299 298 299 | 299 299 299
15 587 196 582 195 274 274 274 | 273 274 274




| SAMPLE

Synthetic and Measured Paired Labeled Experiment

= Uses electromagnetic computational tools to provide predictions of the radar return for highly
realistic CAD models

= Includes accounting for material properties for each surface of a target (glass, pain, metal, rubber,
etc.) to compute the electromagnetic property values of the radar return

(a) (b)

= Comparison between optical images of an M1 taken during the MSTAR data collect (a, c) and CAD
models of the same vehicle (b, d) from two viewpoints

(d)

Lewis, Benjamin, et al. "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment (SAMPLE)." Algorithms for
Synthetic Aperture Radar Imagery XXVI. Vol. 10987. International Society for Optics and Photonics, 2019.



| SAMPLE

Enables the development of a more operationally realistic
dataset which can train on synthetic images and test on
measured (real) data

Shown below measured MSTAR data is the top row and the
corresponding synthetic images are the bottom row

Class | Measured | Synthetic | Total
251 177 177 354
BMP2 108 108 216
BTR70 96 96 192
M1 131 131 262
M2 129 129 258
M35 131 131 262
Mb548 129 129 258
M60 178 178 356
T72 110 110 220
7ZsU23 177 177 354
Total 1366 1366 2732

Table 5: Distribution of publicly available SAMPLE data for each class.

Lewis, Benjamin, et al. "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment (SAMPLE)." Algorithms for
Synthetic Aperture Radar Imagery XXVI. Vol. 10987. International Society for Optics and Photonics, 2019.




.| Neural Network Zoo

Algorithmic sweeps over many neural network architectures providing insight into
impacts of different computational approaches

* AlexNet * WideResNet * ShuffleNet
* VGG * SEResNet * SqueezeNet
* ResNet * MobileNetV2 * EfficientNet
* DenseNet * MobileNetV3 * MnasNet

* ResNeXt * SEMobileNet * SENet

= ~15 Unique architectures

= > 50 total models (architecture and configuration e.g. ResNet34, ResNet50,
Efficientnet-b0, ...)



.| AlexNet & VGG

AlexNet

" The original record-breaking ImageNet
CNN

®“ Hand tuned kernel sizes, number of
filters, number of layers, etc.

Softmax

http://datahacker.rs/deep-learning-alexnet-architecture/

VGG

= Improvement on AlexNet
= All 3x3 kernels

= All layers have same configuration
(conv, batch norm, relu, max pool)

= Number of channels per set of layers
increases by powers of two.

= Deeper and wider than AlexNet
= 11, 13, 16, and 19 layer configs



. ‘ ResNet

= Neural Nets get better as they get
deeper but information gets harder to
ropagate when the model is forced to X
earn too many sequential non-linear
transformations weight layer

= Want to keep making nets deeper F(x) lrelu X

= Solution: use residual connections to weight layer _ _
help propagate information identity

= Residual connection: add output of T
layer L-1 to layer L (%) +x

= ResNets much deeper than - ‘ ,
AlexNet/VGGs and more effective. Up to A residual “block
200 layers

= Ever mOdeI after thIS pOInt uses He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
reS| u als N Some form conference on computer vision and pattern recognition. 2016.



. | DenseNet

" |dea: instead of using a single
residual connection from the
previous layer, use residuals from all
previous layers.

= Uses concatenation instead of
addition.

= Utilizes fewer number of filters per
layer and much more depth.

Input
Prediction
o Dense Block 1 o Dense Block 2 o Dense Block 3
| g w - w. S w. “horse”

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017 .



‘ResNeXt

ResNeXt = ResNet + grouped convolutions

Hout Cout

Wout
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Gibson, Perry, et al. "Optimizing Grouped Convolutions on Edge Devices." 2020 IEEE 31st International
Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2020.
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Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

Xie, Saining, et al. "Aggregated residual transformations for deep neural
networks." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017.

= Grouped convs have been shown to be very effective in image classification.

= Far fewer # of params.
= Wider nets can fit on GPU

= |Implicit regularization through sparsity



. | ShuffleNets, MobileNets, MnasNets

= Architectures optimized for
smartphones and other less /
compute, less parallel platforms.

L

= Lots of tricks, but the major |
ContrIbUtlon IS the depthWise- (a) Conventional E_'nm-'ﬂEutiun;!’T‘i'/v:u;t’;ﬂrk
separable convolution.

= Reduces the number of operations
required for a convolution by 9-25x. -»& & f//’f?

= Decomposes a KxKxHxWxC
convolution to a IxIxHxWxC

convolution and C 3x3xHxWx1 sl I
convolutions (i.e. a grouped Depthvize Comolt: s Convolation
CO nVO I Ut I O n W h e re t h e n u m be r Of (b) Depthwise Separable Convolutional Neural Network

groups = number of input channels)

Kamal, K. C., et al. "Depthwise separable convolution architectures for plant disease
classification." Computers and Electronics in Agriculture 165 (2019): 104948.



| EfficientNet

|
" Roughly current state of the ‘
art in image classification and — |
object detection = ==
= Utilizes more intelligent model  feemes = | '
. ! t ; f B
Scallng — . . deeper
: 3 deeper
= A small baseline network was = == = . =
found through NAS B oo BN : i ﬂ
(efficientnet-b0) resoution W |- . W roiion L [y hiaker
[ ] The baseline network iS then (a) baseline (b} width {c) depth {d) resclution (e) compound
. . scaling scaling scaling scaling
scaled up in width (number of
channels), depth (hnumber of I

Iaye rS), an d I’ESO| UtIO N (|n p ut Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional
. . . . neural networks." arXiv preprint arXiv:1905.11946 (2019).
image size) in proportion Prep )
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‘ Resu
lts — FL vs FP on MISTA
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.| Performance Understanding (MSTAR)

Performance understanding - considering latency (on GPU) & model size (memory impact)

Accuracy (%)
w0 (@. .
:O o.’ | 2O ° o

Zooming in
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‘ Variational Autoencoder (VAE

Defined in 2013 by Kingma et al. and Rezende et al..

Low
dimensional
representation

HEEn

Encoded space

Conv7x7 > BatchNorm > Relu > MaxPool2x2 > Dropout

Encode

L0x32x64x64

D e C O d e | Conv5x5 > BatchNorm > Relu > MaxPocl2x2 > Dropout

Classify

10x32x32x32

Conv3x3 > BatchNorm > Relu > MaxPoel2x2 > Dropout

[10x64x16x16

‘Conv3x3 > BatchNorm > Relu > MaxPool2x2 > Dropout

[10x64x8x8

Convlx1 > BatchNorm > Relu > MaxPoel2x2 > Dropout

[10x64xdxd

Convlxl > Relu

\

ﬁﬂleBxdxd\lelZExdxd

ﬂ

SampleDistr

10x64xdx4 \10x64x4x4 \ ’f

| MaxUnpool > ConvTransposelx1 > Relu Concat > Flatten
10x64x858 0x3072
A

| MaxUnpool > ConvTranspose3x3 > Relu

Linear > BatchNorm > Relu

[10x64x16x16

110x100

| MaxUnpool > ConvTmnspose3x3 > Relu

Linear ‘

[0x32x32x32

| MaxUnpool > ConvTranspose5x5 > Relu

[10x32x64x64

| MaxUnpool > ConvTmnspose7x7 > Relu




‘ Variational Autoencoder (VAE) on MISTAR

5 degrees

ROC

True Positive Rate

1.0
0.8
@
]
= 0.6
]
H
=
g
&
3 0.4 —— BMP2 - 0.9466
= —— BRDM2 - 0.8857
—— M2 -0.9492
0.2 —— T62 - 0.9683
—— T72_fb - 0.9746
—— ZIL131 .- 0.9165
0.0 —— Z5U23_4 - 0.9932
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Baseline MPM
ROC
1.0+
0.8
2
T
o 0.6+
@D
2
G
o
a
g 041 —— BMP2 - 0.9703
= —— BROM2 - 0.9923
— M2--0.9721
0.2 4 - T&2 -- 0.9894
—— T72_fb - 0.9771
—— ZIL131 -- 0.9798
0.0 —— 75023 4 - 0.9973
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

VAE

20 degrees

ROC
1.0
0.8
@
]
<06
@
>
=
3
£
3 0.4 —— BMP2 -- 0.9359
= —— BRDM2Z -- D.8230
—— M2 --0.9263
0.2 —— T62 - 0.9568
—— T72_fo-- 0.9408
—— ZIL131 -- 0.8059
0.0 —— Z5U23_4 -- 0.9886
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
ith ki
ROC
1.0
0.8
0.6
04 —— BMP2 - 0.9836
~—— BRDMZ -- 0.9948
—— M2 -- 0.9801
0.2 = T62 -- 09915
—— T72_fb - 0.9866
— ZIL131 -- 0.9836
0.0 —— Z5U23_4-- 0.9988
0.0 0.2 0.4 0.6 08 1.0

False Positive Rate

True Positive Rate

ROC ROC
1.04 1.0
0.8 0.8
B
5
0.6 =06
o
s
2
(=]
a
0.41 —— BMPZ--0.7099 g 04 BMP2 - 0.5633
—— BRDMZ - 0.7331 F —— BRDM2 -- 0.7260
—— M2 - 0.8280 — M2 --0.7963
0.2 —— T62--0.9320 0.2 —— T62 - 0.9152
—— T72.tb - 0.9522 —— T72.fb - 0.9274
— 71131 -0.7323 — ZIL131 - 0.6234
0.04 —— Z5U23_4 - 0.8280 o0 —— Z5U23_4 - 0.7842
0.0 0.4 0.6 0.8 10 0.0 0.2 0.4 06 0.8 10
False Positive Rate False Positive Rate
Baseline MPM ithout masking
ROC ROC
10 1.0
0.8 0.8
o @
] a
€ 06 2 5
o Q
2 H
7 g
o a
304 —— BMP2 - 0.9306 g 04 —— BMP2-- 0.9488
= —— BRDM2 - 0.9831 s —— BRDMZ - 0.9842
— M2 - 09225 — M2--0.9300
02 — T62--0.9268 0.2 — T62--0.9185
— T72.fb-- 09107 — T72.fo- 08141
= ZIL131 -- 0.8970 = ZIL131 -- 0.9215
0.0 —— Z5U23_4 - 0.9828 0.0 —— 75U23.4 - 0.9876
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

False Positive Rate False Positive Rate

VAE — with shift



. | Additional Algorithmic Understanding

" Beyond accuracy and computational costs we’ve also begun
exploring additional methods of insight into model behaviors

" |[lustrative of techniques we’ve been exploring — but not
intended to convey results or advocate for these methods



.| Logistic Regression Ensemble Models

= We are interested in per class accuracies Logits Scores Probabilities
and false positive/false negative rates

= This is unnatural to do with a standard 20 —/ " p=07
softmax output in a DNN 1.0 — — p=02

01 —— —— p=01

= |dea: replace last layer of the DNN with
N one-vs-all logistic regressions where
the weights for each IOﬁistic regression
are the weiEhts for each output unitin
the network.

= Convert each minibatch to N one-vs-all
minibatches and train each logistic
regression independently at every N one-vs-all
epoch with binary cross entropy. logistic
— regressions

instead of
softmax

i
MSTAR I
over logits ‘

= In inference, take max score. Works as — —_—
good, if not better than softmax on
\ )
|

Conv layers Linear layer



.| Saliency Maps

" Methods used for model explainability and interpretability

=" Two techniques:
" Vanilla gradient saliency maps (easy, applicable to any architecture)

= Class activation maps (more complex, not applicable to any
architecture, possibly more effective)



.| Vanilla Gradient

= Load up a pre-trained model, feed an example of interest through, backprop all the way
back to the input pixels

= This gives you the gradient of the loss with respect to the input pixels

= Plot this as a normalized heatmap

T

- 0.8

Vanilla grad - 0.6
saliency map

from VGG16 - 0.4

[ 0.2

=




Class Activation Maps (CAM)
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminalive régions.

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



. | Class Activation Maps (CAM)
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. | Conclusions

Beyond the algorithmic results shown here, we’re also exploring
computational costs of execution on neuromorphic hardware

* This includes a collaboration with Professor Naresh Shanbhag (UIUC) analyzing
computational complexity costs balancing accuracy-representation-
computation efficiency

Pursuing further understanding of the operation of neural network
ATR approaches

* This includes exploring additional methods beyond saliency maps, ablation
studies, analysis of activations, & analysis of representations/embeddings

Overall this research has enabled state-of-the-art performance in
terms of accuracy as well as an understanding of associated
computational costs while working towards understanding the neural
computation
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