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Motivation

Alpine miner at WIPP

Salt long-term (10* — 10° yrs.) benefits at km-scale
* Low porosity (¢ < 0.1 vol-%) and permeability (k < 107%% m?)
* High thermal conductivity (~5 W/(m - K))
* No flowing groundwater (< 5 wt-% water)
* Rooms, damage, and fractures will creep closed (10° — 102 yrs.)

Near-field (cm — 10 m) short-term (hr. — month) complexities

* Brine and salt are corrosive Cross-section view of Excavation Damaged Zone (EDZ) around drifts
* Evaporites are very soluble in water , f Neur
* Salt creep requires drift maintenance ‘
* Excavation Damaged Zone (EDZ):

« Is main source of ¢ and k near drift

« May be highly anisotropic (k, < kg)

« Has steep gradients in properties and system state

« Evolves with stress and temperature

Borns & Stormont (1988)
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Brine in Bedded Salt

Polyhalite Intergranular

- Water types in bedded salt N
1. Disseminated clay (< 5 vol-% total; ~25 vol-% brine)
2. Intragranular brine (fluid inclusions; 1 — 2 vol-%)
3. Hydrous minerals (e.g., polyhalite, bischofite, epsomite)
4. Intergranular brine (between salt crystals; << 1 vol-%)

* These water types:
* respond differently to heat & pressure
* have varying chemical composition
* differ in stable water isotope makeup

Fluid
Inclusions Clay

WIPP fluid inclusions, 2 mm scale bar
(Caporuscio et al., 2013)

* EDZ increases intergranular ¢ — primary flow path
How do water types contribute to Brine Availability?

10.1 cm diameter core CT data (Betters et al., 2020)
SFWST 4 energy.gov/ne




Task E Goals

= Understand and predict THMC processes impacting brine availability
* How much of each water type in bedded salt?
* Water response to pressure (Ap), stress (Ac), and temperature (AT)?
* How does EDZ control migration of water (¢, k, relative perm. k,.)?
* How does EDZ evolve with Ap, Ag, and AT?

I | p (liquid pressure)

. - -~ Se (brine saturation)
Q1: Is two-phase flow in EDZ important? £, L
. . . :_j‘l.\ ‘\‘ -___;/_qb(porosity)
Q2: How to simulate brine pulse after heating? [t e -
N — | |
1' /] |
‘?.’l’ /’, 'l\ :
= WIPP Test Cases: \-TEdz T Heated
Anisotropy oriented
* Small-Scale Brine Inflow test (1987-1992) T  NC T
stress stale emperature
* Small-Scale Mine-by experiment (1991) SmITSeTSaE. . =
o Mnnraninn haatad Rrina Auailahilifve Tact in Qalt IRATQN EEZZZZI;);ZZ\:/e:ti:;ZZZE?g:jig:z
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Waste Isolation Pilot Plant (WIPP) Context

Ground Suface Layout of WIPP North End

Gatuna Formation / Surficial Deposits
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WIPP Small-Scale Brine Inflow Test (1987-1992)

(Beauheim et al., 1997)

0
LB

= Monitored 17 unheated boreholes for years
= Soon after drilling (~new drifts)
= Weekly brine inflow data
= INTRAVAL study (Beauheim et al., 1997)
= Effects of stratigraphy / orientation / drift o ————

20|
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MB = marker bed
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Brine Availability Test in Salt (BATS) Team
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Doug Ware
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Doug Weaver, Brian Dozier, Shawn Otto
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Brine Availability Test in Salt (BATS)

Cable Tray East Das pacy,
148" Wide)

= Two Arrays: Heated / Unheated T E 2 o i
= Behind packer = E '

* Circulate dry N,

* Quartz lamp heater (750 W) e

* Borehole closure gage
= Samples / Analyses Heated

* Gas stream (natural / applied tracers and isotopic makeup)
* Liquid brine (natural chemistry and natural / applied tracers)
* Cores (X-ray CT at NETL); laboratory tests on samples

= Cement Seals

* Sorel cement + Salt concrete: 3-axis strain & temperature
= Geophysics

e 3x Electrical resistivity tomography (ERT)

* 3x Acoustic emissions (AE)

Cross-section of central [HP] borehole

Pressure, Humidity
& Temperature

Thermocouples )
Gas inlet (routed near

bback)

Borehole Closure
C}ntrali:er Gage

Heater Power
Controller

\]
Radiative Heater Element

'I

Satellite Observation Borehole

Valve, Flowmeter &
Pressure Sensors
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BATS Borehole Arrays

AE sensors on de-centralizers

Thermocouples (T1-2) Fiber (Fz),

e 9

‘ Diamonds = grouted

‘ Circles = not grouted/packer

Fiber optic DSS/DST y ERT controller

Acoustic EE

ission (AE2)

Heater/N2 (HQ)
\ i

o
[
(T

Seal (SL)

Lab-made seal installed in borehole
subsequently sealed behind packer

ampling ({

Czaikowski et al. (2016)

(Borehole layout drawing by WIPP TCO)
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BATS As-Built

Heated array - drift view

Heated array - side view

] @HAEL ™ @HSL - ‘4— ——— | : =
0.2 1 @D | : I |
S ool @gm . gm o @HP@M‘ Fup £ oo il =
0.2 4 sz T —0.2 ¥ ' =
GHAE2 @ _."_‘ e . ==
T e e a2 o0 2 oa [ S e S E—
X [m] Z [m]
Heated array - top view
0 e i s pH. M 1:55::(4.,:,;i|:t.:: :35H5 .
i : divlv | * Heated array as-buil
. \{ I\ |1|'| .
A “ 4 1| = Drilled Feb-Apr 2019
. m lll '| —.I—IIoI—IlIJ ||I|| . .
ELf i o= = Side/ top view shows
N : |£| Lﬂlll' 1 I'.gl'lII I'.I ° thermocou ples (blue dots) Discrete fractures in BATS near-drift EDZ
J |1‘ MR * Heated interval (red box)
- i M e * Fractures/damaged zone (purple)
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January-March 2020 BATS 1a Test Data

Temperature data during BATS 1a

HHP: Central HFL: Fiberl (10 crm below) HFZ: Fiber2 (18 crm left)
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Brine production data during BATS 1a

107
= heated RH
—— unheated RH
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10—2 .
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Brine inflow at heater shutdown

BATS test and data summarized in Kuhlman et al. (2020)
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January-March 2020 BATS 1a Test Data

Acoustic Emissions (AE) during BATS 1a

Electrical Resistivity Tomography (ERT) during BATS 1a

«10° Heated Borehole «10° Unheated Borehole . 4
5 i 2 i i ‘ an‘t L3 e — —_— — 17m
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5 o | e en -
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A resistivity not explained by A temperature.
Brine migration away from heater due to thermal expansion?

BATS test and data summarized in Kuhlman et al. (2020)
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Task E Steps

Step 0: Single-process H' and T benchmarks

Step 1: TH' benchmark & H2M/H? unheated brine inflow test case
Step 2: TH2M heated brine inflow test case

Step 3: Alternatives (ERT/AE joint inversion, seals, TH2MC, creep)

Table 3. Proposed detailed Task E schedule of steps.

Apr. Nov. Apr. Nov. Apr. Nov. Apr. Nov.
2020 2021 2022 2023
Step 0
Step 1
Midterm Report — (Nov 2021)
Step 2
Step 3
Papers and Final Report — (Nov 2023)

Infrared heater in BATS HP borehole

H'= single-phase; H2 = two-phase

SFWST energy.gov/ne



Task E Step 0 (Apr. 2020 - Apr. 2021)

0. Single-process H' and T benchmarks e

a) H!' brine inflow to boreholes (1991 small-scale brine inflow test)

«  Simulate brine inflow to 3 (of 17) boreholes in Finley et al. (1992) dataset

« Data: weekly mass of brine produced from sealed boreholes T -
*  Brine flow down p gradient (borehole @ 0.1 MPa, far-field @ hydrostatic ~6 MPa) I E e e b,
b) T due to conduction (BATS; Kuhiman et al., 2020) |
+  Simulate T profile (heating and cooling) during heater test i_@
. Data: 4 weeks heating, 2 weeks cooling: AT at 5 (of 66) remote locations (At 15 min.) =~ =~ = " 7 i

* Heat conduction: 60-cm interval of borehole wall is constant temperature (~100 °C), heater
midpoint is 2.75-m deep into 10-cm borehole,

C) Estimate model parameter uncertainty and parameter sensitivity for both through time

*  Quantify uncertainty in prediction and measure A prediction with A input parameters (sensitivity)

energy.gov/ne



Task E Step 1 (Nov. 2020 - Apr. 2021)

McTigue (1990)
1

1. TH' benchmark & H2M/H? unheated brine inflow test case "R -

A%a0i |

a) Benchmark TH' brine production to analytical solution (McTigue, 1990)

«  Compare numerical models against coupled linear solution (space & time)

« Halite properties from Table 1, McTigue (1986)

«  Compare with/without model non-linearities (e.g., fluid viscosity f(T))

b) Parameterize two-phase flow in salt EDZ (few data exist)

«  Laboratory imbibition test. Mass imbibed & wetting front w/ time — estimate , :
capillary pressure (p.) & relative permeability (k,.) relationships " “ * “

*  CT core data. Predict p. & k, from pore-network models

« Literature. Granular salt: (Cinar et al., 2006; Olivella et al., 2011). Non-salt EDZ at WIPP (Davies,
1991; Howarth & Christian-Frear, 1997) LT L

C) H2 brine inflow to boreholes (BATS) w/ H2 characterization

. H2 or H2M simulation of “initial conditions” for BATS heater test

Guiltinan et al. (2020)

16
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Task E Step 2 (Apr. 2021 - Apr. 2023)

BRINE MIGRATION TEST AT RSSE MINE

2. TH?M heated brine inflow test case

g Asse (Rothfuchs et al., 1988)
. » . . . . s
a) Predict brine production during increases and decreases in T 2
g 1.4 4
50 Avery Island (Krause 1983) 1-m bedded salt Iab test (Hohlfelder, 1979) =
L T LOCK 11 T u
l scnu-: FOR DAYS oF MOISTURE cou_l-:cncm B o I B B o ERY
SITE S8 5 %0 100 50 200 250 300 — © .
@ 4oL SITE NB ! L L ! T 17 | ~90% of all brine flow
g 5 %6 100 150 200 250 : 1 4 . .
2 SITE AB L L A ) 5. 8o in 30 days following
> ° % O : heater shutdown
@ 30 ‘:'- .8 4
o ]
g r o 50. 0 .‘ r-
w 2 SITE NB . a4 ““IDN 053 (COOL-DOWN E .
é \ ™8 0o oo TINITIATED) L , .
° SITE SB o0 o 0031 4'“’ o026 gm/OAY § Brine o
= I10f __\\\ 7 ] 25. o) H
DY \_ production
) / . . . . ESL}LEEAATBE?) 2 4
% 50 100 150 200 250 300 350 400 L a1t 2
DAYS OF HEATING woorte = us;w .'.:"'_u.’c: e e , 7 , e s e 3 sren
uernavey ] Ill 2'. !ll ll’ 5" EEE 788 EED lll ispp

TIME/DRYS

b) Optional: predict breakthrough of gases/liquid tracers in BATS tracer tests
a) BATS 1b & 1c tracer tests to begin late 2020
b) Gas tracers (N, + Kr, Ne, SFg) between boreholes (D — HP)

c) Liquid tracers (water isotopes, fluorescein & perrhenate) between boreholes (D — SM & HP)
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Task E Step 3 (Alternatives)

1. ERT/AE data to constrain brine inflow estimates

* ERT sensitive to brine saturation, daily ERT tomograms

* AE source locations to confirm changes in ¢, k

2. Predict behavior of BATS seals / GRS lab tests
* GRS laboratory experimental data (WIPP brine & salt)

* BATS strain, T data in cement plugs (Sorel & salt concrete)

3. Additional C processes

* Include water types explicitly in models (fluid inclusions, clay dehydration)

4. Effects of viscoplastic creep on brine production
Based on interest of teams: Chose one/two?

energy.gov/ne




Summary

= Brine availability in bedded salt

* 4 very different water types

* EDZ is main source of k, ¢

= Task E brine inflow test cases
* Unheated: Small-scale brine inflow (1987-1991)
* Heated & Unheated: BATS test (ongoing)
= Task E evolution
* HY/T - TH'-> H?/H?M- TH%/TH?M - TH?MC (alternatives)
* Q: Is H? needed to explain brine inflow observations?
* Q:lIs AT - Ao - k, ¢ feedback needed to explain brine inflow observations?

* Uncertainty quantification & parameter sensitivity at each step (w/ added complexity)
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2020 Task E Interactions

= Summary of Task E Interactions
e 27-30 April 2020: DECOVALEX-2023 Spring 2020 Meeting
* 10 June 2020: Task E kickoff

29 July 2020: Task E discussion #1

16 Sept 2020: Task E discussion #2

14 Oct 2020: Task E discussion #3

16-20 Nov 2020: DECOVALEX-2023 Fall 2020 Meeting

= Continue “Optional” Discussions (~6 weeks)
* Improve communication

e Clear up data issues

energy.gov/ne



Task E (Wednesday, Stream 3) Preview

Teams: DOE, COVRA, GRS, BGR, RWM

= Presentations on Results of Step O
* 1991 WIPP brine inflow data (INTRAVAL) H’
e 2020 WIPP BATS temperature data T
* Model Uncertainty + Sensitivity
= Planning Step 1
* Matching analytical solution (McTigue, 1986) TH
* 2020 BATS two-phase flow initial condition  H?
= Discuss Schedule

* Too fast? Too slow? Wrong material?

Analysis of X-Ray CT data for fluid inclusions and anhydrite

energy.gov/ne



Thank you!

National
Laboratories
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rreerecrer

BERKELEY LAB

» Los Alamos
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Acronyms and Initialisms

AE acoustic emissions

BATS brine availability test in salt

CT computed tomography

DECOVALEX DEvelopment of COupled models and their VALidation against Experiments
DOE Department of Energy

DOE-EM DOE Office of Environmental Management (energy.gov/em)
DOE-NE DOE Office of Nuclear Energy (energy.gov/ne)

DOPAS full-scale Demonstration Of Plugs And Seals

DRZ disturbed rock zone

DSS, DTS distributed strain, temperature sensing

EDZ, EdZ Excavation Damaged Zone, Excavation disturbed Zone

ERT electrical resistivity tomography

GRS Gesellschaft fur Anlagen- und Reaktorsicherheit

LANL Los Alamos National Laboratory

LBL Lawrence Berkeley National Laboratory

NETL National Energy Technology Laboratory

SFWST Spent Fuel and Waste Science & Technology (DOE-NE program)
SNL Sandia National Laboratories

TCO WIPP Test Coordination Office (LANL)

TH2MC thermal, two-phase hydrological, mechanical, and chemical (also TH', TH2M, TH2C)
us United States

WIPP Waste Isolation Pilot Plant (DOE-EM site, wipp.energy.gov)
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https://www.energy.gov/em/office-environmental-management
https://www.energy.gov/ne/office-nuclear-energy
https://wipp.energy.gov/

