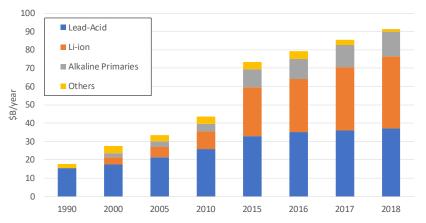
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Battery Energy Storage Technologies

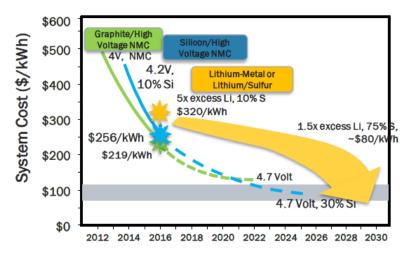
Sandia National Laboratories

ESIG Fall 2020 Workshop, November 12, 2020


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Admistration under contract E-NA0003525.

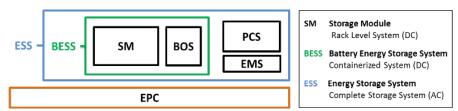
Battery Energy Storage Technologies

Mature lechnologies					
	Manufacturing and Cost Metrics	Key Challenges for Energy Storage, R&D needs			
Lead Acid Batteries	350 GWh/yr \$100/kWh (traditional) \$300/kWh (advanced)	Deep discharge cycle life Advanced lead acid expensive			
Lithium Ion Batteries (LIB) (family of chemistries, LCO, NCA, NMC, LFP)	400 GWh/yr and growing Pack level price: ~\$150/kWh	Increasing energy density Deep discharge cycle life Improving safety			


Emerging Technologies

Linerging recimologies						
NaS and NaNiCl ₂	No economies of scale	High temperature chemistry. Safety, High cost				
Flow Batteries (Vanadium, ZnBr, Acqeous organic)	Not fully mature VFB ~ \$300/kWh (System)	Increasing energy density New electrolytes Manufacturing scale				
Alkaline chemistries (Zn-MnO2,)	Lowest cost starting materials, potential for cells <\$50/kWh	Full rechargeability, improving Zn utilization Manufacturing scale				
Li chemistries (Li-S, Li-air) Na-ion batteries Solid state batteries (Li, Na) Zn-air						

- Lead-Acid: 350 GWh production capacity, \$38B/yr
- Li-ion: over 300 GWh and growing capacity, \$40B/yr
- Zn-MnO₂ Primary cells: \$13B/yr


Source: S. Banerjee, DOE ESGC South/Southwest Workshop, June 2020

Cost trends for Li-based EV Batteries (pack level) Source: David Howell, DOE VTO, 2018

Battery Energy Storage is not just about Batteries ...

Storage	Balance of	Power	Energy	Engineering Procurement & Construction (EPC)
Module	System	Conversion	Management	
(SM)	(BOS)	System (PCS)	System (EMS)	
Racking Frame / Cabinet	Container	Bi-directional Inverter	Application Library	Project Management
Local Protection	Electrical Distribution	Electrical	Economic Optimization	Engineering Studies /
(Breakers)	& Control	Protection		Permitting
Rack Management	Fire Suppression	Connection to	Distributed Asset	Site Preparation /
System		Transformer	Integration	Construction
Battery Management System	HVAC / Thermal Management		Data Logging	Foundation / Mounting
Battery Module			Communication	Commissioning

Source: R. Baxter, I. Gyuk, R.H. Byrne, B.R. Chalamala, IEEE Electrification, Aug 2018

Battery pack Power control system Balance of system Energy management system
Engineering, procurement, construction Developer overheads Developer margin

\$650/kWh

550

450

250

150

Note: Benchmark numbers for a 1MW/1MWh project Source: Bloomberg New Energy Finance (BNEF)

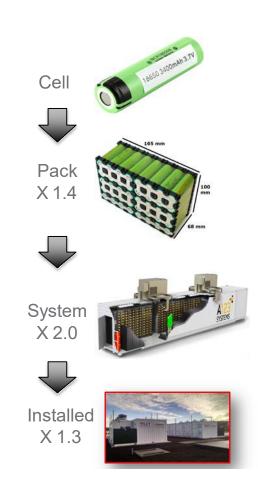
2018

2019

Bloomberg

2025

2024


2023

Cell to Battery to a Storage System doubling or tripling in cost from cell to installed system

2021

2022

2020

Cell Architecture

- Cell format
 - · Cylindrical, Prismatic
 - Bipolar
 - Flow Cell

Cell Chemistry

- Aqueous
- Non-aqueous

Thermal management

- Heating
- Cooling

Safety

- Abuse resistance
- Flammability
- Toxicity
- Containment

Plant Models

Modularized

Power vs. Energy

- High-power, short-duration discharge
- High-energy, long-duration discharge
- Fast Charging

Modularity and Scalability

- kW to MW (Power Scaling)
- kWh to MWh (Energy Scaling)
- Module stacking and Containerization

Cycle Life

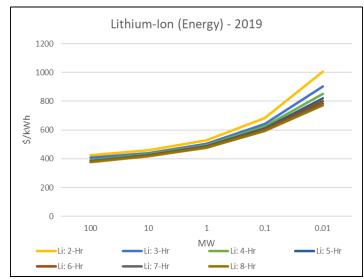
- Electrical
- Thermal

Operational Aspects

- Round-trip efficiency
- Auxiliary power consumption
- O&M Costs

Integration costs are significant Big savings in systems and integration..

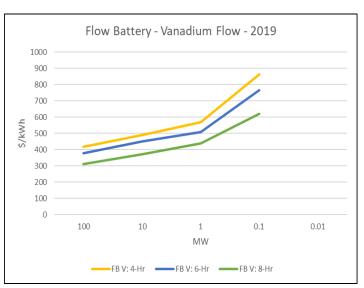
2019 Energy Storage System Pricing Survey

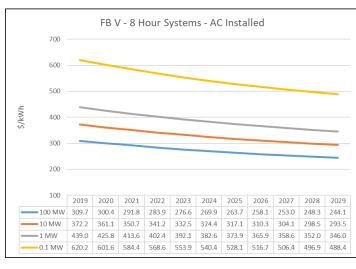

2010 Fraggy Chayers Driving								
2019 Energy Storage Pricing								
	Size (MW)							
	100	10	1	0.1	0.01			
\$/kW								
PHS	1676.9							
CAES	1506.2							
FW SD		984.0	1190.0	1500.0				
\$/kW (1 Hr)								
Li (Power)	504.2	545.6	629.1					
\$/kW (4 Hr)								
LAES	451.0	511.5						
GES	903.0							
FW LD		677.8	766.0	855.3	975.0			
Li (Energy)	392.0	430.6	493.4	623.0	850.3			
Zn	271.4	289.7	336.8	398.7				
Pb			352.0	425.5	588.4			
PbC			557.2	620.0	768.2			
\$/kW (6 Hr)								
Na	376.3	389.6	428.7					
FB ZnBr	450.9	464.9	478.8	510.6				
\$/kW (8 Hr)								
FB V	309.7	372.2	439.0	620.2				
FB Fe	362.7	381.7	404.7	438.4				

Source: R. Baxter, "Energy Storage Pricing Survey& Energy Storage Financing Study Series," DOE ESS Program 2020 Peer Review, Sept 30, 2020 and 2019 Energy Storage Pricing Survey, Sandia Report: SAND-XXXX, 2020

R. Baxter, Energy Storage Financing: Performance Impacts on Project Financing Sandia Report: SAND2018-10110, Sept 2018

Pricing data based on a survey of 77 data sources from OEMs, System Integrators and utilities.


Installed System Costs


System Price Forecast (Installed)

Installed System Costs

System Price Forecast (Installed)

5

Battery Energy Storage Systems - Gaps?

Technology - Need further improvements in cost and performance

- Lower cost, longer duration energy storage is a major gap
- Technologies that can scale from microgrids to large transmission applications
- Further improvements in safety and reliability

Energy storage is new for the electric utility industry

- Markets and Operations Business Models and Operational Tools
- Analytics Economics and Planning tools
- Appropriate Regulatory Policy Business Models, Asset Classification

Industry needs cycles of learning - manufacturing scale through deployments

- Project finance bankable, warrantees, Performance guarantees, risk management
- Standardization- equipment, permitting, construction processes

Acknowledgements

The Energy Storage program at Sandia is supported by DOE Office of Electricity Energy Storage Program

