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Horizontal Dry Cask Simulator (HDCS) Overview

* Purpose: Validate thermal-hydraulic modeling codes
used for spent fuel cask thermal design analyses

— Used to determine peak cladding temperatures in dry

casks
@‘“*\\ — Needed to evaluate cladding integrity throughout storage
. cycle

« Measure temperature profiles for a wide range of decay

\ - power and backfill gas pressures

Aiuﬂet — Mimic conditions for horizontal dry cask systems with
(2) shielded Door canisters

gi{é?f':iemmy i — Simplified geometry with well-controlled boundary

(6) Hydraulic Ram % Basemat conditions

(7) Transport Trailer Approach Slab

12

Q Storage Module @ Cask Support Skid and
9 Dry Storage Canister  Positioning System

— Provide measure of mass flow rates and temperatures
throughout system

» Use existing geometrically-prototypic BWR Incoloy-clad
test assembly

— Electrically-heated fuel simulators
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http://us.areva.com/EN/home-3138/areva-nuclear-materials-tn-americas--nuhoms-used-fuel-storage-system.html#tab=tab6

Goal of Investigation

« Goal: Simulate commercial

. vl : Sheet metal
horizontal dry cask storage 7 e sulation— [ Vvault enclosure
svstem Outlet N

y _/ vent \-_r _ T
— Response to a negd fpr | canister '
modern model validation o M B
* Determine effectiveness of modern = /]
codes in predicting dry cask storage P m B~ = Basket 7 [ <SG
system peak cladding temperatures | L——= | T Assembly” o
— Wide range of test ‘ ‘
parameters S '
« Decay heats, gas backfills, and internal R I | | o Inlet — 4 | U
pressures vent S e
. . . NUHOMS HSM Model 80 HDCS
— Collect validation-quality data with 61BT canister BR = 0.84
« Temperatures and external air mass BR=0.34
flow rates
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Prototypic Assembly Hardware

Upper tie plate | * Most common 9x9 BWR fuel in

* Prototypic 9x9 BWR hardware

— Full length, prototypic 9x9
BWR components

— Electric heater rods with
Incoloy cladding
— 74 fuel rods
» 8 of these are partial
length

« Partial length rods run
2/3 the length of

Channel
box

) Basket

Loee

Canister

Thermocouple

(TC) attached assembly
directly to — 2 water rods
cladding — [ spacers

Nose piece and BWR channel box, water rods,
debris catcher and spacers
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Pressure Vessel Hardware

« Scaled components with instrumentation well
« Coated with ultra-high-temperature paint
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HDCS Construction

Gently rotated assembly from
vertical to horizontal
configuration

Constructed vault enclosure
— Inlets and outlets

Installed additional
Instrumentation

Conducted testing
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Temperature Measurements

 Thermocouples used to make
temperature measurements

- 281 total TCs

- TCs attached directly to
surfaces

- 95% confidence interval
measurement uncertainty:
Ur_= +1% of maximum
temperature measurement®

*Nakos, J.T., “Uncertainty Analysis of Thermocouple Measurements Used in Normal and Abnormal
. . L Thermal Environment Experiments at Sandia’s Radiant Heat Facility and Lurance Canyon Burn
All dimensions in inches Site,” SAND2004-1023, Sandia National Laboratories, Albuguerque, New Mexico, April 2004.
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Air Mass Flow Measurements

 Hot wire anemometers used to make air
mass flow measurements

— Flow facilitated into duct via convergent
nozzles

— Anemometers traversed ducts via
motorized stages

— Measurement uncertainty across all 4
ducts: Uy, 1o = £3.0 x 10 kg/s

Mg

Honeycomb

Convergent flow straightener
S | S

nozzle Hot wire
anemometer
Motorized stage
e SRS
F ST .mw%mwmm;

L
@sss;e:&esemm:

+
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HDCS Modeling Validation Exercise

Pressure | Power
Fill Gas (kPa) (KW)
_ 100 0.5
* Results provided for two cases of the overall 100 1.0
test matrix _ I 100 2.5 f
— 2.5 kW power, 100 kPa pressure, helium backfill Helium 100 50
— 2.5 kW power, 100 kPa pressure, air backfill 800 0.5
* Limited data set provided to calibrate 800 5.0
models for blind model validation exercise 100 0.5
. 100 1.0
Al =00 | 25 1
100 5.0
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Model Descriptions
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 The 5 models can be categorized by:

— Code type
— Fuel representation
— Cross-sectional symmetry

* Results from 4 models are presented -
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Modeling Code Type Fuel Cross-
Contributor Representation Sectional .
Symmetry

NRC CFD Porous Media 1/2
PNNL CFD Porous Media 1/2
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Comparison Metrics

Metric Notes
Peak cladding temperature PCT
Air mass flow rate My,

Axial temperature profile

T(z) at assembly center (5 locations)

Transverse x-axis temp. profile

T(x)atz=1.219 m (11 locations)*

T(y)at z=1.829 m (7 locations)**

Transverse y-axis temp. profile

P F oS | e
S Eet

* 9 locations for model with boundary
condition set at pressure vessel

** 6 locations for model with boundary
condition set at pressure vessel
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Axial Temperature Profile T(z) Data Comparison

2.5 kW, 100 kPa Helium Test 5.0 kW, 100 kPa Helium Test
Model Calibration Blind Validation
600 750
~ 700
<
E 650
3 oasas % 600 30800000
) Sgenes 550
e Rttt DRSS
500
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Xertical Temperature Profile T(x) Data

omparison

2.5 kW, 100 kPa Helium Test 5.0 kW, 100 kPa Helium Test
Model Calibration Blind Validation

-0.2
-0.1
0
0.1
0.2
0.3
0.4

0.5
250 350 450 550 6350 750 200 400 600 800 1000

Temperature (K) Temperature (K)

X (m)
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Horizontal Temperature Profile T(y) Data

Comparison
2.5 kW, 100 kPa Helium Test 5.0 kW, 100 kPa Helium Test
Model Calibration Blind Validation
600

550

Temperature (K)
N
()|
-

0 0.03 0.06 0.09 0.12 0.15 0.18 O 0.03 0.06 0.09 0.12 0.I5 0.18
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Root Mean Squares of the Normalized Errors

Root Mean Squares (RMSs) of the errors in comparison
metrics, normalized by the experimental result, were
calculated for all models

— Normalized error equation for parameter x:
Xu = Xg
XE

E:

X

— Comparison metrics: PCT, air mass flow rate, T(x), T(y), T(z)

— Combined RMS of the normalized errors across all parameters
gives direct comparison of model goodness of fit

— Does not take uncertainties into account
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Comparisons Including Vault Data

O
—

0.08

0.06

0.04

RMS of Normalized Errors

0.02

ePCT £T(2) ET(x) ET(y) €1

Model 1 2 3
Combined RMS of Normalized Errors 0.040 0.041 0.049
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Comparisons Excluding Vault Data

0.05

0.04

0.03

0.02

0.01

RMS of Normalized Errors

€PCT €T(2) €T(x) €T(y)

Model 1 2 3 4
Combined RMS of the Normalized Errors 0.017 0.021 0.022 0.023
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Validation Uncertainty Quantification

Validation Uncertainty Quantification approach derived
from ASME V&V 20 (2009)*

2 2
0
— Validation uncertainty in the error**: U =\/(ai"] U, +[ "] U
E

£
— Normalized error divided by validation uncertainty: U—X

— Validation uncertainties used to define a model validation

criterion €
* Pass condition: —— =
£
X
*American Society of Mechanical Engineers, “ASME V&V 20-2009 — Standard for Verification
8 and Validation in Computational Fluid Dynamics and Heat Transfer,” New York, NY,
. .y . X 1 November 2009.
« Fail condition: >
U **Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical
£ Measurements, University Science Books, 2nd Ed., August 1996
X

Ifan, H. and T. Hughes, Measurements And Their Uncertainties: A Practical Guide To
Modern Error Analysis, Oxford University Press, 1st Ed., October 2010.
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Validation Criterion

€ e

Pass Condition: — < 1 Fail Condition;—— > 1
USX USX
. . RMS of Normalized
Metric Units Errors/ st
PCT K 0.57
PCT Axial Location m 0.36
T(2) K 0.74
T(X) K 0.64
T(y) K 0.66
m kg/s 1.25
Combined RMS of Normalized Errors
Divided by Validation Uncertainty 0.75

Overall, model 1 passes the validation criterion

— Combined RMS of the normalized errors, divided by the
validation uncertainty, for this model is less than 1

20 energy.gov/n




Horizontal Dry Cask Simulator Blind Modeling Validation Exercise
— HDCS tests completed April 2020
— Final model results from modeling institutions submitted June 2020

— Validation exercise results reported in “Blind Modeling Validation Exercises
Using a Horizontal Dry Cask Simulator” — SAND2020-10344 R

* https://www.osti.gov/servlets/purl/1669198

— Key takeaways
 All models agreed with experiment to within 5%
— Based on most significant comparison metrics

 Additional uncertainty quantification for Model 1 shown to satisfy
validation criterion

— Criterion derived from ASME V&V 20
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https://www.osti.gov/servlets/purl/1669198

