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PREFACE

The study of plasma physics under conditions of ex-
treme temperatures, densities and electromagnetic field
strengths is significant for our understanding of astro-
physics, nuclear fusion and fundamental physics. These
extreme physical systems are strongly non-linear and very
difficult to understand theoretically or optimize experi-
mentally. Here, we argue that machine learning models
and data-driven methods are in the process of reshap-
ing our exploration of these extreme systems that have
hitherto proven far too non-linear for human researchers.
From a fundamental perspective, our understanding can
be helped by the way in which machine learning models
can rapidly discover complex interactions in large data
sets. From a practical point of view, the newest genera-
tion of extreme physics facilities can perform experiments
multiple times a second (as opposed to ~daily) — moving
away from human-based control towards automatic con-
trol based on real-time interpretation of diagnostic data
and updates of the physics model. To make the most of
these emerging opportunities, we advance proposals for
the community in terms of research design, training, best
practices, and support for synthetic diagnostics and data
analysis.

YElectronic mail: peter.hatfield @ physics.ox.ac.uk
YElectronic mail: gaffney3@IInl.gov
9Electronic mail: anderson276@I1nl.gov

‘Set the controls for the heart of the Sun’ encouraged a 2004
paper! (riffing on the 1968 Pink Floyd song), describing the
bright future of using Earth based experiments to create con-
ditions similar to inside the Sun in the lab. Seventeen years
later substantial advances have been made in this research
programme. A question that is presently emerging however
is who should be at the controls - humans, or artificial intelli-
gences?

In the last few years plasma physics has been steadily be-
ginning to explore the use of modern day data science and arti-
ficial intelligence methods to support research goals>>. In this
article we will identify data science issues for physics specif-
ically at the extreme®; extremely high temperatures, densi-
ties or electromagnetic field strengths - which have unique
challenges. In particular phenomena at these conditions are
highly non-linear - small parameter changes can lead to large
changes in behaviour. Interpreting extreme physics data typ-
ically requires simultaneously comprehending large amounts
of complex multi-modal data from multiple different sources.
Optimising extreme physics systems requires fine-tuning over
large numbers of (often highly correlated) parameters. Artifi-
cial Intelligence (AI) methods have proved highly successful
at teasing out correlations in large data sets like these and we
believe will be crucial for understanding and optimising sys-
tems that up to now have been inscrutable. These extreme
conditions can be found in astrophysical scenarios, but can
also be created using high-energy ‘drivers’ (often lasers) in
the laboratory - millimetre sized plasmas with temperatures
and pressures higher than the centre of the Sun. The field has
seen an explosion of interest in machine learning techniques
because new and future laser facilities have much higher shot
(and corresponding data) rates than previous facilities. Data
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from laboratory experiments can help us understand astro-
physical plasmas, let us probe new phenomena in particle
physics that conventional accelerators can’t reach, and might
even lead the way to nuclear fusion as a power source. In
this paper we will highlight what data science issues are rele-
vant for extreme plasma science, discuss successes in the field,
identify what challenges remain, and look towards the future.

One of the most challenging areas of extreme plasma
physics is High Energy Density Physics (HEDP), a sub-field
dating back to the 1940s that seeks to understand the be-
haviour of macroscopic matter that is simultaneously at both
very high temperatures and pressures; typically >107 K and
>10% bar. At these conditions, several complex areas of
physics become relevant and highly coupled, making ab ini-
tio predictions very challenging. For example, in many cir-
cumstances HEDP plasmas can start to inherit properties from
both ‘classical plasmas’ (where the behaviour of the matter
can to some degree be thought of as a gas of both ions and free
electrons) and condensed matter (matter at solid density where
strong interactions between bound electrons are relevant)’.
Key contemporary problems in HEDP theory include under-
standing multi-species plasmas, self-consistent emission, ab-
sorption, and scattering of radiation, non-equilibrium plas-
mas, relativistic electron transport, magnetised plasmas, and
quantum electrodynamic effects.

Understanding HEDP is of both great theoretical and prac-
tical importance. As already discussed, understanding these
conditions is key in astrophysics. The field is also a ripe do-
main for new areas of fundamental physics; it is becoming
possible to study particle and nuclear physics through HEDP
experiments, as well as novel phenomena that are predicted
to only emerge at extreme conditions e.g. the predicted ther-
mal Schwinger process - spontaneous production of electrons
and positrons at very high electric field strengths®. Extreme
physics and high power laser science have given access to
exotic forms of matter e.g. new forms of ice’ and metallic
hydrogen®. HEDP experiments are also at the forefront of
the development of new classes of particle accelerators® (e.g.
Laser Wakefield acceleration!?, bright gamma ray sources'!,
laser-driven ion acceleration'? and highly efficient neutron
generation!) with wide ranging application across science
including condensed matter physics, material science, and
biomedical imaging'#. Finally, the high temperatures and
pressures of HEDP are one way to make nuclear fusion as a
clean industrial power source a reality via inertial confinement
fusion'> (ICF).

HEDP has a rich heritage of experimentation, currently
practiced by thousands of scientists in several large facili-
ties around the world. The National Ignition Facility (NIF) at
Lawrence Livermore National Laboratory (LLNL) is the most
energetic laser in the world, and is the premier facility work-
ing towards ICF!©, as well as operating an exciting Discovery
Science programme!”-'8. At the other end of the energy spec-
trum are high repetition rate lasers (for example Gemini at
the Central Laser Facility, CLF'9), which are much less ener-
getic (and so can typically reach less extreme conditions), but
can fire up to many times a second rather than at most a few
times a day at NIF. There are many more facilities, each with

unique capabilities, and a range of other technologies that are
used around the world in HEDP experiments, including gas
guns, Z-pinches, proton beams, pulsed power, X-Ray Free-
Electron Lasers (XFELs) and ion accelerators (e.g. the Fa-
cility for Antiproton and Ion Research?’). New facilities and
upgrades are constantly in planning, and understanding the
data we currently have is directly relevant to choices about
what facilities we will need in the future. There are also im-
portant synergies with closely related areas of physics, for ex-
ample magnetic confinement fusion (MCF), solar probes, and
the detection of high energy cosmic rays. Finally, alongside
experimentation, huge computational facilities have tradition-
ally been a key part of HEDP, with the development of many
sophisticated simulation codes run on top high performance
computing (HPC) facilities. At the time of writing, ~ 6 of the
top ten supercomputers in the world are used in some capacity
for simulating plasma physics experiments like ICF.
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FIG. 1. Shot rates and energy of large high powered laser facili-
ties in different eras. Shot rates and energies plotted are representa-
tive rather than definitive; facilities typically can operate in a num-
ber of slightly different modes, and in addition other laser properties
(long pulse versus short pulse, beam colour etc.) are also important.
Note also that higher shot numbers enable more parameter space to
be probed, or a higher signal-to-noise ratio to be reached, but do
not automatically translate into more data (depending on what diag-
nostics are used and the experiment performed). Facilities included
are: NIF, LMJ, Omega, Gemini, Vulcan, Orion, TA2, Artemis,
Vega, Titan, Texas Petawatt, HAPLS, SG-III, CoReLS 4PW, RRCAT
150TW, LULI2000, ALLS, Shanghai Superintense Ultrafast Laser
Facility, DRACO (current), Allegra, EPAC DiPOLE, TARANIS-X,
Station of Extreme Light (future), Nova, SHIVA, Cyclops, Argus,
SG-II, ISKRA-V (past)21*30, SACLA, the European XFEL (current
XFELs) and LCLS-II (a future XFEL)3'=33. The solid line illustrates
the approximate state of current technology. We show for context the
collision rate, and energy per collision for the LHC?*, although such
figures are not directly comparable. We also indicate with a dashed
line the shot rates that would be need to be achieved for an ICF power
plant?, to illustrate the long term aspirations of the field.

2 For Q = 100; an output energy to input energy ratio of 100 per shot

The field is entering the regime where it is necessary to
systematically manage large quantities of data, both because
the amount of experimental data is set to massively grow, and
also because the capacity to simulate huge numbers of exper-



iments is moving beyond the limits of conventional methods.
The quantity of experimental data is increasing both because
shot rates on facilities are dramatically increasing (see Figure
1), but also because diagnostics are becoming more sophisti-
cated; ~150GB of data is taken on each NIF shot, and LCLS
campaigns have reached ~70GB per minute®>. Machine
learning®®, Bayesian methods?’, and data-driven science®®
have been common in particle physics and astrophysics for
many years, and are having large impacts on other multiscale,
highly non-linear areas of physics e.g. climate science and
Earth system science’*%°. Some Al solutions from other fields
are likely to be applicable in plasma physics - but HEDP also
has its own unique challenges. Specifically we typically want
to (sometimes very rapidly) fine tune (either optimising or fit-
ting a model) a large number of parameters for a desired out-
come, based on a large number of multi-modal data sets. This
is very difficult for humans, as it is very hard to simultane-
ously comprehend all the different sources and forms of data
- but is achievable for Al. In HEDP, the highest performing
experiments in the field are now increasingly data driven*!4?;
the vision is to work towards a HEDP science where algo-
rithms are at the centre of design, analysis of experiments,
and discovery.

In the following sections we review key challenges and
topics in extreme plasma physics, and highlight research ar-
eas where data science has dramatically impacted the field.
We further lay out what the future might hold for data driven
Extreme Physics and HEDP - and how the community must
change and adapt how it practices research to make the most
of these exciting new approaches.

CHALLENGES

The qualities that make HEDP an exciting area of research
also contribute to causing the challenges inherent in any quan-
titative analysis of data. Table I summarises some key quan-
titive methods, comparing conventional and emerging ap-
proaches, and in the following sub-sections we discuss three
primary challenges that data science techniques can help ad-
dress in HEDP.

Experimental Design and Automation

A key component of HEDP is experimentation. Designing
experiments is a hugely complex task, and researchers typi-
cally will have a wide range of overlapping goals during this
phase. Researchers must consider what specific hypotheses
are to be tested, and if the expected data would be sufficient
to rule out alternatives. What design to shoot, diagnostic in-
struments to field, or astronomical observation to make will
depend heavily on the specific science goal at hand. In cur-
rent design approaches there is typically much intuition im-
plicitly at play, and often experiments are built as an extension
of what has been done before, limiting the regions of exper-
imental space that are studied. Machine learning techniques
offer a possible framework for the intuition of the computa-

tional scientists and experimental scientists to be explicitly in-
cluded in a cohesive picture that considers both measurements
that can be made, and which aspects of physics have the most
leverage on those measurements. Al-aided design is begin-
ning to be used in the creation of new HEDP experiments*3+4,
and we foresee that becoming the norm in the coming years.
However, machine learning methods have yet to demonstrate
that they can “think outside the box” of pre-defined parameter
spaces, therefore for the foreseeable future it will still be nec-
essary to have substantial human input in the design process.

Experiments on state-of-the-art high repetition rate lasers,
firing many times a second, cannot be done with a human
in the loop - so in this case some algorithmic control is es-
sential. This in principle could lead to huge savings of time,
money, and human effort in the near future - allowing them
to be redirected to aspects of research where they can be bet-
ter used. Automating experiments combines control of ex-
perimental parameters and real-time analysis of experimen-
tal results into a single algorithm. The experimental goals
are coded in to the automation, such that choices of how to
vary the experimental inputs are made automatically in order
to maximise the output.

Automation also allows for active feedback stabilisation of
complex processes. This is of particular benefit to HEDP ex-
periments, where many non-linear effects combine to deter-
mine the performance of what is a nominally unpredictable
process. In this context, Al could be the solution to an oth-
erwise intractable problem; the well-known ability of deep
learning models to discover complex interactions* could be
used to optimize systems that have proven far too non-linear
for human researchers.

Data Synthesis

The measurements made in HEDP experiments are often
highly integrated; experiments typically don’t measure the ac-
tual quantity of interest (Qol), and there are usually multiple
confounding or nuisance variables that have to be controlled.
Isolating a particular aspect of these systems is often not pos-
sible, resulting in a measurement of an evolving system sub-
ject to different conditions and physical processes. This com-
plexity makes repeatability an issue. In order to isolate indi-
vidual aspects of the underlying physics, experiments there-
fore typically require multiple, indirect observations, some-
times spread across several different experimental facilities.
At most facilities researchers have developed multiple diag-
nostics for experiments; for example both x-ray and particle
spectra may be measured on a single experiment, along with
many other forms of experimental data - all of which might
contribute to the determination of a single quantity. The analy-
sis of such increasingly sophisticated interlinked data requires
the use of more advanced modelling techniques to make the
best use of the available data, and to sensibly quantify the un-
certainty on any inferences. Looking forward, large quantities
of data will require the development of streamlined automated
data analysis tools to avoid read/write bottlenecks*S.

As well as combining data from multiple diagnostics, there



Analytical Task Scientific Task Conventional approaches Limitations of conventional =~ Emergent or  potential
approaches approaches
Uncertainty Quantifying uncertainty Simulation-based sen-  Local sensitivities only, MCMC, dropout, boot-
Quantification on estimate of some mi-  sitivity  studies, basic  relies on estimated uncer-  strapping,  quantification
crophysics (e.g.  opacity, Poisson/Gaussian ~ uncer-  tainties in underlying pa-  of ‘unknown unknowns’,
equation-of-state), char- tainties, not including rameters, invertible neural networks
acterising uncertainty  correlations cannot account for simula-
estimate on laser energy tion bias
required for ignition
Regression Emulating an  expen- Look-up tables, polynomial Struggles in high dimen-  Neural networks, Gaussian
sive simulation, building  regression sion, incorporating known  processes, autoencoders
an empirical model of physics constraints, extrap-
microphysics olation is difficult, often not
fast enough
Design Selecting target design pa- Adjusting parameters by  Hard in high dimensions, Bayesian optimisation,
rameters, scheduling obser- hand, using a combination = human intensive, cannot be ~ Genetic/Evolutionary
vation runs of code output and Designer ~ done quickly, can miss opti-  algorithms
judgement mal/novel designs
Pattern Identifying target defects, Human inspection Laborious and time con-  Convolutional Neural
Recognition characterising magnetic suming, subject to individ- ~ Networks, Deep learning,
perturbations, image ual biases, uncontrolled ap- random forest classifiers,
segmentation/featurization proximation to true infor- Human-AI  hybrid ap-
mation content proaches, Application
Specific Integrated Circuits
incorporated into diagnos-
tics, Generative adversarial
networks
Data Combining data from mul- Researcher guided infer-  Difficult to do ‘by hand’, Bayesian inference, data as-
Synthesis tiple sources (e.g. different ence from independently = hard to take advantages of  similation methods
instruments) analysed diagnostic data any degeneracies broken
Classification Image classification, par- Simple analytic criteria, hu-  Laborious and time  Random forest, decision
ticle track classification, man inspection consuming, potentially trees, neural networks, deep
identify good/bad shots, inaccurate learning, Generative adver-
anomaly detection sarial networks
Model Calibra- Update physics mod- Trial and error, single-point ~ Laborious and time con-  Bayesian inference, dis-
tion els/parameters in the face  fitting to data, hand-tuning suming, inaccurate or miss-  crepancy modeling, transfer

of experimental data

ing treatment of uncertain-

learning, multi-task learn-

ties, miss multiple solu- ing, physics informed
tions, prone to overfitting neural networks

TABLE I. Conventional and Al-enabled approaches to tasks in extreme plasma physics

are also challenges in combining data from multiple sources;
‘data synthesis’, where multiple forms of heterogeneous data
are combined in a self-consistent manner in order to construct
a more complete picture of the phenomenon of interest. Typ-
ically each diagnostic will be analysed separately, and overall
conclusions reached heuristically by the researcher. However,
combining all available data can help reduce error bars, break
degeneracies, and cancel out uncorrelated systematics*’.

The long term vision for the best use of the physics data is
to develop systems to combine data from multiple diagnostics
on the same shot, multiple shots, shots on different facilities,
and finally from different types of facility.

Physics models

The evolution of HEDP experiments is governed by mul-
tiple complex, non-linear physics models, each of which has

its own range of applicability and uncertainties. Solving these
multiphysics computer models requires very expensive sim-
ulations, which are often not suited to next-generation HPC
platforms. With the increasing desire to explore larger experi-
mental parameter spaces, there is a shifting dynamic between
single, incredibly computationally expensive, ‘hero’ simula-
tions, and large-scale ensembles of simulations which only
become meaningful when confronted with experimental data.

Due to numerical approximations, poorly known or un-
known model parameters, and missing physics (model dis-
crepancy), computer models often do not accurately represent
the physical process under study. We can leverage real-world
experiments to calibrate our computational models, enabling
us to constrain some of the uncertain model parameters; ide-
ally including an Uncertainty Quantification (UQ) analysis*®
and practicing ‘data assimilation’*® that obeys physical laws.
A useful approach to this problem is through Bayesian in-
version (also known as model calibration)*>>!, which allows



prior knowledge to be be included and for which convenient
numerical tools exist. In a HEDP context, challenges with this
approach include large parameter spaces, expensive models,
and very sparse experimental data.

The computer models can often be prohibitively computa-
tionally expensive. In this case a surrogate model (or emula-
tor) may be useful - running a moderate number of expensive
simulations, and training a machine learning algorithm to re-
produce what the simulation would have given as an output.
Surrogate models are of course themselves only an approxi-
mation of the true model, introducing further uncertainty that
needs to be accounted for.

Emulation can be done at the macro level (e.g. predicting
outputs of a whole experiment), or at the level of individual
modules run inline inside of a computer model. The use of
emulators opens up an array of new inference methods that
would not be practical with the full computational expense of
a conventional simulation’>~3,

CASE STUDIES

Here we highlight three key areas where researchers are
tackling the challenges described in Section II, and where
data science is significantly impacting the practice of extreme
plasma science.

Astrophysics

Plasmas are found throughout the Universe: in Solar
physics (the centre of the Sun, the solar corona, solar wind);
interplanetary, interstellar and intergalactic media; in Earth’s
and other planetary magnetospheres and ionospheres, and tails
of comets; in compact astrophysical objects (white dwarfs,
neutron stars, and black holes) and their accretion disks. After
direct matter-antimatter annihilation, accretion onto compact
objects is the most efficient energy source in the Universe®”;
the Cosmos offers plenty of opportunity to probe extreme
physics.

Understanding our closest star is of course of supreme prac-
tical importance - alongside curiosity-driven blue sky astro-
physical motivation. Space weather refers to conditions on
the Sun, in the heliosphere, in the solar wind, and in Earth’s
magnetosphere, ionosphere, and thermosphere, that can in-
fluence the performance and reliability of space-borne and
ground-based technological systems and can endanger human
life or health®-%!. Changes in the space environment, result-
ing mainly from changes on the Sun, include modification of
the ambient plasma, particulate radiation (electrons, protons
and ions), electromagnetic radiation (including radio, visible,
UV, X-ray, and gamma radiation), and magnetic and electric
fields.

As with many other areas of physics, the amount of data
we have on the multi-scale complex physics experiment that
is the Sun has massively increased in recent years from So-
lar space missions e.g. from both spacecraft, such as the So-
lar and Heliospheric Observatory (SOHO), the Hinode mis-

sion, the Solar Dynamics Observatory (SDO), the Parker So-
lar Probe (PSP) and Solar Orbiter (SolO), and CubeSats, such
as the Miniature X-ray Solar Spectrometer (MinXSS). Ma-
chine learning has been employed successfully to both fore-
cast and ‘now-cast’ space weather®”. Tt has been used to
make predictions and gain insight about: solar wind®, so-
lar flares®*%>, coronal mass ejections (CMEs)%0%7 Van Allen
radiation belts®®, geomagnetically induced currents® and the

role of auroras as proxy for ionospheric disturbances’®.

Outside our Solar System, large survey telescopes are tak-
ing huge amounts of data on astronomical bodies with extreme
physics. A full range of data science based techniques are
used to both a) identify objects of interest in the large data
sets’!, and b) understand their underlying physics. Machine
learning and statistical methods have been used to: make a
Bayesian constraint on supra-nuclear equations-of-state’?, un-
derstand the interiors of exoplanets’?, constrain fundamen-
tal stellar parameters from asteroseismic observations’*, clas-
sify supernovae’, identify and infer the properties of white
dwarfs’®, classify states of black hole X-ray binaries’’, and
emulate radiative transfer during the epoch of cosmological

reionization’®.

HEDP experimental facilities can, as discussed, also probe
the extreme plasma physics relevant in astrophysical bod-
ies. For example, experiments have measured the equation
of state at conditions relevant for the centres of gas giant
exoplanets’?#0, tested theories on possible origins of mag-
netic fields on galactic scales®' and helped our understanding
of white dwarf photosphere spectra®?. There has recently been
great success in applying data science methods to these ex-
periments and making inferences with realistic uncertainties.
Measurements of iron opacity at conditions relevant to solar
physics on the Z facility for example have modelled a large
number of possible sources of uncertainty and systematics,
and have combined the data from multiple shots together to
get realistic uncertainties. This measurement was statistically
inconsistent with conventional opacity predictions and has po-
tentially led to an adjustment of estimates of the metallicity
(lithium and higher atomic number elements) of the Sun®>84,
Similarly, Bayesian estimates from experiment of nuclear re-
action rate at conditions relevant for Big Bang nucleosynthesis
were found to be 3% different from conventionally assumed;
a level of precision needed for cosmological studies® . As dis-
cussed in the introduction, future facilities will have shot rates
that will make multi-shot studies like this the norm. Critically
this will make it possible to consistently make realistic uncer-
tainty quantifications of key parameters, and will also give the
ability to probe large parts of parameter space (e.g. measure
the equation-of-state or opacity at a large number of points
in temperature-density space). With these vast quantities of
observational and experimental data, the natural next step is
to use experimentally calibrated models of microphysics like
these in astrophysical models - with the potential to give im-
proved predictions over theory-only models.

There is a huge amount of data on astrophysical plasmas
of a wide variety of sources, taken in a huge variety of ways,
but unfortunately they are currently held in different forms,
by different communities. See Figure 2 for an infogram on
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FIG. 2. Integration of astrophysical information: combining data from multiple sources. At the centre is a machine learning algorithm that
is receiving data from multiple sources, and is able to update its beliefs based on this (‘data assimilation’). The resulting data-driven results
will take information from both theory, and data, to give more precise predictions, with realistic uncertainties.

how different astrophysical data sets could in future be com-
bined in a data assimilation framework3637. Astronomers
have long practiced ‘multi-wavelength’ astronomy (astronomy
observing at multiple electromagnetic wavelengths), and since
~2015 have practiced ‘multi-messenger’ astronomy (astron-
omy taking data from multiple messengers of information,
electromagnetic waves, gravitational waves, cosmic rays and
neutrinos). It is now time for ‘multi-provenance’ astronomy;
integrating data from both observations and experiments into
one coherent model of our understanding of astrophysical
sources.

Inertial Confinement Fusion

The aim of igniting a self-propagating hydrogen fusion re-
action in laboratory-scale plasmas has been a scientific grand
challenge for over 50 years. The motivation is clear: a re-
liable fusion reaction could form the basis for an effectively
limitless, clean, and safe energy source®8. There are good rea-
sons the research has been long-running; generating densities
and temperatures high enough to overcome the Coulomb re-
pulsion between nuclei and Bremsstrahlung radiation losses
from electrons, over timescales long enough to allow energy
break-even, is extremely difficult. In nature, the required con-
ditions are reached in the cores of stars as a result of gravita-
tional collapse and confinement. On Earth, we require even
more extreme conditions to account for the much shorter time
scales.

In inertial confinement fusion (ICF) studies, millimetre-
scale targets are driven to implode using high energy (100s kJ
to MJ-class) drivers®®. For fusion ignition, the implosion and

subsequent stagnation needs to generate a high temperature
(107-10% K) hydrogen plasma, surrounded by a compressed
(100x - 1000x) fuel layer, confined by its own inward veloc-
ity for several hundred picoseconds®. Experiments on current
ICF facilities like the National Ignition Facility (NIF)°1-92, the
Omega Laser Facility®3, and the Z pulsed-power machine”*%
routinely generate plasmas under solar core conditions and be-
yond.

ICF experiments present distinct data challenges due to
their scale and complexity. Experimental facilities are expen-
sive and are not expected to achieve high repetition-rate oper-
ation any time soon. Targets and drivers are very complex re-
sulting in high-dimensional experimental design spaces. Ex-
periments are also highly integrated, meaning direct measure-
ment of any figure of merit beyond the raw energy yield is
not possible. These factors mean that ICF datasets are always
sparse, with multiple confounding factors and uncertain infor-
mation content; researchers therefore place a very high value
on theoretical studies undertaken using multiphysics simula-
tion codes. While cheaper than experiments, the simulations
are still expensive, requiring at least CPU-months to complete.
They can also have significant bias’®, and therefore require
calibration against the available experimental data (from both
ICF, and smaller scale experiments focused on relevant phe-
nomena). There is a significant need for new methods that
can help with experimental design and optimization, interpre-
tation of experimental data, linking experiments with physics
models, as well as making reliable predictions of future exper-
iments. As this work progresses, ICF is becoming a prototyp-
ical example of the difficulties associated with science in the
data-poor regime.

As with the other examples in this perspective, the funda-



mental data problem is the synthesis of multiple sources of
information. Here, the key aim is to efficiently use the sparse
information available to update our physics understanding in
order to make simulations more predictive of future experi-
ments. Figure 3 shows a potential workflow that fully inte-
grates data-driven and machine-learning methods to achieve
this goal. There are three fundamental information sources;
experimental data which may comprise ~ 10 ‘shots’ each
producing multiple diagnostics with diverse data types; tra-
ditional high fidelity simulations which produce single best-
physics predictions for each shot; and high-volume ensem-
ble studies which use large numbers of (necessarily lower-
fidelity) simulations to investigate competing physics hypoth-
esis and provide protection against overfitting. The optimiza-
tion and control of these information sources, combination of
the resulting data, and updating of models to become more
predictive present numerous opportunities for modern data
science and machine learning approaches and each stage has
seen recent active research.

Work to optimize the three information sources in Fig-
ure 3 include the acceleration of multiphysics simulations us-
ing deep learning>>%7, infrastructure for intelligent control of
large-scale simulations®®, intelligent and data-informed de-
sign of experiments*>#3%% as well as optimization of experi-
mental facilities'?. These developments have enabled simu-
lation studies of unprecedented size'°! and the generation of
open-source ICF datasets'?? that motivate novel deep learn-
ing research 7103104 " AT tools have been applied to the
automatic analysis and featurization of complex data types
like spectra, images>*!%>, and line-of-sight dependent quan-
tities. There has been significant interest in using Bayesian
inference to improve diagnostics!?, and to synthesize obser-
vations in both focused HEDP experiments®' and full-scale
ICF experiments>®!107-19 " The ultimate aims of using these
methods to improve physics understanding, and the reliability
of simulations in extrapolating to new designs*® or facilities,
have been addressed though machine learning*>!''?, Bayesian
model calibration®, and transfer learning®®!11,

Integrating the recent work we have described into a fully
developed workflow similar to Figure 3 is still a significant
challenge. Once achieved, however, we expect to gain an un-
precedented view of the ICF design space, significantly better
understanding of the conditions in current ICF experiments,
and an improved understanding of the path to high yield and
ignition.

Automation for High Repetition Rates

At the other end of the spectrum to NIF, which can only fire
roughly once a day, are high-repetition rate lasers that can fire
up to multiple times a second. This means huge amounts of
data towards given science goals, but also means large aspects
of the experimental process must be automated. To succeed,
the automation of experiments requires both control of exper-
imental parameters and real-time analysis of experimental re-
sults in one single algorithmic process; see Figure 4.

The first step in achieving this is for experimental goals to

be coded in to the automation algorithm, such that choices of
how to vary the experimental inputs are made automatically
in order to maximise the desired output. This approach en-
ables huge increases in efficiency in optimisation and model
learning experiments, especially important when these exper-
iments are resource limited. In addition, automation also al-
lows for active feedback stabilisation of complex processes;
this is of particular benefit to high energy density and plasma
physics experiments, where many non-linear (and also of-
ten non-equilibrium) effects combine to determine the perfor-
mance of what is a nominally unpredictable process. Thought
must also be given to other factors that will determine optimal
data return; diagnostics used, signal-to-noise ratio achieved,
and experimental parameter space covered. Many diagnos-
tics have already been adapted for fast electronic readout!!'?,
however, challenges still remain in adapting x-ray or charged
particle imagers and similar detectors for both maximum flex-
ibility, as well as robustness to the harsh radiation and debris
environments of HEDP experiments - especially at multi-Hz
repetition rates.

This approach may be used to perform the following tasks:

e Optimisation: A function of experimental diagnostics
is used to calculate the ‘fitness’ which expresses how
closely measurements reflect the desired performance.
An iterative procedure is then performed to optimise
this fitness value by controlling experiment input pa-
rameters. This can be done with any optimisation pro-
cedure e.g. an evolutionary approach (i.e. genetic
algorithms‘“’lw’““), a numerical minimisation method
(e.g. Nelder-Mead'!#) or by Bayesian optimisation us-
ing a machine learned surrogate model!'>!1®. This ap-
proach can also be used to limit the parameter search
to satisfy some safety constraint, e.g. beam loss in a
particle accelerator'!'>. In general applying these ap-
proaches allows for rapid optimisation of experiments
in a far more efficient manner than human controlled
experiments - and produces much better results.

e Stabilisation: Active feedback can improve the stability
of experimental performance by rapidly controlling in-
put parameters to counteract oscillation or drifts in the
apparatus'!”. This is routinely performed to stabilise
component systems, such as alignment of laser beam
transport, but can also be applied to highly complex
and non-linear experimental phenomena, such as den-
sity limit disruptions in tokamaks using the predictions
of neural network!'8-120_ A stable output source then
allows for much better experimental or source applica-
tion outcomes.

e Model Inference: A Bayesian approach to statistical in-
ference and model validation requires incorporating ex-
periment uncertainties from diagnostic data in a rigor-
ous manner, accounting for correlations across all pa-
rameter spaces>’. This can lead not only to better es-
timates of the uncertainty, but the results of the infer-
ence can also dramatically change. Including this ap-
proach in real time in the data taking process can be
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FIG. 3. Integrating Information Sources in ICF Studies: Our understanding of ICF implosion physics is based on a combination of high-
volume, lower-fidelity simulation ensembles; sparse, difficult-to-diagnose experiments; and best-physics simulations that push the limits of
high-performance computing technology. Creating and synthesizing these data into an improved understanding of the physics will require
multiple new, complementary techniques from data science, uncertainty quantification (UQ) and artificial intelligence.

used to ensure that the experiment optimally constrains
the physical models under examination - getting the
most information per shot (as opposed to simply the
most neutrons/x-rays etc.).

Encoding the scientific goals into the algorithm making the
shot choice is just one of many challenges in automating high
repetition rate facilities. Not only the physics of interest, but
also the laser system and the target setup typically have in-
herent non-linearities that can make automating knowledge
extraction extremely challenging. Small changes in system
parameters (laser pulse width, shape, energy, focal spot con-
ditions, target thickness etc.) can lead to large changes in ex-
perimental outcomes - requiring very fine control of the entire
system. Thus the laser itself and the target must be modelled
alongside the physics of interest. This complex multi-modal
data must also be analysed as fast as the shot-rate to prevent
another bottleneck in the experimental loop. In addition per-
formance of diagnostics themselves might be impaired over
time (for example if exposed to large radiation fluxes), requir-
ing further modelling. The goal is for the Al to understand
the effect of these diagnosed (and potentially undiagnosed)
fluctuations in the system, rather than be confused by it. Hu-
man intuition risks misinterpreting evidence when many pa-
rameters are changing simultaneously. Finally, data archiving
from experiments will rapidly become a challenge. Signifi-
cant challenges in developing pipelines that can prevent data
bottlenecks will become important, i.e. the operating algo-
rithms may have to decide whether to record or destroy data

based on quality of inputs and outputs to avoid large amounts
of spurious and insignificant data occupying many TB of stor-
age systems. In summary there are two separate challenges
that should not be conflated. There is both a) the technical
challenge of delivering online feedback and real time data cu-
ration and b) the modelling problem of automating knowledge
extraction from the complex HEDP data. Researchers should
take care to identify what aspects of their specific scientific
problem fit into these two categories, and seek appropriate so-
lutions.

The computerised control of experimental parameters in-
creases the convenience for the experimental operators, al-
lows for automatic parameter scans and reduces the likeli-
hood of experimental errors. Enabling experiment automa-
tion requires considerable additional investment and effort in
the preparation of experimental apparatus and facilities. How-
ever, time and resources spent on this endeavour yield large
returns once the experiment is fully operational due to the in-
crease in efficiency and productivity.

POLICY PROPOSITIONS

To help the field take advantage of the aforementioned
new ways of using data, we make a series of suggestions for
how educational and research practices might be beneficially
changed.
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Education

With the changes in HEDP data acquisition rates and anal-
ysis that have been described in this article, it is important to
consider whether researchers who are new to the subject have
sufficient training in the topics we have discussed.

There are courses in most universities that attempt to teach
aspects of the subject; however they are not typically included
in the HEDP curriculum. At the time of the writing, only 3
of the 40 Plasma Physics PhD Projects, Programs and Schol-
arships listed on www.findaphd. com contain a data science
component.

While the subject is easily within reach for plasma physics
graduate students, the unfamiliarity with the Bayesian per-
spective, and the necessary jargon, render it more difficult
than necessary for a self-directed approach. We recommend
that, @ minima, a brief introduction®®38 be included in one
of the Advanced Courses, with the opportunity to take an
elective course on Bayesian analysis and Uncertainty Quan-
tification. Ideally, a Bayesian analysis module should be in-
cluded in future HEDP doctoral programmes, built from the
cases presented in this Perspective. In addition to includ-
ing data science in the general curriculum, existing certificate
programs focused on both fundamental ML techniques and
multi-disciplinary applications of data science could be lever-
aged by students and professionals alike. Conferences and
workshops like the International Conference on Data Driven
Plasma Science (which had its second meeting in 2019) and
the 2018 APS Mini-Conference on Machine Learning, Data
Science, and Artificial Intelligence in Plasma Research® have
flourished in the last few years, and these opportunities should
be extended to those studying/training.

For all other graduate students and researchers, a comple-
mentary approach should be taken, through targeted work-

shops and schools. We believe that because the field is de-
veloping very quickly, it is preferable to consider teaching
these topics as part of the existing HEDP workshops that have
been established over the last few years for those new to the
area. Topics should include Bayesian and frequentist statis-
tics comparisons, UQ, Markov chain Monte Carlo (MCMC),
surrogate building, deep neural nets, and optimization tech-
niques for a range of dimensional spaces. Such workshops
and meetings may also provide opportunities to engage the
general ML community. The HEDP community could also
entice ML researchers to collaborate in our field by presenting
or organizing focused sessions at ML conferences, releasing
datasets, exploring a ML challenge call focused on an applica-
tion in our field, and pursuing direct research collaborations.
Finally we would note that data science skill sets have broad
application both in other research areas, as well as in industry.
The proposed training is highly transferable and promises to
be valuable to students regardless of specific career goals.

Research Practices

The changing nature of the field means practices within the
field will also have to change. Researchers will need to be-
come familiar with methods needed to run large numbers of
simulations, and tools for storing larger amounts of data*®. In
particular, the field will have to develop data standards so that
data is easily compatible between different facilities. Adopt-
ing open data practices'%? (like F.A.LR., findability, accessi-
bility, interoperability, and reusability'?) wherever possible is
also likely to greatly aid collaboration and comparison of data
sets, although this will not be possible for all researchers in
this area. The importance of these approaches is already well
understood by researchers in other fields, for example high en-



ergy physics'? and astronomy'?*; we foresee a similar level
of data curation will soon be necessary in HEDP.

Many of the methods described in this paper require sig-
nificant computational resources and good synthetic diagnos-
tics, i.e., good simulations of what the data should look like
through the actual pipeline the real data goes through. While
most research efforts include a computational component,
these are often disjoint from the analysis of experimental data.
In future it is advisable for experimental time to also have
associated funding for computation and analysis, and the de-
velopment of synthetic diagnostics/data analysis. Diagnostics
and experiments should be designed so that collected data can
easily be used in conjunction with other shots (e.g. consistent
pixel sizes). It may even be necessary that the commissioning
of instruments comes with a corresponding budget to develop
tools to simulate data as seen by the device. Data analysis is
a core component of project commissioning and planning in
many other areas of physics (e.g. the Euclid telescope'?).

High data rates are permitting the probing of low signal-
to-noise phenomena e.g. possible beyond Standard Model
physics like axions. If laser based accelerators are to play a
role in the future of probing new physics in this way, then sta-
tistical analysis must be brought up to the same standards as
are practiced in High Energy Physics (HEP). In particular we
may wish to adopt stringent statistical significance require-
ments e.g. 50 for any discovery of beyond Standard Model
physics!'?6.  Similarly using blinding methods are likely to
become more necessary, where researchers deliberately hide
some aspect of the labelling of the data from themselves to
prevent subconscious bias or p-hacking!?’. Using a blinding
protocol does also present dangers and challenges; the com-
plexity and bespoke properties common in many laser-plasma
experiments make blinding difficult to implement. However,
high-rep rates will make blinding strategies much more vi-
able, and may help for analyses where particular outcomes
have high psychological significance and/or there are lots of
different potentially viable approaches to doing the analysis.

CONCLUSION

The volume of data on plasma physics at the extremes is
rapidly growing and offers the potential for dramatically in-
creased speed of scientific advance. These data are typically
multi-modal and describe very non-linear systems, making in-
terpretation challenging for humans, but tractable for Al algo-
rithms. Plasma physics is unlikely to reach the extremely high
data rates of HEP in the immediate future, and it is fully the
case that Al will not solve all problems in the field. Nonethe-
less, this new approach in the field offers novel ways of work-
ing, and new ways to gain insight - we hope practitioners in
the field will be able to find applicability for these methods in
their research, see Box 1.
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BOX 1
Key conclusions:

1. The application of machine learning and mod-
ern data science methods to extreme plasma
physics and HEDP is rapidly growing and is
aiding in producing realistic uncertainties on
predictions

2. Higher repetition rate facilities open up a range
of new ways of working; data driven discovery,
blinding methods, greater reproducibility, auto-
mated data taking

3. Integrating machine learning based approaches
into working practices can greatly save money,
time, and human effort

4. Al based tools are now often more successful at
optimising non-linear extreme physics systems
and comprehending multi-modal data than hu-
mans

Key recommendations:

1. Researchers should think carefully about how
to best use their data: what methods and diag-
nostics can they use to take the best data, get
sensible uncertainties, and coherently combine
with other data sets

2. Awards of experimental time and instrument
construction should also include greater support
for uncertainty quantification, building syn-
thetic diagnostics and data analysis

3. Plasma physics graduate education and national
lab training programmes begin to include basic
data science courses

4. Researchers should try where possible to prac-
tice open science best practice; making code
and data available publicly, using shared data
standards between different facilities

In conclusion, modern data science has a lot to offer ex-
treme plasma physics and HEDP science; the community
must act now to identify which areas it will make the biggest
impact in and make resources and training available to make
the most of these novel approaches.
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