Sandia
National
Laboratories

Exceptional

service
in the
national

interest

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 11823C

Advances in VT’s Load Balancing
Infrastructure and Algorithms

Team (alphabetically):

Jakub Domagala (NGA) Cezary Skrzynski (NGA)

Ulrich Hetmaniuk (NGA) Nicole Slattengren (SNL)
Jonathan Lifflander (SNL) Paul Stickney (NGA)

Braden Mailloux (NGA) Jakub Strzebonski (NGA)

Phil B. Miller (IC) Philippe P. Pébay (NGA)
Nicolas Morales (SNL)

NGA = NexGen Analytics, Inc
SNL = Sandia National Labs

e IC = Intense Computing
{©ENERGY MINSSH

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

What iS DARMA? @ Lﬁggﬁiﬁlﬂries

A toolkit of libraries to support incremental AMT adoption in production scientific applications

N I S

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime
DARMA/checkpoint Checkpoint Serialization & checkpointing library
DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis Python framework for simulating LBs and
Framework experimenting with load balancing strategies
DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates

serialization sanitization at runtime

DARMA Documentation: https.//darma-tasking.github.io/docs/html/index.html|

Sandia

Load Balancing R&D Lifecycle Lamorasories

= Application runs with VT runtime with designated phases and subphases
= VT exports LB statistics files containing object loads, communication, and mapping
= |BAF loads the statistics files, and simulates possible strategies

= |BAF analyzes the mapping and can produce a new mapping with an experimental LB
implemented in Python

= |BAF exports a new set of mapping files

" The application can be re-run with StatsMapLB to follow the LBAF-generated
mapping and measure the actual impact

= Process can be iterated, shortening LB development and tuning cycle

Sandia

Phase Management Limoratories

= A phase is a collective interval of time over all ranks that is typically synchronized

= |n an application, a phase may be a timestep

In VT parlance, a phase will often be a “collective epoch” under termination detection

Load balancing in VT fundamentally operates over phases

Sandia

Phase Management Limoratories

= Building general interface for general phase management

= Many components can naturally do things at phase boundaries
= |B
= Running a strategy (or several) and migrating objects accordingly
= Qutputting statistic files

= Tracing
= Specifying which phases traces should be enabled for which ranks
= Specifying phase intervals for flushing traces to disk

= Memory levels/high-water watermark for runtime/application usage
= Diagnostics

= Just finished developing a general diagnostic framework for performance counters/gauges of runtime
behavior (e.g., messages sent/node, bytes sent/node, avg/max/min handler duration)

= Checkpointing of system/application state
= Termination

= Recording state of epochs for debugging purposes

Sandia

Phase Management Limoratories

= A phase is a collective interval of time over all ranks that is typically synchronized
= |n an application, a phase may be a timestep
= |n VT parlance, a phase will often be a “collective epoch” under termination detection
= Load balancing in VT fundamentally operates over phases

= A phase can be broken down into subphases

= A subphase is typically a substructure within a phase of an application’s work that has further
synchronization

= (Creates vector representation of workload

= We have explored the idea of further ontological structuring for the purpose
enriching LB knowledge, but so far have only implemented phases and subphases

Sandia

EMPIRE Load Structure — Phases, Subphases, Iterations Leberacories

1

i

L P

B s

o

I

a
Pliliitiiieiis

MILIIMII”'“”Imlgllhllllllnm,I'lhhl;h‘lll‘_

L VR P

,“'|””|||I""“|||IH||”""I-!'
it i

i

R

I

I

|‘_|[”“;”‘“_||1H-1|I|.I|n_l|~n'

|

I T e e e
g

I

I v g g
R T e e R T B R
Ui R G s T S T

“|||l.||||1|||.||”||I|”|'|I-'||-l|||,|ll..||.||,.|||'|.|.v-.

l:\lmlJ,J.HHHHH\'H

Subphase Vector Loads

t = Z ts ts = Max Wy = L: RV*S
P
s

Total Subphase X Object
Time Times Loads

1

1l

e

IR

“Inlll,JthH'Jl_l{ll”“;A|.|“.;||||In_l

1553151545
|
LR T N L T

|

A: BP)(N

Object
Assignments

Sandia
National _
Laboratories

Objective Function:

min t
A

Sandia

Subphase Vector Loads Laboratories

= From 0-1 optimization to smaller Integer Program optimization

A: BPXN =le = M: NV
Object Object
Assignments Mappings
= Replace ts= max Wy with ‘g[ts > Wy | to (partially) linearize

= Plug this in to standard solvers

= Possibly MPI-based for live use!

Sandia

Load MOdEIing National

Laboratories

= When a selected strategy runs after a phase completes, it has access to data from
the application’s execution

= |oad models provide a novel mechanism for manipulating how the load balancer
observes instrumented data from phases and subphases, past and future

= The most basic, naive model would read raw instrumented data and assume it persists to the
next phase/subphase to perform task assignment calculations for the subsequent phase

= Explicit embodiment of “principle of persistence”
= Offers configuration, alternatives
= Composable functions, easy extension

= Can also map vector of per-subphase data to scalars for current strategies

Load Modeling

struct PhaseOffset {
int phases;

static constexpr unsigned int NEXT PHASE = 0;

unsigned int subphase;

static constexpr unsigned int WHOLE PHASE = ~0u;

J

class LoadModel {
virtual TimeType get\Work(
ElementIDType object,
PhaseOffset when
) =0;
I ...
I3

Default:

NaivePersistence . Norm(1) . RawData

Load Model
Utilities

LoadModel

ComposedModel

RawData

Transformers

SelectSubphases

CommOverhead

PerCollection

Predictors

NaivePersistence

PersistenceMedianLastN

LinearModel

MultiplePhases

Description

Pure virtual interface class, which the
following implement

A convenience class for most implementations
to inherit from, that passes unmodified calls
through to an underlying model instance

Returns historical data only, from the
measured times

Transforms the values computed by the
composed model(s), agnostic to whether a
query refers to a past or future phase

When asked for a WHOLE_PHASE value,
computes a specified l-norm over all
subphases

Filters and remaps the subphases with data
present in the underlying model

Adds a specified amount of imputed 'system
overhead' time to each object's work based on

the number of messages received

Maintains a set of load models associated with
different collection instances, and passes
queries for an object through to the model
corresponding to its collection

Computes values for future phase queries, and
passes through past phase queries

Passes through historical queries, and maps all
future queries to the most recent past phase

Similar to NaivePersistence, except that it
predicts based on a median overthe N most
recent phases

Computes a linear regression over on object's
loads from a number of recent phases

Computes values for future phases based on
sums of the underlying model's predictions for
N corresponding future phases

Reference

(dh)

Sandia
National _
Laboratories

Load Balancing Strategies

Load Balancer
RotatelLB

RandomLB

GreedyLB

GossipLB

HierarchicalLB

ZoltanLB

StatsMaplLB

Type
Testing

Testing

Centralized

Distributed

Hierarchical

Hyper-graph

Partitioner

User-specified

Description
Rotate objects in aring

Randomly migrate object
with seed

Gather to central node
apply min/max heap

Gossip-based protocol for
fully distributed LB

Build tree to move objects
nodes

Run Zoltan in hyper-graph
mode to LB

Read file to determine
mapping

Reference

vt::vrt::collection::1lb::ZoltanlLB

(dh)

Sandia
National
Laboratories

Sandia

Conclusions and Future Work o fes

= |ncrease expressiveness of load data
= Shorten LB development and tuning cycles
= |mprove abstractions in real implementations

= Formalize time-vector balancing challenge

= Can actually try out dedicated solvers and general heuristics

