
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Advances in VT’s Load Balancing
Infrastructure and Algorithms

Jakub Domagala (NGA)
Ulrich Hetmaniuk (NGA)
Jonathan Lifflander (SNL)
Braden Mailloux (NGA)
Phil B. Miller (IC)
Nicolas Morales (SNL)

Cezary Skrzynski (NGA)
Nicole Slattengren (SNL)
Paul Stickney (NGA)
Jakub Strzeboński (NGA)
Philippe P. Pébaÿ (NGA)

Team (alphabetically):

NGA = NexGen Analytics, Inc
SNL = Sandia National Labs
IC = Intense Computing

SAND2020-11823C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis

Framework
Python framework for simulating LBs and
experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates
serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications

Load Balancing R&D Lifecycle

 Application runs with VT runtime with designated phases and subphases
 VT exports LB statistics files containing object loads, communication, and mapping
 LBAF loads the statistics files, and simulates possible strategies

 LBAF analyzes the mapping and can produce a new mapping with an experimental LB
implemented in Python

 LBAF exports a new set of mapping files

 The application can be re-run with StatsMapLB to follow the LBAF-generated
mapping and measure the actual impact

 Process can be iterated, shortening LB development and tuning cycle

Phase Management

 A phase is a collective interval of time over all ranks that is typically synchronized
 In an application, a phase may be a timestep
 In VT parlance, a phase will often be a “collective epoch” under termination detection
 Load balancing in VT fundamentally operates over phases

 A phase can be broken down into subphases
 A subphase is typically a substructure within a phase of an application’s work that has further

synchronization
 Creates vector representation of workload

 We have explored the idea of further ontological structuring for the purpose
enriching LB knowledge, but so far have only implemented phases and subphases

Phase Management

 Building general interface for general phase management
 Many components can naturally do things at phase boundaries

 LB
 Running a strategy (or several) and migrating objects accordingly
 Outputting statistic files

 Tracing
 Specifying which phases traces should be enabled for which ranks
 Specifying phase intervals for flushing traces to disk

 Memory levels/high-water watermark for runtime/application usage
 Diagnostics

 Just finished developing a general diagnostic framework for performance counters/gauges of runtime
behavior (e.g., messages sent/node, bytes sent/node, avg/max/min handler duration)

 Checkpointing of system/application state
 Termination

 Recording state of epochs for debugging purposes

Phase Management

 A phase is a collective interval of time over all ranks that is typically synchronized
 In an application, a phase may be a timestep
 In VT parlance, a phase will often be a “collective epoch” under termination detection
 Load balancing in VT fundamentally operates over phases

 A phase can be broken down into subphases
 A subphase is typically a substructure within a phase of an application’s work that has further

synchronization
 Creates vector representation of workload

 We have explored the idea of further ontological structuring for the purpose
enriching LB knowledge, but so far have only implemented phases and subphases

EMPIRE Load Structure – Phases, Subphases, Iterations

Subphase Vector Loads

� 1 � 2 � 3 � 4 � 5

� = ��

� ×� Object
Loads

Object
Assignments

Objective Function:

Total
Time

Subphase
Times

Subphase Vector Loads

 From 0-1 optimization to smaller Integer Program optimization

 Replace with to (partially) linearize

 Plug this in to standard solvers
 Possibly MPI-based for live use!

� �� = 1�⟺� � = �

Object
Assignments

Object
Mappings

Load Modeling

 When a selected strategy runs after a phase completes, it has access to data from
the application’s execution

 Load models provide a novel mechanism for manipulating how the load balancer
observes instrumented data from phases and subphases, past and future
 The most basic, naïve model would read raw instrumented data and assume it persists to the

next phase/subphase to perform task assignment calculations for the subsequent phase
 Explicit embodiment of “principle of persistence”
 Offers configuration, alternatives
 Composable functions, easy extension

 Can also map vector of per-subphase data to scalars for current strategies

Load Modeling

struct PhaseOffset {
 int phases;
 static constexpr unsigned int NEXT_PHASE = 0;
 unsigned int subphase;
 static constexpr unsigned int WHOLE_PHASE = ~0u;
};

class LoadModel {
 virtual TimeType getWork(
 ElementIDType object,
 PhaseOffset when
) = 0;
 // ...
};

Default:

NaivePersistence . Norm(1) . RawData

Load Balancing Strategies

Conclusions and Future Work

 Increase expressiveness of load data
 Shorten LB development and tuning cycles
 Improve abstractions in real implementations
 Formalize time-vector balancing challenge

 Can actually try out dedicated solvers and general heuristics

