

SMART-CS Initiative

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

Realtime forecasting of CO₂ flow using variational autoencoder with ensemble-based data assimilation

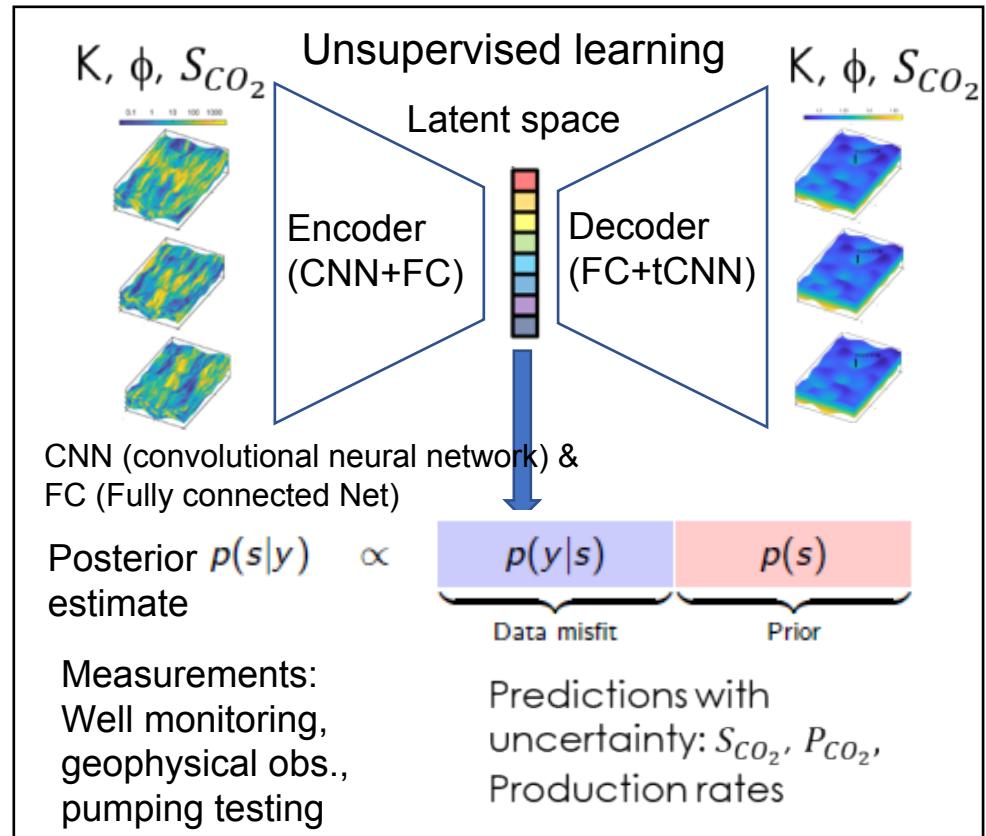
Task 4

Teams: Hongkyu Yoon (Sandia Lab) & Jonghyun Harry Lee (U of Hawaii at Mānoa)

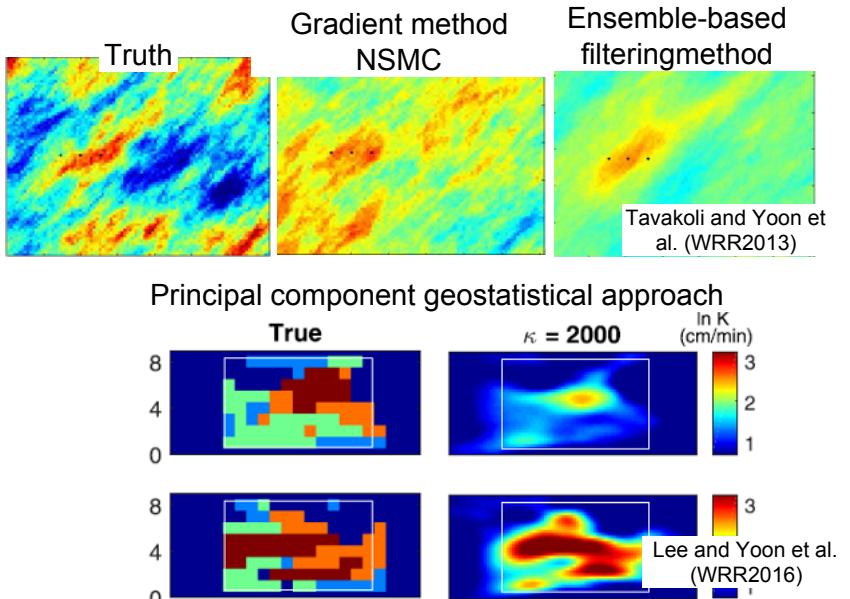
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Motivation for Deep Learning Based Approach

Machine learning-driven CO_2 modeling by combining a variational autoencoder (VAE) with ensemble-based data assimilation (EnDA), resulting in real-time history matching of CO_2 operations and forecasting CO_2 and pressure plume development



History matching/Data Assimilation



Challenges: high-dimension problems
- Computational burdens with matrix calculations & # of forward model runs

Variational AutoEncoder-based Inversion

Deep Learning-based nonlinear projection approach to accelerate the stochastic inversion. We use VAE and its decoder to map the permeability k to the latent vector z whose dimension is much smaller than the original dimension of k while ensuring a good approximation accuracy.

Forward problem: $y = \mathbf{G}(m)$ with l Gauss Newton iterations at convergence from $m^0 = m_{prior}$

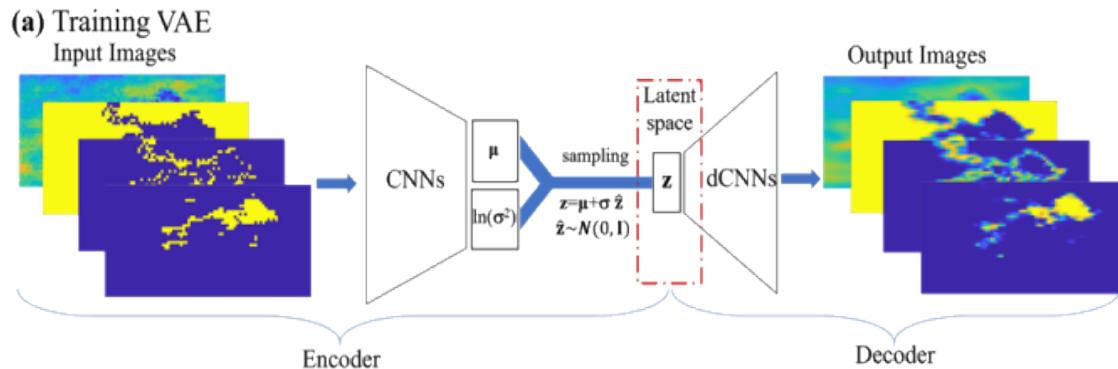
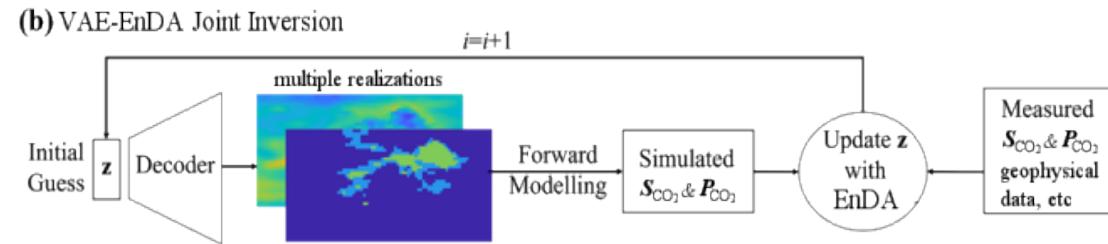
m_{best}

$$= m^l - m^0 + \mathbf{C}_{prior} \mathbf{J} (\mathbf{J} \mathbf{C}_{prior} \mathbf{J}^T + \mathbf{C}_{obs})^{-1} (y - \mathbf{G}(m^l) + \mathbf{J}(m^l - m^0))$$

With any (nonlinear) dimension reduction \mathbf{G} of m
 $y = \mathbf{G}(\mathbf{D}(z))$, $\dim(z) \ll \dim(m)$

z_{best}

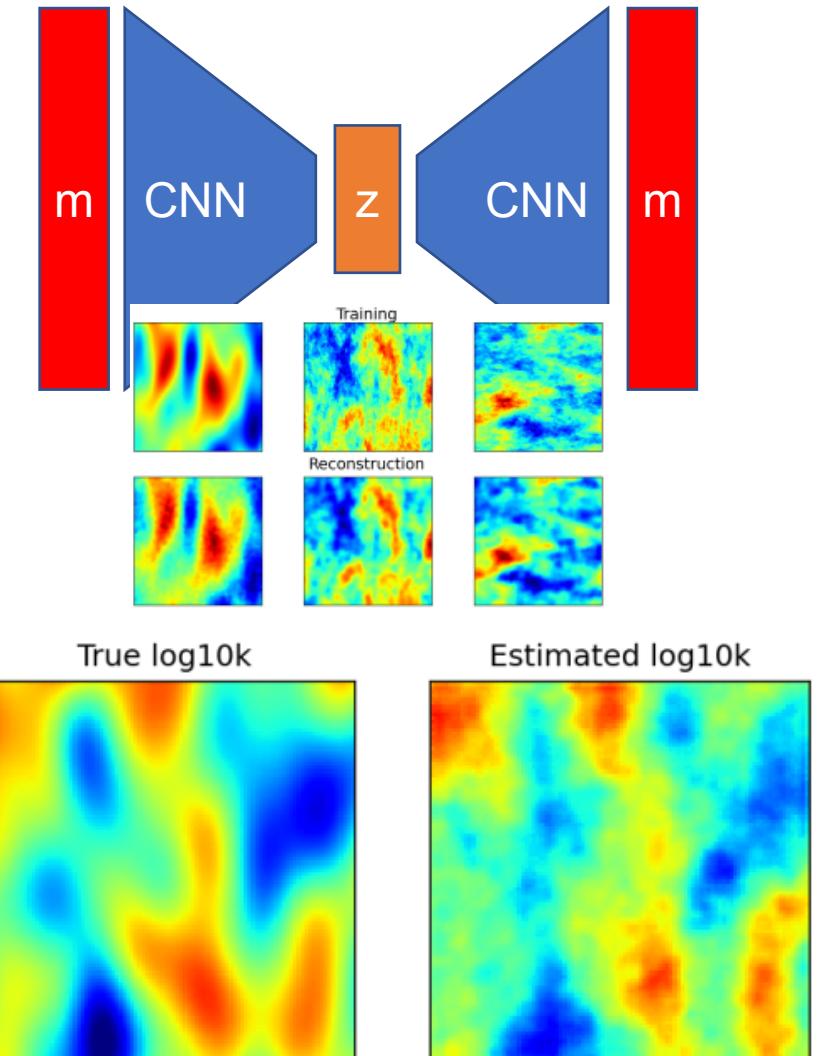
$$= (1 - \alpha)z^l + \alpha \mathbf{C}_{prior_z} \mathbf{J}_z (\mathbf{J}_z \mathbf{C}_{prior_z} \mathbf{J}_z^T + \mathbf{C}_{obs})^{-1} (y - \mathbf{G}(\mathbf{D}(z^l)) + \mathbf{J}z^l)$$



(a) Variational autoencoder constructs a generative model (decoder) for probable permeability fields and CO_2 saturation. (b) Latent space “ z ” obtained by VAE, i.e., deep learning-based encoder will be updated in EnDA-based methods for data assimilation with various measured data.

Preliminary Work

- Use VAE to construct data-driven nonlinear dimension reduction model
 - Only require “dim(z)” forward model executions at each iterations instead of dim(m) or dim(obs)
 - Can encode prior beyond Gaussian
- A nonlinear tomography problem:
 - 10,000 (100x100) unknown $k \Rightarrow z$ with 32 latent dimension
 - 30 noisy observations
 - **33** forward model runs/iteration to construct Jacobian



Ongoing Progress

- Inversion with multi-phase flow modeling examples (2D case first)
- Extension to Data Assimilation with Task 4 problems
- Reduced Order Model (ROM) for particle filtering-type DA - Latent-space-based ROM
- Physics-informed NN approximation to multiphase flow models
 - Physics-based loss function with various DL architecture
 - Physics-informed NN construction for large scale reservoir models

