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Machine learning-driven CO2 modeling by combining a variational autoencoder (VAE) with 
ensemble-based data assimilation (EnDA), resulting in real-time history matching of CO 2 
operations and forecasting CO2 and pressure plume development 

Motivation for Deep Learning Based Approach
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Challenges:  high-dimension problems
 - Computational burdens with matrix 
   calculations & # of forward model runs
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Deep Learning-based nonlinear projection approach to accelerate the stochastic inversion. 
We use VAE and its decoder to map the permeability k to the latent vector z whose 
dimension is much smaller than the original dimension of k while ensuring a good 
approximation accuracy.

Variational AutoEncoder-based Inversion
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(a) Variational autoencoder constructs a generative model 
(decoder) for probable permeability fields and CO2 
saturation. (b) Latent space “z” obtained by VAE, i.e., deep 
learning-based encoder will be updated in EnDA-based 
methods for data assimilation with various measured data.



Preliminary Work
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• Use VAE to construct data-driven nonlinear dimension 
reduction model
• Only require “dim(z)” forward model executions at each 

iterations instead of dim(m) or dim(obs)

• Can encode prior beyond Gaussian

• A nonlinear tomography problem:
• 10,000 (100x100) unknown k => z with 32 latent dimension
• 30 noisy observations 
• 33 forward model runs/iteration to construct Jacobian
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Ongoing Progress
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• Inversion with multi-phase flow modeling examples 
(2D case first)

• Extension to Data Assimilation with Task 4 problems
• Reduced Order Model (ROM) for particle filtering-

type DA - Latent-space-based ROM
• Physics-informed NN approximation to multiphase 

flow models
• Physics-based loss function with various DL architecture
• Physics-informed NN construction for large scale reservoir 

models
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