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Sandia

Motivation for Deep Learning Based Approach National
Laboratories

Machine learning-driven CO, modeling by combining a variational autoencoder (VAE) with
ensemble-based data assimilation (EnDA), resulting in real-time history matching of CO,
operations and forecasting CO, and pressure plume development

History matching/Data Assimilation

Gradient method Ensemble-based
NSMC _ filteringmethod
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Measurements: Predictions with Challenges: high-dimension problems
Well monitoring, Aainty: . : .
geophysical obs.. uncertainty: Sco,. Pco,, - Computational burdens with matrix
Productionraies calculations & # of forward model runs
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Variational AutoEncoder-based Inversion

Deep Learning-based nonlinear projection approach to accelerate the stochastic inversion.
We use VAE and its decoder to map the permeability k to the latent vector z whose
dimension is much smaller than the original dimension of k while ensuring a good

approximation accuracy.

Forward problem: y = G(m) with | Gauss Newton iterations
at convergence from m° = my;;,,

Mpest

(a) Training VAE
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Output Images
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(a) Variational autoencoder constructs a generative model
(decoder) for probable permeability fields and CO,
saturation. (b) Latent space “z” obtained by VAE, i.e., deep
learning-based encoder will be updated in EnDA-based
methods for data assimilation with various measured data.

= (1 = 2" +aCprior,J (1 Cprior, 3 + Cobs) (v = G (D(z1)) +Jz!)

& L} U.S. DEPARTMENT OF
ol !




. . Sandia
Preliminary Work @ National
Laboratories
e Use VAE to construct data-driven nonlinear dimension

reduction model

* Only require “dim(z)” forward model executions at each
iterations instead of dim(m) or dim(obs)

* Can encode prior beyond Gaussian

* A nonlinear tomography problem: e loa10k E5t|mated oa10k
* 10,000 (100x100) unknown k => z with 32 latent dimension . "

* 30 noisy observations

* 33 forward model runs/iteration to construct Jacobian 1
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Ongoing Progress

Sandia

* Inversion with multi-phase flow modeling examples
(2D case first)

e Extension to Data Assimilation with Task 4 problems

 Reduced Order Model (ROM) for particle filtering-
type DA - Latent-space-based ROM

* Physics-informed NN approximation to multiphase
flow models
* Physics-based loss function with various DL architecture

* Physics-informed NN construction for large scale reservoir
models

National
Laboratories
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