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Model Setup: 3D Toy Problem [Task 5]
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Model Architectures
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(example) Total params: 47,445 ; Trainable params: 47,445

(example) Total parameters: 103,302 ; Trainable params: 103,302

• Model for spatio-temporal data (Pressure & Saturation)
• Base architectures: Convolutional Neural Network (CNN)-LSTM (long short term 

memory)
• Encorder-decorder with CNN-LSTM-CNN
• “TimeDistributed” layer in Keras to reduce the number of trainable parameters by 

sharing weights for time-series data
• Model for temporal data (Production rate)

• Base architectures: Convolutional Neural Network (CNN)-LSTM (long short term 
memory)

• CNN-LSTM
• “TimeDistributed” layer in Keras

• Key hyperparameters
• The number of CNN layers (3 or 4)
• The number of filters, filter size, stride, activation function, etc
• The number of stacked LSTM units (0-3)
• The size of hidden units in the LSTM layer (1-32)
• Dense layer before the LSTM unit
• Skip connections (easy to mitigate the vanishing gradient issue)
• Loss function of the binary map of Saturation (binary crossentropy) to capture sharp 

interface of Saturation profile

Loss = Mean Squared Error 
+   * Binary Crossentropy
      ( : weight)

Loss = Mean Squared Error



Results: Training, Validation, Testing

• Training (19 simulation data)
• Tesla V100-SXM3-32GB GPU (Linux)
• Quadro P4000 Windows Desktop
• 15-20min training time for each target 

quantity (P, S, PR)
• Actual training time: 15-25ms/epoch, so 

mostly data loading and saving time

• Validation & Testing (5 & 3 simulation 
data)
• Trained model selected based on 

validation loss (validation data was not 
used during training)

Without  binary loss

Note: The total loss of saturation with the binary loss case is higher than 
one without binary loss due to the additional loss. 
• Binary loss increased learning efficiency (nearly flat after ~500 epochs)
• Actual performance of saturation prediction is better with binary loss

With binary loss



Results: Testing (3 cases)
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Future Work
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Thank you!

• Computationally efficient CNN-LSTM architecture has been implemented
• Automatic hyperparameter optimization will be feasible (e.g., Sherpa or Grid-Search)
• Scalability for large problems

• Physics-based Loss Function
• Binary loss function boosted learning efficiency and improved predictions using the Saturation model
• Flux based loss function can improve the model performance
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