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Model Setup: 3D Toy Problem [Task 5] National

Laboratories

3D Toy problem — Heterogeneous permeability
25x25%3 Permeability Porosity Pressure Saturation
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Four Inputs: k, ¢, Q;,;, a (active flow zone)
Three ML Models:
Pressure, Saturation, Production rate (PR)
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Model Architectures National
Laboratories
Model for spatio-temporal data (Pressure & Saturation) —_—
* Base architectures: Convolutional Neural Network (CNN)-LSTM (long short term convz | conv2o | convap conv2p | convap
memory)

Encorder-decorder with CNN-LSTM-CNN

“TimeDistributed” layer in Keras to reduce the number of trainable parameters by
sharing weights for time-series data

Model for temporal data (Production rate) (example) Total parameters: 103,302 ; Trainable params: 103,302
Base arc;ﬂtectures: Convolutional Neural Network (CNN)-LSTM (long short term Loss = Mean Squared Error
memory % o
CNN-LSTM + A Blna.ry Crossentropy
“TimeDistributed” layer in Keras (A: weight)

Key hyperparameters

The number of CNN layers (3 or 4)

The number of filters, filter size, stride, activation function, etc
The number of stacked LSTM units (0-3) coma Il coman

Conv2D LSTM LSTM LST™M

The size of hidden units in the LSTM layer (1-32)
Dense layer before the LSTM unit
Skip connections (easy to mitigate the vanishing gradient issue)

Loss function of the binary map of Saturation (binary crossentropy) to capture sharp (example) Total params: 47,445 ; Trainable params: 47,445

interface of Saturation profile
P Loss = Mean Squared Error
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Results: Training, Validation,
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National -
Laboratories

Testing

* Training (19 simulation data)
* Tesla V100-SXM3-32GB GPU (Linux)
* Quadro P4000 Windows Desktop

e 15-20min training time for each target
quantity (P, S, PR)

e Actual training time: 15-25ms/epoch, so
mostly data loading and saving time

e Validation & Testing (5 & 3 simulation
data)

* Trained model selected based on
validation loss (validation data was not
used during training)
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Note: The total loss of saturation with the binary loss case is higher than
one without binary loss due to the additional loss.

* Binary loss increased learning efficiency (nearly flat after ~500 epochs)

* Actual performance of saturation prediction is better with binary loss
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CMG Ground Truth, ML prediction, Difference I'aboratones
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Results: Testing (3 cases)
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Future Work @ National

Laboratories

 Computationally efficient CNN-LSTM architecture has been implemented

e Automatic hyperparameter optimization will be feasible (e.g., Sherpa or Grid-Search)
* Scalability for large problems

* Physics-based Loss Function

* Binary loss function boosted learning efficiency and improved predictions using the Saturation model
* Flux based loss function can improve the model performance

Thank you!
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