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* Probabilistic Framework for Model Calibration and Predictive Assessment
« Data, Models, Bayes’ Rule

* Practical Application
* Modeling the Covid-19 Epidemic
 Interatomic Potential Models for Binary Alloys
* Energy Exascale Earth System (E3SM) — Land Model Component

» Brief Description of Employment Opportunities at Sandia National Labs
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Motivation: Enable Predictive Simulations EEN
Theory (incomplete) Predictive Simulation
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Uncertainty Sources
* Model parameters * Model geometry/structure
 [|nitial/boundary conditions « Data noise
* Intrinsic stochasticity * Numerical errors, too




An Example Workflow
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Combine Models and Experiments in a Statistical )=,
Laboratories
Framework

_ Bayes’ rule:
Models (incomplete)
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« Update prior distribution/knowledge about
parameter Ato posterior distribution
given data ), using likelihood function

Lp(A) = P(AD)

 Data — measurements of some quantities
of interest

 Evidence — can be seen as a normalizing
term

Beam Profile Cameras —s




The prior distribution represents prior information ;) =,
about the inferred quantities
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Likelihood Prior
Posterior P et U
. P(DIA) P(A)
PAD) = ——5

N——

Evidence

x P(DIA)P(N)

« Based on prior data, literature, or expert opinion

* Prior distribution helps to keep inference well defined, e.g. if quantity
needs to remain positive

* If not much data available, posterior will be strongly influenced by the
prior

* When a lot of data available (and it is relevant to the model at hand),
data will have predominant influence on posterior

» Prior is both powerful and dangerous

« If no prior information is available, non-informative priors can be used

* e.g. uniform over some physical range




The likelihood function measures goodness-of-fit ™

Likelihood Prior
POStCI‘iOI‘ /—/H /—/\
o P(DIA) P(A)
P(\ND) =

N——

Evidence

~ P(D|N)P(N)

* The key component that connects the model inputs to measured Qols
« Statistical model to account for disagreement between model and data

* Common case is i.i.d. Gaussian measurement noise in each data
point

Lo() = PN = L oxp (_ $- (- f;-,u))?)

(2m)N/2gN —~ 2072

* If the model itself is uncertain, then the noise model needs to reflect
that
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The posterior contains updated knowledge about (s,
inferred parameters
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Likelihood Prior

Posterior —_—

o P(DIA) P(A)

PAD) = =g x PP
N——
Evidence

* Gives the inferred values of the parameters as well as their uncertainty
based on all sources of uncertainty
« The maximum value is referred to as the Maximum A Posterior
(MAP) value
« Posterior distribution generally not analytically tractable
« Commonly people resort to sampling approaches, e.g. Markov Chain
Monte Carlo to draw samples from this distribution
* Can be used to understand correlations between model
components
* Can be fed into other models to augment model predictions with
information extracted from data
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Probabilistic Framework for Model Calibration and Predictive
Assessment
« Data, Models, Bayes’ Rule

Practical Application
* Modeling the Covid-19 Epidemic
 Interatomic Potential Models for Binary Alloys
 Energy Exascale Earth System (E3SM) — Land Model Component

Brief Description of Employment Opportunities at Sandia National Labs




Characterization of Partially Observed Epidemics: =,
Application to Covid-19
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Infections map to epidemic via incubation

people T {(‘G) l /_\ Model:
A +  Symptomatic cases observed on a
Y certain day are a consequence of people
\ncubation T infected at various times coming out of
\nfection *['ﬁmr‘tﬂmﬁﬁ“- incubation and presenting symptoms
rate
Curee "~ [ Epidemic « The incubation period is drawn from
/ - curve COVID-19 incubation period distribution
S -~
At time

Characterization is the estimation of infection spread parameters using
daily counts of symptomatic patients. The method is designed to help
guide medical resource allocation in the early epoch of the outbreak.




Covid-19 Data
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Model Details-1

 Infection Rate curve modeled as a Gamma distribution with
unknown shape (k) and scale () parameters guosie:t
¢ -E‘lu')

InfR(t — to) ~ T(k, 1/6)

* Incubation Rate is modeled using a log-normal distribution
with parameters based on published results

= S‘amf‘toma.ﬂq

At time

IncR ~ Lognormal(u(1), 0(&2)*)

0= 1504...1.755
o =0.271...0.542

0.30 1

o
)
wn

Lauer et al, “The Incubation Period of Coronavirus Disease 2019
(COVID-19) From Publicly Reported Confirmed Cases: Estimation
and Application’ Annals of Internal Medicine, 2020

pdf(incubation)
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= People showing symptoms on day %, - convolution between infection rate and incubation rate
models

o

?’lzi(t(), Na k: 9151152) - N i fP(T _ tO; ka 1/9)fLN(tz — T, #(61)7 0-(52))d7_

to
= Back to Bayes’ theorem Fecple o ‘?‘3}
= /\
p(8|D) o< Lp(©) x p(©) -
lrite{.- E y S‘am#’m“hq
@ — {t(]a N; ]{7) ejv} ’//r/ it‘\ = time

€

= How do we model the discrepancy between the model and the data?




Approximations for the Discrepancy Between Data (7 &=,
and Models
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« Likelihood for fixed incubation model
« discrepancy approximated as independent daily Gaussian discrepancies

1 fo‘;’i_rn«'?Q
Lp = exp (_(y bei ) )

2 202
i=1 z ¢

 Likelihood for uncertain incubation model
Ny
Lp = || pi(yoss,il®)
1=1

« Looked at both additive and additive/multiplicative error models

T = Oq + Ty, X N

Negative binomial distributions, typically used in epidemiology did not yield
satisfactory results for regions with a large number of cases




Sampling the Joint Posterior Distribution )

« Sampling via Markov Chain Monte Carlo (MCMC)
* Model evaluations are cheap, about 5 min for 1 million samples on my laptop
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Predictive Assessment — Pushed and Posterior ) i,
Predictive Distributions
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Posterior predictive distributions

Ppp (n(pp)lp) = / p(n'PP|0©) p(0|D) dO.
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Results — Early Forecasts for CA
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=  This model captures stationary behavior. Any change in social dynamics will be observed approx. 5-

10 days later after the median incubation period.

=  The series of forecasts below for California show the impact of stay at home order issued on March

19 on “flattening the curve”
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« Black symbols show data used for model inference and to generate forecasts
* Red symbols display data observed after the forecast was produced



Results — New Mexico
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= Results used by the NM Department of Health to assess weekly trends
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« Black symbols show data used for model inference and to generate forecasts
* White circles display data observed after the forecast was produced
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Re-evaluate the Modeling Approach rh) e

= Lets try multiple infection curves
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Re-evaluate the Modeling Approach rh) e,

Lets try multiple infection curves
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decide on the appropriate model complexity via information criteria (with P. Blonigan, J. Ray)
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Probabilistic Framework for Model Calibration and Predictive
Assessment
« Data, Models, Bayes’ Rule

Practical Application
* Modeling the Covid-19 Epidemic
* Interatomic Potential Models for Binary Alloys
* Energy Exascale Earth System (E3SM) — Land Model Component

Brief Description of Employment Opportunities at Sandia National Labs




Other Applications — Modeling Interatomic ) i,
Potentials for Binary Alloys

Cu-Ni system

= Employ molecular dynamics simulations to
calibrate inter-atomic potentials for binary alloys &
designed for long-term nuclear waste storage
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Energy-Exascale Earth System Model (E3SM) ) e,
Land Component
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Understanding physical processes is
critical to understand the climate
feedbacks and their sensitivity to

uncertainties in parameters and
model structure

Calibration of ELM with GPP data, US-MOz site
L] . Fluxnet Data
— Frior
N Fosterior

1540

100

2.5

2000 2001 oz 2003 2004 2005 2006
Tirne

Gross Primary Production (GPP) at the
AmeriFlux Missouri Ozark site (US-MOz)

with K. Sargsyan (SNL), D. Ricciuto (ORNL) e
FASTMATH




E3SM Land Model - Impact of Calibration ) e,

Laboratories

« Calibrated PDF using 28 US sites, used for posterior prediction globally
* Predictions shown for one month (July 2001)
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Summary/Challenges/Work-in-progress

* High-dimensionality: large number of input parameters (10s-100s) and
computational expense
» surrogate models/reduced-order models
* hierarchy of model fidelities
« Data quality
* modeling approaches that can operate with incomplete or corrupted data
« Our understanding of physical processes is frequently incomplete

« design algorithms that can embed the discrepancy between models and data

inside the model and the carry it in subsequent analyses
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Probabilistic Framework for Model Calibration and Predictive
Assessment
« Data, Models, Bayes’ Rule

Practical Application
* Modeling the Covid-19 Epidemic
 Interatomic Potential Models for Binary Alloys
 Energy Exascale Earth System (E3SM) — Land Model Component

Brief Description of Employment Opportunities at Sandia National Labs




Sandia Has Two Main Locations: ) e
Albuquerque (NM) & Livermore (CA)

National Nuclear Security o Environmen tal
Administration labs

209

o
Science labs Q

Nuclear energy lab




Our Workforce

ular employees

porary employees, students
ostdoctoral appointees

~14,100 employees ) e,

R&D Tech Union

Management
8%

Other Exempt

Professions
Includes Business &
Operations

R&D Staff L/

Other Non-Exempt
Professions




Internships

Encourages qualified students to develop interests in critical skills areas related to
our mission, with the ultimate objective of developing our pipeline for our future.
Available for Summer, Year Round and Co-op.

Eligibility Criteria

Full-time enrollment status at an accredited school during the academic school year
Undergraduate equivalent of 12 hours per semester
Graduate equivalent of 9 hours per semester

Must have a minimum cumulative GPA of 3.0 on a 4.0 scale for Technical, R&D, and
Business interns; 2.5 on a 4.0 scale for Clerical and Labor interns

Have U.S. citizenship for positions that require a security clearance or as stated in the
job posting

At least 16 years of age

http://www.sandia.gov/careers/students_postdocs/internships/index.htmi




‘ Post-doc Opportunities

Key areas for post-docs at Sandia:

* Computer science/Computer Engineering * Physics

* Electrical Engineering * Chemistry/ Electro Chem

* Mechanical Engineering * Biosciences and biotechnology
* High-performance computing * Radiation & electrical sciences
* Microelectronics and microfluidics * Engineering sciences

* Nanotechnology * Pulsed power sciences

* Materials science & engineering

Eligibility Criteria

* Arecent PhD (conferred 5 years prior to employment) or the ability to complete all PhD
requirements before hire date.

http://www.sandia.gov/careers/students_postdocs/postdocs.html




Fellowship Opportunities

Sandia provides postdoctoral fellows with professional development opportunities and
prepares fellows to conduct independent, groundbreaking research.

Postdoctoral Fellowships

* Harry S. Truman Fellowship
* Jill Hruby Fellowship

* John Von Neumann

http://www.sandia.gov/careers/students_postdocs/fellowships/index.html




