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Operation of the (US) electric grid

Grid operations incorporate decision-making processes on time scales covering

12 orders of magnitude

— Individual energy system outcomes (e.g., operational hours, generation levels, and

revenue) determined through market interactions
— Multiscale energy markets drive power system economics
— IDAES is building and extending capabilities across these time scales
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Hierarchical Markets Example: California (CAISO)

Annual price distribution for 1-3pm
Data from http://oasis.caiso.com
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Energy system analysis capabilities are applied in isolation

Process-centric Modeling Scheduling with Time-Varying Prices
(and Uncertainty)
Detailed steady state or dynamic process models, Flour Mills: Ashok & Banerjee (2001), IEEE Tran. Power Sys.
with the grid modeled as an infinite capacity bus Air Separation: lerapetritou, Wu, Vin, Sweeney,

& Chigirinskiy (2002), IECR
Multiproduct Plant: Castro, Harjunkoski, & Grossmann (2011), CACE
Air Separation: Mitra, Grossmann, Pinto, & Arora (2012), CACE
Combined Heat Power Plant: Mitra, Sun, & Grossmann (2013), Energy
Air Separation: Zhang, Cremer, Grossmann, Sundaramoorthy,

& Pinto (2016), CACE

B2 Providing Ancillary Services
e Aluminum Smelter: Zhang & Hug (2015), IEEE PES ISGT
Air Separation: Zhang, Morari, Grossmann, Sundaramoorthy,
& Pinto (2016), CACE
: S Concentrated Solar Plant: Dowling, Tian, and Zavala. RSER 2017.
m . [ Steam Turbine Redox Flow Battery: Fares, Meyers, and Webber (2014), Applied Energy
= m:? Focoume =gy Aluminum Smelter: Zhang & Hug (2015), IEEE PES Gen. Meet.
i —t ] << - HVAC: Lin, Barooah, Meyn, & Middelkoop (2015), IEEE Trans. Smart Grid
https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config Dlstl"atlon DOWIlng & Zavala (2018), CACE
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Energy system analysis capabilities are applied in isolation

Grid-centric Modeling

Unit Commitment Modeling

Combined Cycle Units: Hua, Huang, Baldick & Chen (2020), IEEE Trans. Power Syst. Detailed power flow models,
MIP Formulations: Knueven, Ostrowski & Watson (2020). INFORMS Journal on with individual generators modeled as either
Computing dispatchable point sources or stochastic "negative loads"

DC/AC Optimal Power Flow (OPF)
FERC OPF Papers: O’'Neill, Castillo, et al. (2012-2013), FERC
Relaxation & Approximation: Molzahn & Hiskens (2019), Now Publishers.
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N-1/T-1 Security Constraints

LODF Calculation: Guo, Fu & Li (2009), IEEE Trans. Power Syst.

Constraint Filtering: Xavier, Qiu, Wang & Thimmapuam (2019), IEEE Trans. Power
Syst.
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Enhanced Ancillary Service Products
Flexible Ramp: Wang & Hobbs (2014), EPRS
Short-term Reserve: Wang & Chen (2020), IEEE Trans. Power Syst.

Stochastic Unit Commitment

Progressive Hedging: Cheung et. al (2015). Energy Systems

High Variability Renewables: Rachunok, Staid, Watson, Woodruff & Yang (2018).
PMAPS

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png
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Energy system analysis capabilities are applied in isolation

Process-centric Modeling

Detailed steady state or dynamic process models,
with the grid modeled as an infinite capacity bus

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config
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Grid-centric Modeling

Detailed power flow models,
with individual generators modeled as either
dispatchable point sources or stochastic "negative loads"

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png



Bridging timescales in IDAES enables unique analyses

High-Fidelity Process Modeling Integrated Resource-Grid Model Grid Modeling
Real-Time Market Loop Day-Ahead Market Loop
(1cycle = 1 hour) (1cycle = 1 day)
(i) Settle (a) Foreca
e $ = gt e N
i) Tt:ck ; :WTE:
e =
(i) Di spatc‘_l'i
4 -.I 1 l\:’]
https://www.netl.doe.gov/research/co;I};nergy—systems/gasifi:;tion/gasifipedia/igcc—config hitps://icseg. it llinois edu/files/2013/1E)/IEEE;?S ona

1. Elucidate complex relationships between resource dynamics and market
dispatch (with uncertainty, beyond price-taker assumption)

2. Predict the economic opportunities and market impacts of emerging
technologies (e.g., CoalFIRST, tightly-coupled hybrid energy systems)

3. Guide conceptual design & retrofit to meet current and future power grid needs
IDAES .




Modeling multiscale resource and grid decision-making

Real-Time Market Loop Day-Ahead Market Loop
(1 cycle =1 hour) (1 cycle = 1 day)
(iii) Settle (a) Forecas | NS
[e] —
(||) Track R (b) Bid , |[TEmm

(l) Dispatqo m (C) Clear

IDAES integrates detailed process models (b, ii) into the daily (a, c) and

hourly (i, iii) grid operations workflows
IDAES
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Price [$/MWh]

(b) Optimize Bid

Optimal Bid Curve on 5 p.m. Day 1
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(c) Clear Day-Ahead Market
min Z c? (1)

geg
“°' subject to
> (A9pY + BIuI) = D (2)
geyg

(w?,p?,¢?) e l?, VgeG.  (3)

1. Objective function (1) minimizes generation/system operation cost

2. Constraints (2) are the system operating constraints (load satisfaction, transmission thermal limits,
reserve requirements, etc.)

3. Constraints (3) are the technical limits/constraints and cost of operation c9 for schedule u9, p9, for each
generator. Variables u¥ are the “commitment” decisions for the generator (generally understood to be
discrete) and variables p9 are the “dispatch” decisions for the generator.

4. Prices are computed as the dual values of the system constraints (2) (requires relaxing and/or fixing

some discrete decisions).

IDAES .




(i) Clear Real-Time Market & Dispatch
miang (1)

9eg
Ry = ST subject to
> (A% + BIuI) =D (2)

geg
(u?,p?,¢”) €Y, Vg € G (3)
u? = u?, Vg e g. (4)

1. Same basic formulation as Day-Ahead market

2. Time discretization and horizon may be different

3. Data is updated with better forecasts

4. Discrete/commitment decisions are fixed; constraint (4)

5. Real-Time prices are the dual values of constraint (2)

IDAES
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(i) Track Market Dispatch

Health

Cost

Tracking

EE

l —

i
(% =
g2

(if) Track -=y-==-
i

chc(zt,ut, T, Yi) + Whlug — wp—1| + welug — Ul

-

VI

)

)

Aa)

I_I

-+

S

- <

Yy

~ 1l -

@
e
g9
S
o

v

@

=

|-

oo

e

@

Y

[

D

=

Total Power Output
. Generator Power Output

©
@
<
@
T _
£ o
o8
EE >
T o =
S S
QD mm
>
55 O S
» o
SO
e I -
s v ViV
%wnﬂ 5 R S re—t—
- |
(Z\\l..Ulll_Z_x_U
fwmmwr<_<_<_
S viviv & 83
+ Zi J ui VI VI VI
I 4 A A oW oso3

" WA

e P

latch

r

Re

/,W//w%u? %x%
Nxﬂﬂ/ AR
R

/ﬂ,ﬂﬂﬂﬂg%

/ SRR
SRR SRR

RN 4%4&%&%7
ay,ﬁf 4&%&%w,
e N

474&¢ ﬂﬁﬁf
&ﬂw
,,m.%,, ?
,aﬁﬁﬁﬁﬁﬁﬁy
Yl SRRNRERY
,,,,,%/
/
11111 TR
aaw%%%%%%y
RN NN
%
1--1///
NN

ﬂg@m

A

JI[65

[hir]

9
Time

m

12

IDAES



EEE
Real-Tl{P;lye;!\:Iﬂﬂ:gt Loop ( I I I ) S ettl e

Ly
el

mg = Z(At)ﬂ?‘qu? + Z(At)ﬂ'tRT (pg t —Pg, t)

my = ) (B0)pPArDl +Z(Ar)pf”"( -28)
t

Day-ahead energy price / dispatch: :rrt , pg ¢ Market revenue: m,,

Real-time energy price / dispatch: nf7, pgt Market cost (bid): ¢,

Day-ahead reserve price / dispatch: p !f?zq Total Profit: max{m, — c4, 0}

Real-time reserve price / dispatch: p&7, rgj'?{
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Modeling multiscale resource and grid decision-making

Real-Time Market Loop Day-Ahead Market Loop
(1 cycle =1 hour) (1 cycle = 1 day)
(iii) Settle (a) Forecas | NS
[e] —
(||) Track R (b) Bid , |[TEmm

(l) Dispatqo m (C) Clear

IDAES integrates detailed process models (b, ii) into the daily (a, c) and

hourly (i, iii) grid operations workflows
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Case study: optimize a single generator's bidding strategy

2020-07-10 - 2020-07-13

 Take a single generator in the RTS-GMLC test e GMLC Torsl Demand
case and allow it to optimize its bid curves = 7000 |
throughout the day. =
. : : — 6000
— Evaluate over a 4-day simulation period k=
m
"Bus 102 Steam 3" Generator £ 5000
O
i oMW £ 4000
e 32.6% efficient (full capacity) 2 | | | | |
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. * e 3 o° Time [Hr]
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IDAES Data: RTS-GMLC, https://github.com/GridMod/RTS-GMLC 0 2> 50 75 100 15
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"Bus 102 Steam 3" dispatch without reserves

Optimizing the bid curves for
"Bus 102 Steam 3" generator
causes only minor changes in

its

Price [$/MWh]

market dispatch schedule...
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What causes the price spike @ Hour 70 with optimized bids?

Bus 102 Steam 3
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There is a shortfall at Hour 70
(not enough generation)
causing the price spike.

Effects ripple through grid:
« Combined Cycle 1 plant at
Bus 118 is OFF in Day 3.
« Combined Cycle plants at
busses 221 and 321 are
dispatched at 100%.
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Take Away Message

A small change in the bid for a target thermal generator (Bus 102 Steam 3) only slightly
changes its dispatch schedule, but induces significant impacts on the entire
network, including unit commitment and market price changes.

Design and analysis of emerging flexible energy systems with dynamic operation must
capture interactions with the balance of the grid in order to accurately capture
economic impacts and rewards.

IDAES enables unique integrated multiscale analysis and the elucidation of the
complex interactions among individual generators through the electric grid markets.

Qualification:

These conclusions are based on a specific simulation using RTS-GMLC, a DOE/GMI
developed synthetic test case. RTS-GMLC is NOT intended to be a simulation of a real
grid in the U.S. and is known to have specific features that are not necessarily shared
by actual grid systems.

i . . . https://github.com/grid-parity-exchange/Prescient
IDAES  open-source grid modeling packages: https:/github.com/GridMod/RTS-GMLC
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