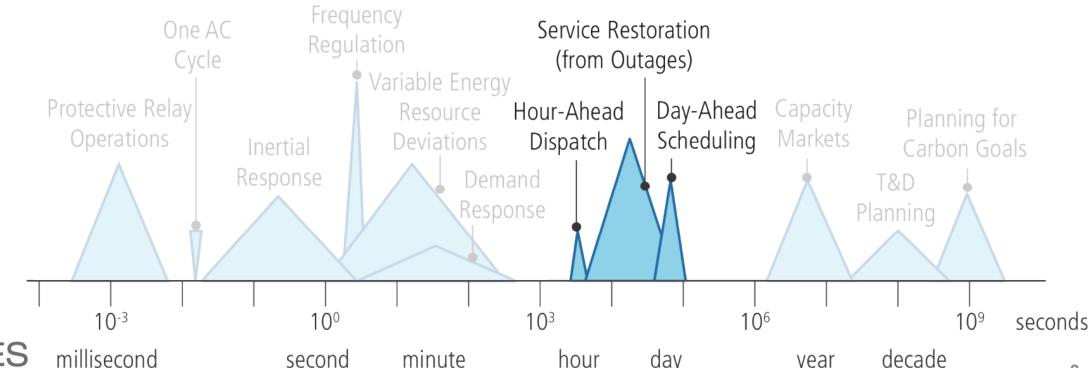


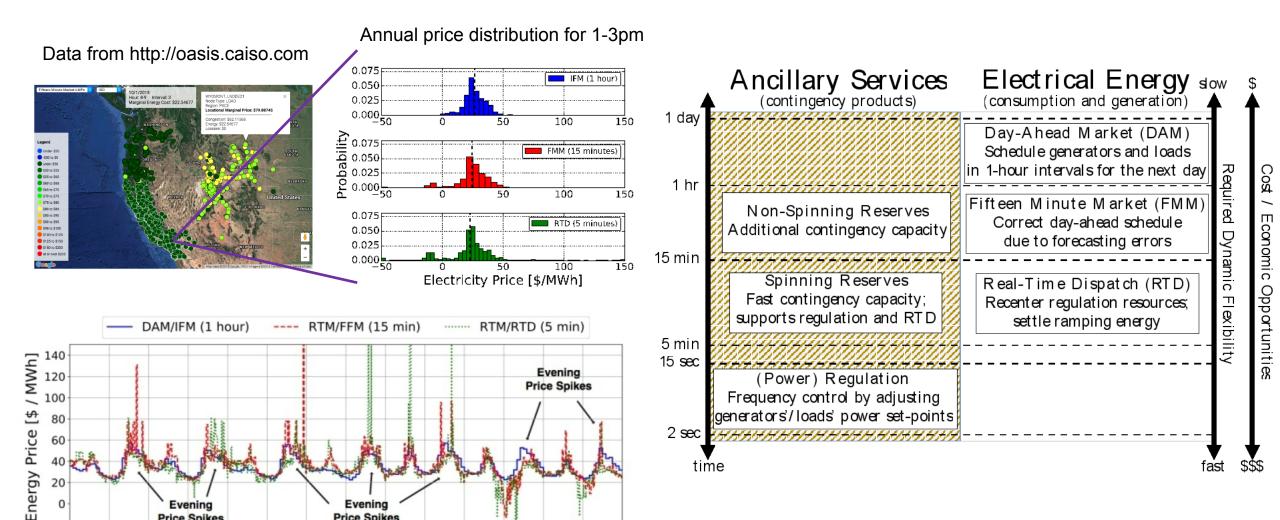
Multi-scale Simulation of Energy Systems-Electricity **Market Interactions**

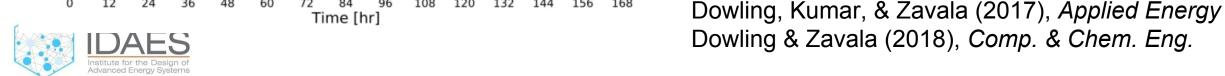
Xian Gao¹, Alexander W. Dowling^{1*}, Bernard Knueven², John D. Siirola³

¹ Dept. of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN ² Computational Science Center, National Renewable Energy Laboratory, Golden, CO ³ Center for Computing Research, Sandia National Laboratories, Albuquerque, NM adowling@nd.edu

> **INFORMS Annual Meeting, November 10, 2020** AIChE Annual Meeting, November 19, 2020




Operation of the (US) electric grid


Grid operations incorporate decision-making processes on time scales covering 12 orders of magnitude

- Individual energy system outcomes (e.g., operational hours, generation levels, and revenue) determined through market interactions
- Multiscale energy markets drive power system economics
- IDAES is building and extending capabilities across these time scales

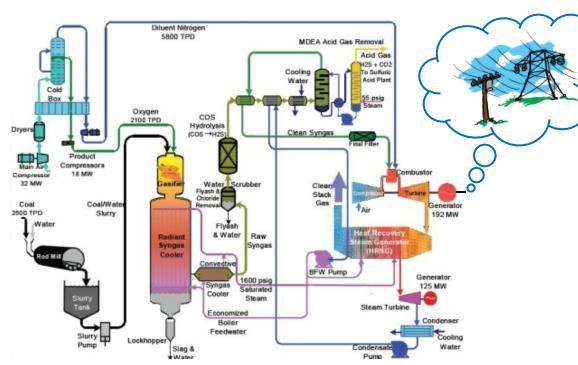
Hierarchical Markets Example: California (CAISO)

156

168

132

120


Price Spikes

Price Spikes

Energy system analysis capabilities are applied in isolation

Process-centric Modeling

Detailed steady state or dynamic process models, with the grid modeled as an infinite capacity bus

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config

Scheduling with Time-Varying Prices (and Uncertainty)

Flour Mills: Ashok & Banerjee (2001), IEEE Tran. Power Sys.

Air Separation: lerapetritou, Wu, Vin, Sweeney,

& Chigirinskiy (2002), IECR

Multiproduct Plant: Castro, Harjunkoski, & Grossmann (2011), CACE

Air Separation: Mitra, Grossmann, Pinto, & Arora (2012), CACE

Combined Heat Power Plant: Mitra, Sun, & Grossmann (2013), Energy

Air Separation: Zhang, Cremer, Grossmann, Sundaramoorthy,

& Pinto (2016), CACE

Providing Ancillary Services

Aluminum Smelter: Zhang & Hug (2015), IEEE PES ISGT

Air Separation: Zhang, Morari, Grossmann, Sundaramoorthy,

& Pinto (2016), CACE

Concentrated Solar Plant: Dowling, Tian, and Zavala. RSER 2017.

Redox Flow Battery: Fares, Meyers, and Webber (2014), Applied Energy

Aluminum Smelter: Zhang & Hug (2015), IEEE PES Gen. Meet.

HVAC: Lin, Barooah, Meyn, & Middelkoop (2015), IEEE Trans. Smart Grid

Distillation: Dowling & Zavala (2018), CACE

Energy system analysis capabilities are applied in isolation

Grid-centric Modeling

Unit Commitment Modeling

Combined Cycle Units: Hua, Huang, Baldick & Chen (2020), *IEEE Trans. Power Syst.*MIP Formulations: Knueven, Ostrowski & Watson (2020). *INFORMS Journal on Computing*

DC/AC Optimal Power Flow (OPF)

FERC OPF Papers: O'Neill, Castillo, et al. (2012-2013), FERC

Relaxation & Approximation: Molzahn & Hiskens (2019), Now Publishers.

N-1 / T-1 Security Constraints

LODF Calculation: Guo, Fu & Li (2009), IEEE Trans. Power Syst.

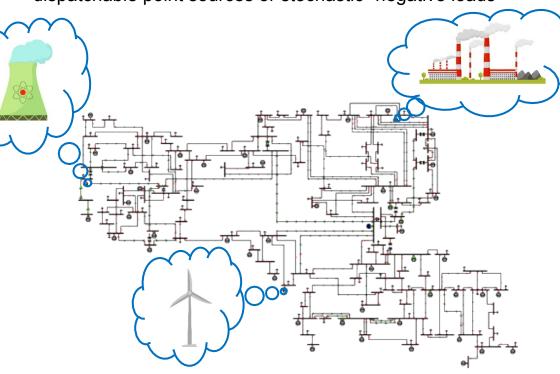
Constraint Filtering: Xavier, Qiu, Wang & Thimmapuam (2019), IEEE Trans. Power

Syst.

Enhanced Ancillary Service Products

Flexible Ramp: Wang & Hobbs (2014), EPRS

Short-term Reserve: Wang & Chen (2020), IEEE Trans. Power Syst.

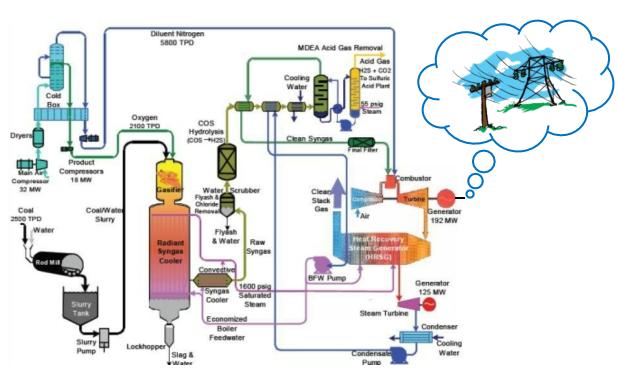

Stochastic Unit Commitment

Progressive Hedging: Cheung et. al (2015). Energy Systems

High Variability Renewables: Rachunok, Staid, Watson, Woodruff & Yang (2018).

PMAPS

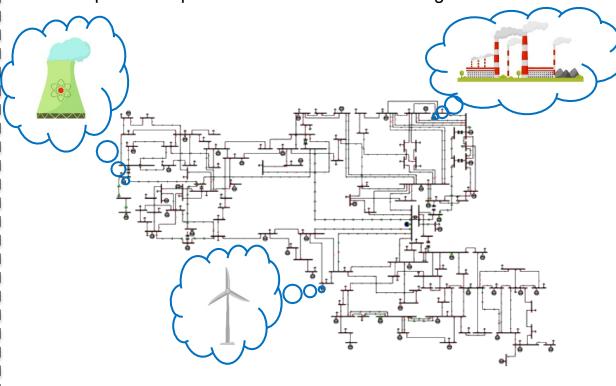
Detailed power flow models, with individual generators modeled as either dispatchable point sources or stochastic "negative loads"



Energy system analysis capabilities are applied in isolation

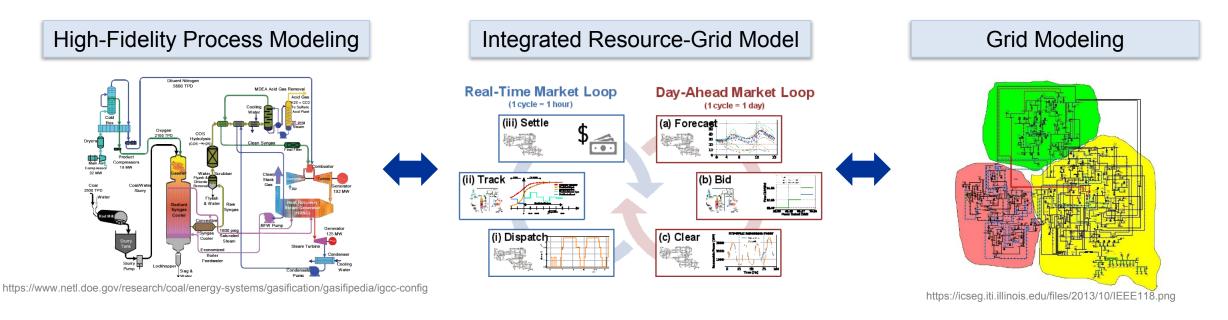
Process-centric Modeling

Detailed steady state or dynamic process models, with the grid modeled as an infinite capacity bus



https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config

IDAES Institute for the Design of Advanced Energy Systems

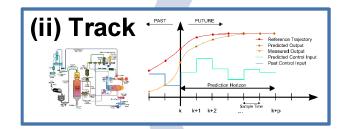

Grid-centric Modeling

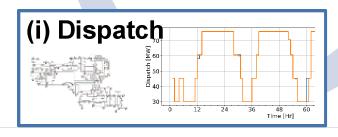
Detailed power flow models, with individual generators modeled as either dispatchable point sources or stochastic "negative loads"

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png

Bridging timescales in IDAES enables unique analyses

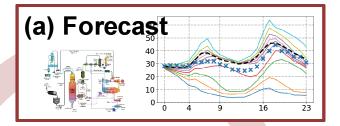
- 1. Elucidate complex relationships between resource dynamics and market dispatch (with uncertainty, beyond price-taker assumption)
- 2. Predict the economic opportunities and market impacts of emerging technologies (e.g., CoalFIRST, tightly-coupled hybrid energy systems)
- 3. Guide conceptual design & retrofit to meet current and future power grid needs

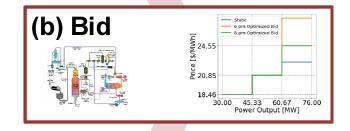

Modeling multiscale resource and grid decision-making

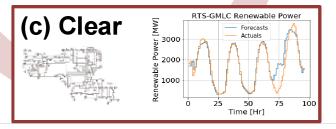

Real-Time Market Loop

(1 cycle = 1 hour)

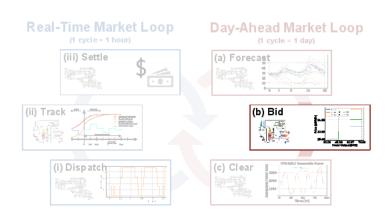
(iii) Settle

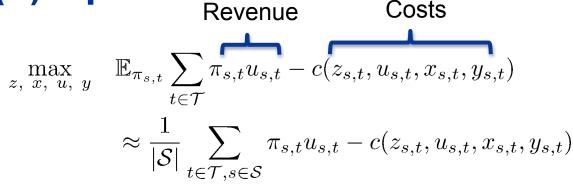


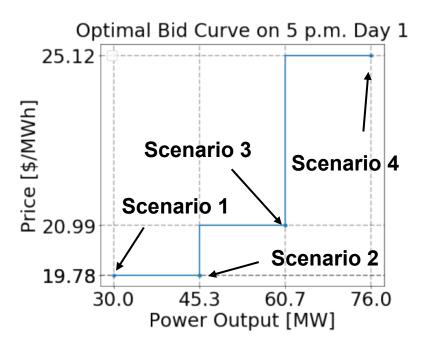




Day-Ahead Market Loop


(1 cycle = 1 day)





IDAES integrates detailed process models (b, ii) into the daily (a, c) and hourly (i, iii) grid operations workflows

(b) Optimize Bid

s.t.
$$Au_{s,t} + By_{s,t} \le 0$$
 Market rules, startup/shutdown limits

$$(u_{s,t} - u_{\bar{s},t})(\pi_{s,t} - \pi_{\bar{s},t}) \ge 0, \quad \forall s \in \mathcal{S}, \ \bar{s} \in \mathcal{S}, \ s \ne \bar{s}$$

$$z_{t+1} = f(z_t, x_t, u_{s,t})$$
 Dynamic or time-indexed $g(z_{s,t}, x_{s,t}, u_{s,t}) = 0$ Steady-state model

$$\frac{\Delta z}{\Delta x} \leq z_{s,t+1} - z_{s,t} \leq \Delta z$$

$$\underline{\Delta x} \leq x_{s,t+1} - x_{s,t} \leq \bar{\Delta x}$$

$$\underline{\Delta u} \leq u_{s,t+1} - u_{s,t} \leq \bar{\Delta u}$$
Ramping

$$\underline{z} \leq z_{s,t} \leq \bar{z}$$
 $\underline{x} \leq x_{s,t} \leq \bar{x}$ Bounds

- s price forecast scenario index
- t time index
- state variables
- x algebraic variables
- u control variables
- discrete variables
- electricity price parameter

Real-Time Market Loop (1 cycle = 1 hour) (iii) Settle (ii) Track (b) Bid (c) Clear

(c) Clear Day-Ahead Market

$$\min \sum_{g \in \mathcal{G}} c^g \tag{1}$$

subject to

$$\sum_{g \in \mathcal{G}} (A^g p^g + B^g u^g) = D \tag{2}$$

$$(u^g, p^g, c^g) \in \Pi^g, \ \forall g \in \mathcal{G}.$$
 (3)

- 1. Objective function (1) minimizes generation/system operation cost
- Constraints (2) are the system operating constraints (load satisfaction, transmission thermal limits, reserve requirements, etc.)
- 3. Constraints (3) are the technical limits/constraints and cost of operation c^g for schedule u^g , p^g , for each generator. Variables u^g are the "commitment" decisions for the generator (generally understood to be discrete) and variables p^g are the "dispatch" decisions for the generator.
- Prices are computed as the dual values of the system constraints (2) (requires relaxing and/or fixing some discrete decisions).

Real-Time Market Loop (1 cycle = 1 hour) (iii) Settle (ii) Track (b) Bid (c) Clear (c) Clear (d) Market Loop (1 cycle = 1 day) (ii) Dispatch (iii) Dispatch (c) Clear (d) Market Loop (1 cycle = 1 day)

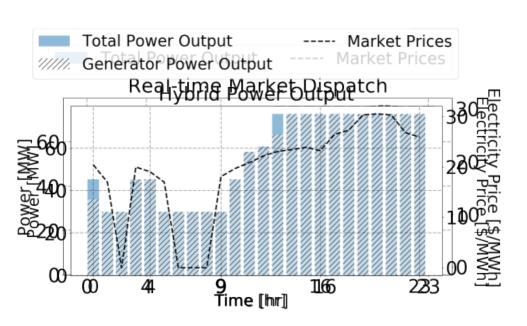
(i) Clear Real-Time Market & Dispatch

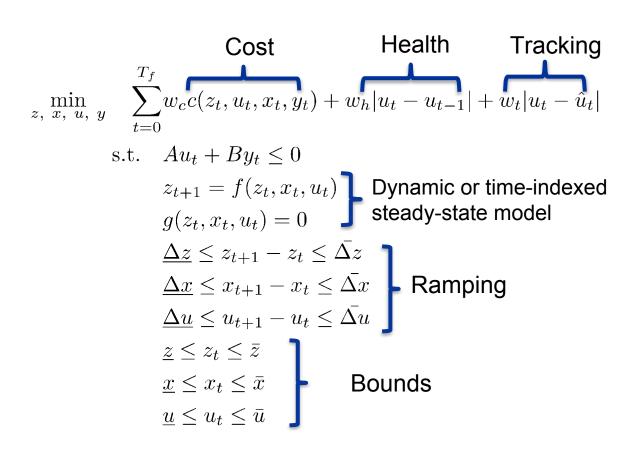
$$\min \sum_{g \in \mathcal{G}} c^g \tag{1}$$

subject to

$$\sum_{g \in \mathcal{G}} (A^g p^g + B^g u^g) = D \tag{2}$$

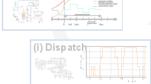
$$(u^g, p^g, c^g) \in \Pi^g, \ \forall g \in \mathcal{G}$$
 (3)

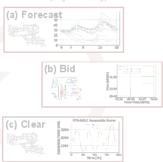

$$u^g = \hat{u}^g, \qquad \forall g \in \mathcal{G}.$$
 (4)


- 1. Same basic formulation as Day-Ahead market
- 2. Time discretization and horizon may be different
- 3. Data is updated with better forecasts
- 4. Discrete/commitment decisions are fixed; constraint (4)
- 5. Real-Time prices are the dual values of constraint (2)

Real-Time Market Loop (1 cycle = 1 hour) (iii) Settle (ii) Track (i) Disp atch (c) Clear

(ii) Track Market Dispatch





Day-Ahead Market Loop

(iii) Settle

$$m_{g}^{e} = \sum_{t} (\Delta t) \pi_{t}^{DA} p_{g,t}^{DA} + \sum_{t} (\Delta t) \pi_{t}^{RT} (p_{g,t}^{RT} - p_{g,t}^{DA})$$

$$m_g^r = \sum_t (\Delta t) \rho_t^{DA} r_{g,t}^{DA} + \sum_t (\Delta t) \rho_t^{RT} (r_{g,t}^{RT} - r_{g,t}^{DA})$$

$$m_g = m_g^e + m_g^r$$

Day-ahead energy price / dispatch: π_t^{DA} , $p_{a,t}^{DA}$

Real-time energy price / dispatch: π_t^{RT} , $p_{a,t}^{RT}$

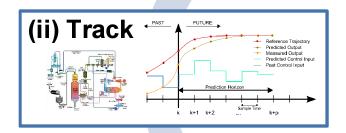
Day-ahead reserve price / dispatch: ρ_t^{DA} , $r_{a,t}^{DA}$

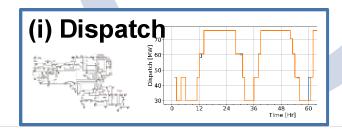
Real-time reserve price / dispatch: ρ_t^{RT} , $r_{a,t}^{RT}$

Market revenue: m_a

Market cost (bid): c_a

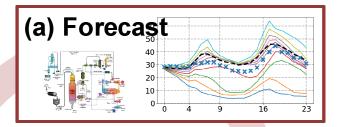
Total Profit: $\max\{m_a - c_a, 0\}$

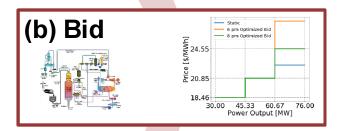

Modeling multiscale resource and grid decision-making

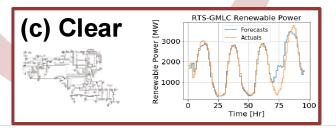

Real-Time Market Loop

(1 cycle = 1 hour)

(iii) Settle

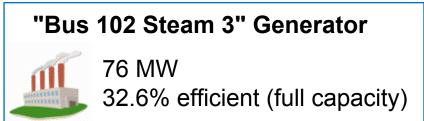


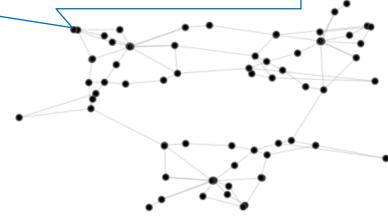




Day-Ahead Market Loop

(1 cycle = 1 day)

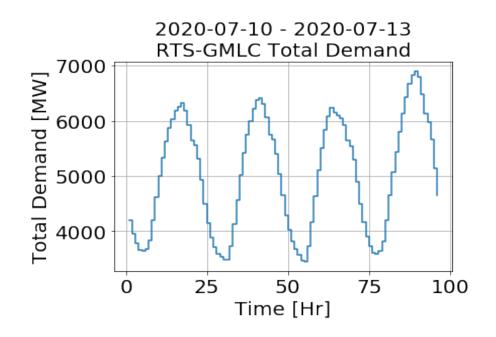


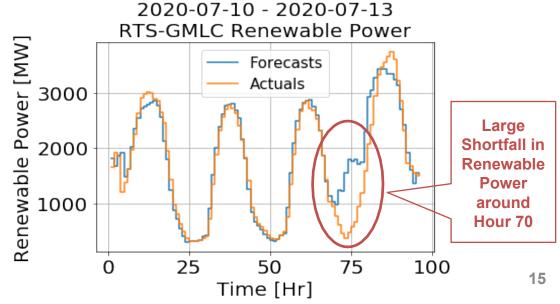


IDAES integrates detailed process models (b, ii) into the daily (a, c) and hourly (i, iii) grid operations workflows

Case study: optimize a single generator's bidding strategy

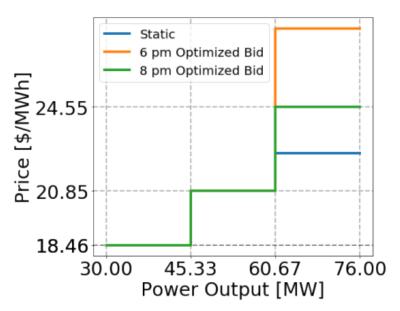
- Take a single generator in the RTS-GMLC test case and allow it to optimize its bid curves throughout the day.
 - Evaluate over a 4-day simulation period

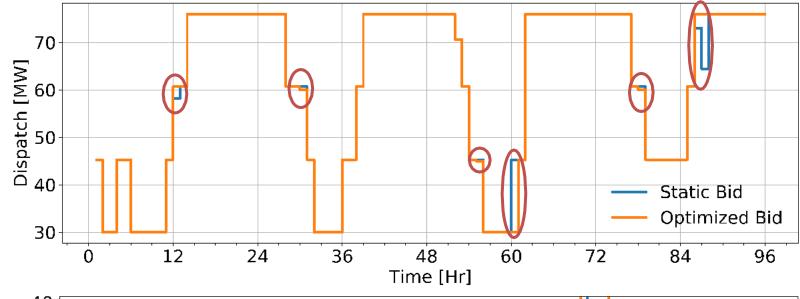


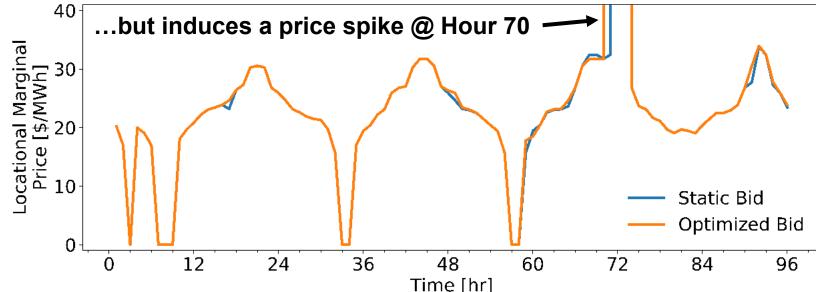


RTS-GMLC Test System

158 generators (42% dispatchable) 14,550 MW capacity (54% dispatchable)

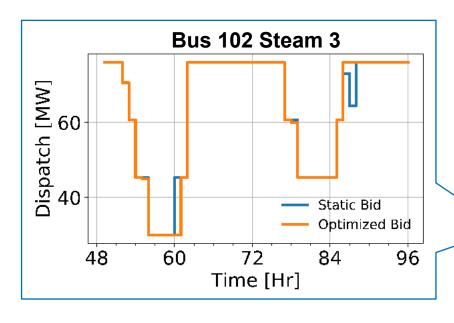

Data: RTS-GMLC, https://github.com/GridMod/RTS-GMLC

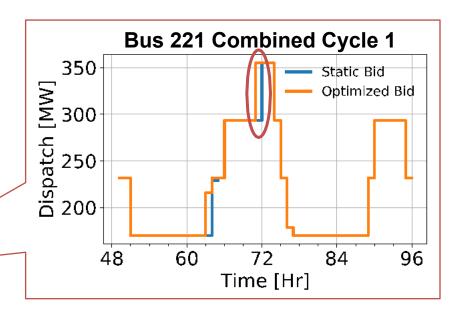


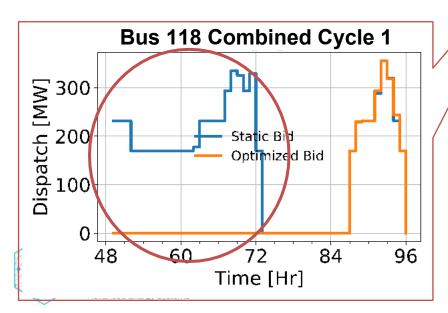


"Bus 102 Steam 3" dispatch without reserves

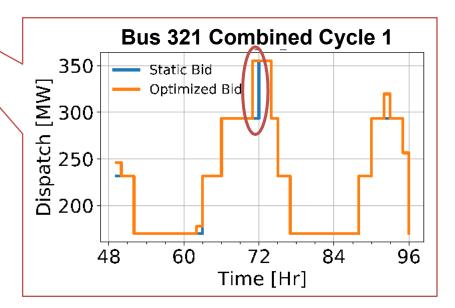
Optimizing the bid curves for "Bus 102 Steam 3" generator causes only minor changes in its market dispatch schedule...







What causes the price spike @ Hour 70 with optimized bids?


There is a shortfall at Hour 70 (not enough generation) causing the price spike.

Effects ripple through grid:

- Combined Cycle 1 plant at Bus 118 is OFF in Day 3.
- Combined Cycle plants at busses 221 and 321 are dispatched at 100%.

Take Away Message

A small change in the bid for a target thermal generator (Bus 102 Steam 3) only slightly changes its dispatch schedule, but **induces significant impacts on the entire network**, including unit commitment and market price changes.

Design and analysis of emerging flexible energy systems with dynamic operation must capture interactions with the balance of the grid in order to accurately capture economic impacts and rewards.

IDAES *enables* unique integrated multiscale analysis and the elucidation of the complex interactions among individual generators through the electric grid markets.

Qualification:

These conclusions are based on a specific simulation using RTS-GMLC, a DOE/GMI developed synthetic test case. RTS-GMLC is NOT intended to be a simulation of a real grid in the U.S. and is known to have specific features that are not necessarily shared by actual grid systems.

idaes.org

We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy, through the Crosscutting Research Program and the Advanced Combustion Systems Program.

The IDAES Technical Team:

- National Energy Technology Laboratory: David Miller, Tony Burgard, John Eslick, Andrew Lee, Peng Liu, Miguel Zamarripa, Jinliang Ma, Dale Keairns, Jaffer Ghouse, Emmanuel Ogbe, Gary Kocis, Ben Omell, Chinedu Okoli, Richard Newby, Grigorios Panagakos, Maojian Wang
- Sandia National Laboratories: John Siirola, Bethany Nicholson, Carl Laird, Katherine Klise, Dena Vigil, Michael Bynum, Ben Knueven
- Lawrence Berkeley National Laboratory: Deb Agarwal, Dan Gunter, Keith Beattie, John Shinn, Hamdy Elgammal, Joshua Boverhof, Karen Whitenack
- Carnegie Mellon University: Larry Biegler, Nick Sahinidis, Chrysanthos Gounaris, Ignacio Grossmann, Owais Sarwar, Natalie Isenberg, Chris Hanselman, Marissa Engle, Qi Chen, Cristiana Lara, Robert Parker, Ben Sauk, Vibhav Dabadghao, Can Li, David Molina Thierry
- West Virginia University: Debangsu Bhattacharyya, Paul Akula, Anca Ostace, Quang-Minh Le

Disclair University to fwhotre Dame out legislating to be with a composition of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.