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Abstract— High penetration of solar photovoltaics can have a 

significant impact on the power flows and voltages in distribution 

systems. In order to support distribution grid planning, control 

and optimization, it is imperative for utilities to maintain an 

accurate database of the locations and sizes of PV systems. This 

paper extends previous work on methods to estimate the location 

of PV systems based on knowledge of the distribution network 

model and availability of voltage magnitude measurement 

streams. The proposed method leverages the expected impact of 

solar injection variations on the circuit voltage and takes into 

account the operation and impact of changes in voltage due to 

discrete voltage regulation equipment (VRE). The estimation 

model enables determining the most likely location of PV systems, 

as well as voltage regulator tap and switching capacitors state 

changes. The method has been tested for individual and multiple 

PV system, using the Chi-Square test as a metric to evaluate the 

goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus 

distribution feeders demonstrate the ability of the method to 

provide consistent estimations of PV locations as well as VRE 

actions.  

Index Terms—Solar Photovoltaic, Distribution Circuit, Voltage 

Sensitivities, Location Estimation, Voltage Regulator, Switching 

Capacitor, VRE. 

I. INTRODUCTION 

he integration of solar photovoltaics (PV) in distribution 

systems continues at a fast pace. The technological 

advances and economies of scale facilitate the rapid adoption of 

this energy source in both residential systems, and medium-size 

commercial and industrial customers. However, many utilities 

continuously face challenges such as over-voltages, unexpected 

back-feeding and other reliability problems due to the 

incorporation of new PV systems [1]. It is imperative for 

utilities to maintain an updated record of PV interconnections. 

In addition to these possible technical issues, solar generation 

needs to be taken into account for  effective distribution grid 

planning [2], operation, and for maintaining a safe operation of 

control devices. In many cases, databases are not accurate, or 

some PV systems may have been connected to the grid without 

a permit. Utilities are interested in maintaining and validating 

 
This material is based upon work supported in part by the U.S. Department 

of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under 

Solar Energy Technologies Office (SETO) Agreement Number 34226. Sandia 

National Laboratories is a multi-mission laboratory managed and operated by 
National Technology and Engineering Solutions of Sandia, LLC., a wholly 

owned subsidiary of Honeywell International, Inc., for the U.S. Department of 

their databases in order to prevent errors in terms of the PV 

location, the phase to which it is connected, the PV size, and the 

PV array orientation [3]. According to the utility survey 

conducted by EPRI [4], 63% of utilities do not record the PV 

tilt and azimuth and 74% do not have any metering on 

residential PV systems. In addition, database error checking 

such as phase identification can be a labor-intensive process. 

The proposed method predicts the most likely PV location 

based on PV injection estimations.  

Several approaches have been proposed in the literature to 

determine the PV generation based on data-driven methods. 

The study in [5] uses an approach that exploits the high 

correlation of diurnal and nocturnal demands by using Gaussian 

mixture models and maximum likelihood estimation-based 

techniques to disaggregate customer-level behind-the-meter 

(BTM) PV generation. An unsupervised framework is 

presented in [6] for joint disaggregation of the net load readings 

into the solar PV generation and electric load, where 

estimations are made based on a mixed hidden Markov model 

(MHMM). Other studies use deep learning, as in [7], to estimate 

behind the meter (BTM) residential PV size, tilt and azimuth, 

reporting an upper-bound error of 3.98% and robustness even 

when using training data with incorrect tilt and azimuth values. 

However, the overall literature lacks methods that exploit the 

relation between voltage measurements and power injections 

and that consider voltage control devices [8].  

The work presented in [8] achieves accurate estimations of 

the PV injections, but it does not support cases that includes the 

operation of VREs. The work in [2] presents a study of the PV 

injection, tap changes and switching capacitor impacts on the 

system voltages, and [9] also defines the impact in terms of 

sensitivity planes. These core-fundamental concepts are 

leveraged in this study to estimate active power injections, and 

VRE actions.    

Various methods have been proposed to estimate the tap 

setting of voltage regulators. In [10], the authors introduce a 

slight modification into the power system state estimation to 

predict both the voltage turns ratio and the phase-shift angle of 
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transformers. The authors in [11] present a method to estimate 

the tap positions based on the residuals from the state 

estimation, incorporating prior measurement and tap position 

information to increase robustness when dealing with bad data. 

Despite this, there are no methods that use sensitivity analysis 

to estimate the tap changes given in a voltage measurement 

stream. This paper presents a novel combination of the PV and 

VRE sensitivity analysis models to predict both PV locations 

and VRE actions. The theoretical concepts, such as VRE 

sensitivities, will be reinforced by illustrations based on the 

results obtained for the IEEE 13-bus test feeder. The numerical 

results will be based on the IEEE 123-bus to show the method’s 

functionality on a larger and more realistic test feeder.  

The rest of this paper is organized as follows: Section II 

presents the basic method for PV location estimation, Section 

III and IV describes the impact of switching capacitors and 

voltage regulators, respectively,  Section V extends the method 

integrating PV and VRE estimations, Section VI shows 

numerical results on the IEEE 123-bus feeder. Sections VII and 

VIII discuss the method limitations and conclusions.  

II. PV LOCATION ESTIMATION 

The work in [8] provides a framework for the estimation of 

PV injections assuming knowledge of the distribution circuit 

model and availability of node voltage magnitude measurement 

data streams. The voltage magnitude at a node in the circuit has 

a fairly linear relationship with power injections. The 

coefficients depend on the status of the voltage regulating 

equipment, such that: 

 

𝑉𝑖(𝑡) = 𝑉𝑖
0 + 𝛼∆𝑃𝐷(𝑡) + 𝛽∆𝑃𝑉(𝑡) (1) 

 

where ∆𝑃𝐷(𝑡) is the change in demand and ∆𝑃𝑉(𝑡) is the change 

in PV injection, for each node 𝑖 in a set of N nodes. Let us 

consider a set of candidate PV locations ℒ = {1,…,𝓁,…𝐿}.e.g. 

a set of nodes where the engineer suspects PV may exist. A 

matrix 𝑺 is formed with the sensitivities of voltage with respect 

to PV injections: 

 

𝑠𝑖𝓁 = 𝜕𝑉𝑖 𝜕𝑃𝓁⁄  (2) 

 

Sensing provides time series voltage measurements V and a 

time series of voltage changes 𝒅𝑛𝑡 = 𝑽𝑛,𝑡+1 − 𝑽𝑛,𝑡 . The 

location of the PV system is estimated by finding the projection 

of 𝒅 into the 𝑺𝑛𝐿  matrix subspace: 

 

𝒙 = (𝑺𝑻𝑺)−1𝑺𝑻𝒅 (3) 

 

Where 𝒙 is called the estimation vector and provides the PV 

injection estimation for that point in time. Estimation is possible 

if the matrix S has full rank. This implies that the columns of 

the matrix are linearly independent and the number of 

measurements is larger than the candidate locations to preserve 

sufficient degrees of freedom. In order to assess the goodness 

of fit, the 𝜒2 test is used. The estimated voltage increment given 

𝒙 will be 𝒅̂ = 𝐒𝒙. The measurement residuals are computed 

with the standard assumption that the smart meter class is 0.5%. 

Since that is the maximum error allowed, we defined the 

standard deviation approximately as third of the class, 𝜎𝑖 =
0.0015. We have that: 

 

𝜁(𝒙) = [𝐒𝒙 − d]𝑇𝛀−1[𝐒𝒙 − d] (3) 

 

where 𝛀−1 is a diagonal matrix with entries 1 𝜎𝑖⁄ . Finally, the 

confidence level of the estimation is given by: 

 

Pr [𝜒2 ≥  𝜁]  =  1.0 – Pr [𝜁, 𝛽] (4) 

 

where 𝛽 represents the degrees of freedom, calculated as the 

difference between the number of nodes being monitored and 

the number of PV location candidates. 

III. IMPACT OF SWITCHING CAPACITORS 

When the voltage magnitude data stream includes the effect 

of capacitor switching, the change in voltage will not result in 

an accurate estimation because it is caused by the injection of 

reactive power, and this sensitivity vector is not included in the 

𝑺 matrix. Typical discrete changes in voltage due to a capacitor 

can be observed in Fig. 1. The objective is not only to detect 

when these discontinuities happen to prevent imprecise 

estimations, but to also try to achieve accurate PV location 

estimation at those time points. 

 
Fig. 1: Typical change in voltage due to a switching capacitor. 

 

In order to incorporate the impact of capacitors switching in 

the method, one has to: a) estimate the impact on the active 

power sensitivities, b) compute the reactive power sensitivity 

and c) integrate the capacitor sensitivity as an additional column 

in the S matrix.  

Let us consider the 3-phase switching capacitor at bus 680 in 

the IEEE 13-bus test feeder. When the capacitor is connected to 

grid, the inductance matrix of the power system changes. 

Therefore, all the sensitivities are expected to change. The 

impact of this change on the PV sensitivities was evaluated 

using an OpenDSS simulation.  The capacitor was connected 

and disconnected in the simulation and active power 

sensitivities were calculated in each case.  For a 500 kvar 3-

phase capacitor, the PV sensitivity difference between states 

was under 2%, and the difference of most of sensitivity 

components was minimal. This means that the state of the 

existing switching capacitor has minimal impact on the active 
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power sensitivities of the distribution network, and the 𝑺 matrix 

can be considered practically constant regardless of whether the 

capacitor status. However, when the capacitor switches 

between states, a discontinuity is introduced in the voltage 

stream. Fig. 2 describes the two sensitivity planes, which are 

largely parallel to each other. The increment of voltage due to a 

change in net demand will be contained in those planes. 

However, when the voltage steps out of the voltage control 

region, the capacitor changes its status resulting in a voltage 

increase – symbolized as a red vector that is not necessarily 

vertical – that is not contained in the sensitivity plane defined 

by 𝑺. As result, the measurement vector cannot be expressed in 

terms of the sensitivity vectors and the estimation becomes 

inaccurate.  

 
Fig. 2: Change of sensitivity planes due to capacitor state change. 

 

Hence, our goal is to identify those points in time where the 

capacitor switches between states, while preserving the same 

sensitivity vectors that form the S matrix. In order to achieve 

this, a modification of the sensitivity matrix is introduced: 

 

𝑺 = [𝒔𝑷𝑽   𝒔𝑪𝒂𝒑] (5) 

 

Here, 𝑠𝑃𝑉 corresponds to the set of columns of active power 

sensitivities that were already included, and 𝑠𝐶𝑎𝑝 corresponds 

to the sensitivities associated with voltage changes in terms of 

reactive power injected by the capacitor. The sensitivities 𝑠𝐶𝑎𝑝 

can be computed by running 2 power flows: first with the 

capacitor disabled and then manually changing the state in 

OpenDSS, allowing us to compute the voltage difference due to 

the capacitor bank. As an example, Fig. 3 shows the voltage 

sensitivities for a 3-phase capacitor bank at bus 680. The larger 

the circles in the figure, the higher the sensitivity.  

Since the size of the capacitor is known, these sensitivities 

can be adjusted in such way that the estimation will indicate the 

percentage of a capacitor state change: 

 

𝑠𝑖,𝐶𝑎𝑝 =
∆𝑉𝑖

𝑄𝐶𝑎𝑝

 
(6) 

 

such that when a voltage increase due to capacitor occurs, the 

estimation components associated to capacitor actions shall be 

close to 100%. 

 
Fig. 3: Voltage increase due to the switching capacitor at bus 680 on 

the IEEE 13-bus test feeder. 

IV. IMPACT OF VOLTAGE REGULATORS 

Similarly, voltage regulators will cause a discontinuity in the 

voltage profile when the tap position changes, leading to a 

sensitivity hyperplane that practically has the same slope as that 

of the previous tap position. 

In order to estimate both the tap change and the PV injection, 

a sensitivity associated to the voltage regulator action needs to 

be included in the S matrix. The VRE sensitivities are 

calculated by changing the taps on OpenDSS and subtracting 

the voltage recorded from both power flows. A tap change 

produces a homogenous increment in voltage of the same-phase 

node that comes after the regulator. Fig. 4 shows the voltage 

increments of a tap change for the bus 632A voltage regulator. 

 

 
Fig. 4: Impact of voltage regulator at bus 632A in IEEE 13 feeder.  

 

Once all VRE sensitivities have been determined, the 

modified 𝑺 matrix is formed as: 

 

𝑺 = [𝒔𝑷𝑽   𝒔𝒕𝒂𝒑𝒔] (7) 

 



 

 

 

4 

where the 𝑠𝑡𝑎𝑝𝑠 vector is calculated as: 

 

𝑠𝑖,𝑡𝑎𝑝 = 𝑉𝑖,𝑡𝑎𝑝+1 − 𝑉𝑖,𝑡𝑎𝑝 (8) 

 

This increase is due to one tap change. If the tap changes two 

positions, the expected voltage increment will be double. 

Therefore, the method not only predicts when the voltage 

regulator takes action, but also the changed number of taps. 

V. INTEGRATION OF VOLTAGE REGULATION EQUIPMENT 

The methodologies developed in sections III and IV are 

based on the use of a matrix of voltage sensitivities with respect 

to node power injections 𝑺. However, in the presence of VRE, 

the impact of VRE actions and the PV power injection both may 

produce changes in voltage magnitude in the circuit nodes that 

result in sensitivity columns that are not linearly independent 

vectors. To illustrate this, let us consider Fig. 5, where a voltage 

change that is due to a VRE action can be expressed in terms of 

the PV sensitivity column vectors.  

 
Fig. 5: VRE impact that is linearly dependent on PV sensitivities.  
 

In such case, the Gramian of 𝑺 becomes singular and 

(𝑺𝑇𝑺)−1 cannot be computed. Therefore, an approach must be 

developed that can estimate PV injections, tap changes, and 

switching capacitor actions regardless of the structure of S. 

The method extends the principles used for PV location and 

injection estimation by first determining whether a VRE actions 

is present in the voltage magnitude measurement data stream. 

Let us define 𝒅̂𝑉𝑅𝐸  as the estimation of the changes in voltage 

due to VRE actions in a distribution circuit. The correct 

estimation of the PV injections would discount the effect due to 

the VRE in changes in voltages 𝒅: 

 

𝒙 =  (𝑺𝑇𝑺)−1𝑺𝑻(𝒅 − 𝒅̂𝑉𝑅𝐸) (9) 

 

The changes in voltage occur in fixed amounts, proportional 

to the number of taps changed. It is possible to obtain an 

estimation of a voltage changes due to VRE, 𝒅𝑉𝑅𝐸  by 

simulating VRE actions in the distribution circuit and 

performing an estimation for the resulting voltage changes. Let 

us denote the result of this estimation by 𝒙𝑉𝑅𝐸: 

 

𝒙𝑉𝑅𝐸 =  (𝑺𝑇𝑺)−1𝑺𝑻𝒅𝑉𝑅𝐸  (10) 

 

This particular estimation vector corresponds to a single 

VRE device. A matrix 𝑿𝑉𝑅𝐸  can be formed when considering 

all the VRE devices in the circuit: 

 

𝑿𝑉𝑅𝐸 = (𝑺𝑇𝑺)−1𝑺𝑻𝑫𝑉𝑅𝐸 (11) 

 

where 𝑿𝑉𝑅𝐸 = [𝒙̂𝑉𝑅𝐸1
,  … , 𝒙̂𝑽𝑅𝐸𝐾

],  𝑫𝑉𝑅𝐸 = [𝒅𝑉𝑅𝐸1
,  … , 𝒅𝑉𝑅𝐸 𝐾

] and 

K is the number of total VRE devices considered. We have that 

each vector 𝒙𝑉𝑅𝐸 in 𝑿𝑉𝑅𝐸  is the expected footprint that a tap 

change will leave in the estimation. Once 𝑿𝑉𝑅𝐸   has been 

determined, it can be used to determine the presence of tap 

change actions, if the resulting estimation vector is similar to 

𝒙𝑉𝑅𝐸. When a change in voltage contains the impact of VRE 

and PV for a given point in time, the resulting estimation vector 

will contain components associated with both the PV location 

and the expected estimation 𝒙𝑉𝑅𝐸:  

 

𝒙𝑃𝑉+𝑉𝑅𝐸  = (𝑺𝑇𝑺)−1𝑺𝑻𝒅 (12) 

 

The matrix 𝑿𝑉𝑅𝐸   can now be used to determine whether any 

VRE action took place by performing a second estimation on 

the resulting estimation vector: 

 

𝒗 = ((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)−1𝑿𝑉𝑅𝐸

𝑇 ) · 𝒙𝑃𝑉+𝑉𝑅𝐸  (13) 

 

The resulting vector 𝑣 will provide non-zeros values for those 

components associated with the VRE devices that operated at 

that specific point in time. For example, if 2 step changes 

occurred for a certain voltage regulator, the resulting 𝒗 

component may be 2.03. For those devices that did not take 

action at that point in time, a value close to 0 will appear. A 

non-linear filter 𝜙 needs to be applied to remove the values 

close to zero and to obtain integer components from 𝒗. For 

illustration purposes, let’s consider the following example. 

Assume that there are 3 voltage regulators in a distribution 

circuit, and the results of our second estimation is: 𝒗 =
[0.04    0.98 − 0.01]𝑇, then the filter 𝜙(𝒗) = [0 1 0]𝑇, which 

corresponds to the actual tap changes that occurred at that point 

in time. Once a VRE action is detected, the impact on the 

voltage is computed by multiplying by 𝑿𝑉𝑅𝐸 , which leads to the 

estimation components of tap change, and finally by 𝑺, which 

leads to the estimated voltage increase due to that VRE action: 

 

𝑑̂𝑉𝑅𝐸 = 𝑺 · 𝑿𝑉𝑅𝐸 · 𝜙(𝒗) (14) 

 

With the subtraction of the impact of VRE on voltage 

increments it is not only possible to predict the location of PV 

systems, but also the action taken by controlling devices. 

Putting together equations (11), (12), (13), and (14) in (9) 

the formulation of the method now becomes: 
 

𝒙̂ =  (𝑺𝑇𝑺)−1𝑺𝑻 (𝒅 − 𝑺 · 𝑿𝑉𝑅𝐸

· 𝜙(((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)−1𝑿𝑉𝑅𝐸

𝑇 )(𝑺𝑇𝑺)−1𝑺𝑻𝒅)) 

(15) 

where: 

• 𝑺 is the sensitivity matrix. It has 𝑁 rows and 𝐿 columns. 

• 𝒅 is the measurement vector: [𝒅1, … , 𝒅𝑁]𝑇. 

• 𝑿𝑉𝑅𝐸  includes all the estimation vectors due to VRE 

devices. It has 𝐿 rows and 𝐾 columns. 

𝑑𝑃𝑉 

𝑑 

𝑑𝑉𝑅𝐸  
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• 𝒗 is the vector of estimated VRE actions. Hence its 

dimension is equal to the number of total VRE devices in 

the circuit: [𝒗1, … , 𝒗𝐾]𝑇. 

𝑁 is the number of monitored nodes, 𝐿 is the number of PV 

locations candidates, and 𝐾 is the number of VRE devices 

considered. The number of tap changes can be predicted by 

looking at the term 𝜙(((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)−1𝑿𝑉𝑅𝐸

𝑇 )(𝑺𝑇𝑺)−1𝑺𝑻𝒅). 

VI. NUMERICAL RESULTS 

A. Case Description 

The IEEE 123-bus distribution system operates at 4.16 kV 

and has an unbalanced loading. The circuit has a several voltage 

control devices in addition to the regulator located at the 

substation: a 1-phase regulator between nodes 9 and 14, two 1-

phase regulators between 25 and 26, and three 1-phase voltage 

regulators between nodes 160 and 67. The system presents 

switches that have been configured to preserve a radial 

topology. It is assumed that voltage magnitude measurements 

are obtained from 10 IntelliRupters, which cover 8% of the per 

phase voltage magnitudes. The circuit topology and 

IntelliRupters location are presented in Fig. 6.  

 

 
Fig. 6: Diagram of the IEEE 123-bus system. 

 

To enable the algorithm to work with less available 

measurements, the number of PV location candidates must be 

lower to avoid singularities in the computations. In the results 

that follow below, different PV case scenarios are simulated to 

test the methodologies presented to address both linear 

dependent and independent impact of VRE.  The PV profile is 

based on irradiance data provided by NREL [12] and represents 

the actual irradiation values observed on January 1, 2011 in 

Oahu, Hawaii. The time resolution selected for the QSTS 

simulations is 300 seconds. 

B. Results with linearly independent VRE impact  

The first experiment considered 9 different PV scenarios. 

Nine simulations were run placing a 1-phase 100 kW PV 

system at each of the nodes of buses 23, 197 and 83. In order to 

get an accurate estimation, it is necessary to look at points in 

time that are partly cloudy so that the node experiences large 

changes in PV injection.  Based on the selected PV profile, the 

time window 12:25pm to 12:30pm is appropriate to estimate a 

PV injection. Fig. 7 shows the results of an estimation for this 

time frame in terms of two spider plots. The spider plots are 

graphical representations of the vectors 𝒙 and 𝒗 for each 

simulation. The more a subplot in the spider plot tilts towards 

an outer label, the higher PV injection and hence a higher the 

probability of a PV system at that location. The more the plot 

bends closer to the inner zero points, the less likely it is that the 

PV is present at that location. Out of the 9 simulations, only the 

one with PV at node 23.1 experienced a tap change in voltage 

regulator 67A. As can be observed, the method is able to 

capture both the change in the PV injection (approximately 25 

kW at that point in time) and the tap change. 

 
Fig. 7: PV and VRE Estimation results for simulations from 12:25pm 

to 12:30pm of 9 scenarios with a single PV.  

 

The method works in the case of multiple PV as well, since for 

small PV injections the system behaves linearly. That is, the 

impact of 2 different PV systems on the voltage increment will 

be the sum of the resulting independent estimation. To verify 

this hypothesis, several simulations with multiple PV were run 

and analyzed. Fig. 8 shows the estimation results of three 

multiple PV case scenarios: 2 PVs at 21A and 56C, 2 PVs at 

68A, 114A and 3 PVs at 7C, 105B and 97B for the time frame 

from 11:35am to 11:40am. 

 
Fig. 8: PV estimation results for simulations from 12:25pm to 

12:30pm of 3 scenarios with PV at multiple locations.  

We observe that the method can detect and predict multiple 

PV injections with the same accuracy as with 1-phase PV. The 

Chi-Square test indicated a confidence level of 100% in all 

estimations.  

C. Results with linearly dependent VRE impact  

This section presents the particular case when the PV and VRE 

impacts are linearly dependent. This conflict causes 

singularities in the Gramian of 𝑺 and hence it is necessary to 

use the formulation presented in (15). To represent this 

particular case, some buses close to bus 67 have been chosen as 

potential candidates. Let us consider buses 67, 62 and 68 as 

potential candidates. When 𝑿𝑉𝑅𝐸  is calculated, it is verified that 
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the voltage regulator sensitivities can be expressed in terms of 

the sensitivity vectors associated to PV located at bus 62 and 

67. Fig. 9 shows a bar chart of the vectors that compound 𝑿𝑉𝑅𝐸 . 

It can be observed that the impact of VRE affects the estimation 

at buses 67 and 62, but has little significant impact on bus 68. 

In addition, when 𝑫̂𝑉𝑅𝐸 = 𝑺 · 𝑿𝑉𝑅𝐸  is computed, we find that 

𝑫̂𝑉𝑅𝐸 = 𝑫𝑉𝑅𝐸  and the confidence level is equal to 1. This 

indicates that the VRE sensitivity falls within the PV sensitivity 

hyperplane.   

 
Fig. 9: Estimation of voltage increment due to VRE.  

 

To test the accuracy of this methodology, several simulations 

were conducted placing PV systems at conflicting and non-

conflicting nodes. These 7 simulations include a PV at each 

phase of buses 62, 67 and 68. The time window between 

11:55am to 12:05pm had samples that included tap changes in 

addition to PV injection. Fig. 10 shows the resulting estimation. 

The method provides high accuracy predictions of the PV 

injection in addition to the exact 3 tap changes that occurred in 

the simulations with a PV located at 62B, 67A and 68A.  

 

 
Fig. 10: PV and VRE Estimation for 7 simulations using (15). 

VII. LIMITATIONS 

The proposed method has the following limitations, which 

will require further analysis in a broader set of test cases: 

a) It assumes a perfect model of the distribution feeder and 

no noise in the measurements. Real modes usually contain 

errors which will reduce the accuracy of the estimations.  

 b) When there is are multiple very high PV injections that 

cause a similar impact in the estimation as VREs (𝒙𝑉𝑅𝐸), the 

method may misclassify as a tap change. Very high PV 

injections are very unlikely due to hosting capacity limits.   

 c) The method takes as input the time-point voltage samples. 

However, some measurement devices only provide the average 

voltage over a sampling period, which leads to a measurement 

vector that can impact the accuracy of estimations. 

VIII. CONCLUSIONS 

A method has been described that is able to estimate PV 

locations with high accuracy, based on a limited number of 

available voltage magnitude measurement streams under the 

presence of voltage regulation equipment.  

The impact of capacitors and voltage regulators on the 

estimation has been analyzed. The knowledge of the expected 

impact is used to determined when VRE actions took place. 

Depending on the structure of VRE is in terms of the PV 

sensitivities, two methodologies presented in this study can be 

utilized. If the increase of voltage is linearly independent from 

the expected voltage increment due to PV, VRE sensitivity can 

be added to the 𝑺 matrix. On the other hand, if the impact is 

linearly dependent, a second estimation is required to determine 

the voltage increase due to VRE and to subtract it from the 

measurement vector. The simulations carried out on the IEEE 

13-bus and IEEE 123-bus test feeders result in highly accurate 

results in terms of PV injection estimation, and VRE action 

detection. 
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