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Abstract— High penetration of solar photovoltaics can have a
significant impact on the power flows and voltages in distribution
systems. In order to support distribution grid planning, control
and optimization, it is imperative for utilities to maintain an
accurate database of the locations and sizes of PV systems. This
paper extends previous work on methods to estimate the location
of PV systems based on knowledge of the distribution network
model and availability of voltage magnitude measurement
streams. The proposed method leverages the expected impact of
solar injection variations on the circuit voltage and takes into
account the operation and impact of changes in voltage due to
discrete voltage regulation equipment (VRE). The estimation
model enables determining the most likely location of PV systems,
as well as voltage regulator tap and switching capacitors state
changes. The method has been tested for individual and multiple
PV system, using the Chi-Square test as a metric to evaluate the
goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus
distribution feeders demonstrate the ability of the method to
provide consistent estimations of PV locations as well as VRE
actions.

Index Terms—Solar Photovoltaic, Distribution Circuit, Voltage
Sensitivities, Location Estimation, Voltage Regulator, Switching
Capacitor, VRE.

I. INTRODUCTION

he integration of solar photovoltaics (PV) in distribution

systems continues at a fast pace. The technological
advances and economies of scale facilitate the rapid adoption of
this energy source in both residential systems, and medium-size
commercial and industrial customers. However, many utilities
continuously face challenges such as over-voltages, unexpected
back-feeding and other reliability problems due to the
incorporation of new PV systems [1]. It is imperative for
utilities to maintain an updated record of PV interconnections.
In addition to these possible technical issues, solar generation
needs to be taken into account for effective distribution grid
planning [2], operation, and for maintaining a safe operation of
control devices. In many cases, databases are not accurate, or
some PV systems may have been connected to the grid without
a permit. Utilities are interested in maintaining and validating
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their databases in order to prevent errors in terms of the PV
location, the phase to which it is connected, the PV size, and the
PV array orientation [3]. According to the utility survey
conducted by EPRI [4], 63% of utilities do not record the PV
tilt and azimuth and 74% do not have any metering on
residential PV systems. In addition, database error checking
such as phase identification can be a labor-intensive process.
The proposed method predicts the most likely PV location
based on PV injection estimations.

Several approaches have been proposed in the literature to
determine the PV generation based on data-driven methods.
The study in [5] uses an approach that exploits the high
correlation of diurnal and nocturnal demands by using Gaussian
mixture models and maximum likelihood estimation-based
techniques to disaggregate customer-level behind-the-meter
(BTM) PV generation. An unsupervised framework is
presented in [6] for joint disaggregation of the net load readings
into the solar PV generation and electric load, where
estimations are made based on a mixed hidden Markov model
(MHMM). Other studies use deep learning, as in [7], to estimate
behind the meter (BTM) residential PV size, tilt and azimuth,
reporting an upper-bound error of 3.98% and robustness even
when using training data with incorrect tilt and azimuth values.
However, the overall literature lacks methods that exploit the
relation between voltage measurements and power injections
and that consider voltage control devices [8].

The work presented in [8] achieves accurate estimations of
the PV injections, but it does not support cases that includes the
operation of VREs. The work in [2] presents a study of the PV
injection, tap changes and switching capacitor impacts on the
system voltages, and [9] also defines the impact in terms of
sensitivity planes. These core-fundamental concepts are
leveraged in this study to estimate active power injections, and
VRE actions.

Various methods have been proposed to estimate the tap
setting of voltage regulators. In [10], the authors introduce a
slight modification into the power system state estimation to
predict both the voltage turns ratio and the phase-shift angle of
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transformers. The authors in [11] present a method to estimate
the tap positions based on the residuals from the state
estimation, incorporating prior measurement and tap position
information to increase robustness when dealing with bad data.
Despite this, there are no methods that use sensitivity analysis
to estimate the tap changes given in a voltage measurement
stream. This paper presents a novel combination of the PV and
VRE sensitivity analysis models to predict both PV locations
and VRE actions. The theoretical concepts, such as VRE
sensitivities, will be reinforced by illustrations based on the
results obtained for the IEEE 13-bus test feeder. The numerical
results will be based on the IEEE 123-bus to show the method’s
functionality on a larger and more realistic test feeder.

The rest of this paper is organized as follows: Section II
presents the basic method for PV location estimation, Section
IIT and IV describes the impact of switching capacitors and
voltage regulators, respectively, Section V extends the method
integrating PV and VRE estimations, Section VI shows
numerical results on the IEEE 123-bus feeder. Sections VII and
VIII discuss the method limitations and conclusions.

II. PV LOCATION ESTIMATION

The work in [8] provides a framework for the estimation of
PV injections assuming knowledge of the distribution circuit
model and availability of node voltage magnitude measurement
data streams. The voltage magnitude at a node in the circuit has
a fairly linear relationship with power injections. The
coefficients depend on the status of the voltage regulating
equipment, such that:

V() =V + alPp(t) + BAP(t) (1

where APy (t) is the change in demand and APy, (t) is the change
in PV injection, for each node i in a set of N nodes. Let us
consider a set of candidate PV locations = {1,...,%,...L}.c.g.
a set of nodes where the engineer suspects PV may exist. A
matrix S is formed with the sensitivities of voltage with respect
to PV injections:

Sip = 0V; /0P, 2

Sensing provides time series voltage measurements V and a
time series of voltage changes d,, =V, 41 — V. The
location of the PV system is estimated by finding the projection
of d into the §,,; matrix subspace:

%= (STS)"1sTd 3)

Where X is called the estimation vector and provides the PV
injection estimation for that point in time. Estimation is possible
if the matrix § has full rank. This implies that the columns of
the matrix are linearly independent and the number of
measurements is larger than the candidate locations to preserve
sufficient degrees of freedom. In order to assess the goodness
of fit, the y? test is used. The estimated voltage increment given
% will be d = SX. The measurement residuals are computed
with the standard assumption that the smart meter class is 0.5%.
Since that is the maximum error allowed, we defined the

standard deviation approximately as third of the class, g; =
0.0015. We have that:

{(®) = [Sx —d]"Q@7"[s% — d] 3)

where Q71 is a diagonal matrix with entries 1/0;. Finally, the
confidence level of the estimation is given by:

Pr¥?> (] = 1.0-Pr[{,p] 4

where f represents the degrees of freedom, calculated as the
difference between the number of nodes being monitored and
the number of PV location candidates.

III. IMPACT OF SWITCHING CAPACITORS

When the voltage magnitude data stream includes the effect
of capacitor switching, the change in voltage will not result in
an accurate estimation because it is caused by the injection of
reactive power, and this sensitivity vector is not included in the
S matrix. Typical discrete changes in voltage due to a capacitor
can be observed in Fig. 1. The objective is not only to detect
when these discontinuities happen to prevent imprecise
estimations, but to also try to achieve accurate PV location
estimation at those time points.

0.98
T
=t
o 0.96
o
8
o
=094
Time (hrs)
o 1 ' : ' ‘ 1
5|
»n
Los .
2
8 0 . . . _—‘ON / OFF |
0 5 10 15 20 25
Time (hrs)

Fig. 1: Typical change in voltage due to a switching capacitor.

In order to incorporate the impact of capacitors switching in
the method, one has to: a) estimate the impact on the active
power sensitivities, b) compute the reactive power sensitivity
and c) integrate the capacitor sensitivity as an additional column
in the .S matrix.

Let us consider the 3-phase switching capacitor at bus 680 in
the IEEE 13-bus test feeder. When the capacitor is connected to
grid, the inductance matrix of the power system changes.
Therefore, all the sensitivities are expected to change. The
impact of this change on the PV sensitivities was evaluated
using an OpenDSS simulation. The capacitor was connected
and disconnected in the simulation and active power
sensitivities were calculated in each case. For a 500 kvar 3-
phase capacitor, the PV sensitivity difference between states
was under 2%, and the difference of most of sensitivity
components was minimal. This means that the state of the
existing switching capacitor has minimal impact on the active



power sensitivities of the distribution network, and the § matrix
can be considered practically constant regardless of whether the
capacitor status. However, when the capacitor switches
between states, a discontinuity is introduced in the voltage
stream. Fig. 2 describes the two sensitivity planes, which are
largely parallel to each other. The increment of voltage due to a
change in net demand will be contained in those planes.
However, when the voltage steps out of the voltage control
region, the capacitor changes its status resulting in a voltage
increase — symbolized as a red vector that is not necessarily
vertical — that is not contained in the sensitivity plane defined
by S. As result, the measurement vector cannot be expressed in
terms of the sensitivity vectors and the estimation becomes
inaccurate.
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Fig. 2: Change of sensitivity planes due to capacitor state change.

Hence, our goal is to identify those points in time where the
capacitor switches between states, while preserving the same
sensitivity vectors that form the § matrix. In order to achieve
this, a modification of the sensitivity matrix is introduced:

S = [SPV sCap] (%)

Here, spy corresponds to the set of columns of active power
sensitivities that were already included, and s¢4, corresponds
to the sensitivities associated with voltage changes in terms of
reactive power injected by the capacitor. The sensitivities S¢qp
can be computed by running 2 power flows: first with the
capacitor disabled and then manually changing the state in
OpenDSS, allowing us to compute the voltage difference due to
the capacitor bank. As an example, Fig. 3 shows the voltage
sensitivities for a 3-phase capacitor bank at bus 680. The larger
the circles in the figure, the higher the sensitivity.

Since the size of the capacitor is known, these sensitivities
can be adjusted in such way that the estimation will indicate the
percentage of a capacitor state change:

. v (©)
veap ™ QCap

such that when a voltage increase due to capacitor occurs, the
estimation components associated to capacitor actions shall be
close to 100%.
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Fig. 3: Voltage increase due to the switching capacitor at bus 680 on
the IEEE 13-bus test feeder.
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IV. IMPACT OF VOLTAGE REGULATORS

Similarly, voltage regulators will cause a discontinuity in the
voltage profile when the tap position changes, leading to a
sensitivity hyperplane that practically has the same slope as that
of the previous tap position.

In order to estimate both the tap change and the PV injection,
a sensitivity associated to the voltage regulator action needs to
be included in the § matrix. The VRE sensitivities are
calculated by changing the taps on OpenDSS and subtracting
the voltage recorded from both power flows. A tap change
produces a homogenous increment in voltage of the same-phase
node that comes after the regulator. Fig. 4 shows the voltage
increments of a tap change for the bus 632A voltage regulator.
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Fig. 4: Impact of voltage regulator at bus 632A in IEEE 13 feeder.

Once all VRE sensitivities have been determined, the
modified § matrix is formed as:

S = [SPV Staps] (7)



where the 5., vector is calculated as:

Sitap = Vitap+1 — Vi,tap (¥

This increase is due to one tap change. If the tap changes two
positions, the expected voltage increment will be double.
Therefore, the method not only predicts when the voltage
regulator takes action, but also the changed number of taps.

V. INTEGRATION OF VOLTAGE REGULATION EQUIPMENT

The methodologies developed in sections III and IV are
based on the use of a matrix of voltage sensitivities with respect
to node power injections S. However, in the presence of VRE,
the impact of VRE actions and the PV power injection both may
produce changes in voltage magnitude in the circuit nodes that
result in sensitivity columns that are not linearly independent
vectors. To illustrate this, let us consider Fig. 5, where a voltage
change that is due to a VRE action can be expressed in terms of
the PV sensitivity column vectors.
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Fig. 5: VRE impact that is linearly dependent on PV sensitivities.

In such case, the Gramian of § becomes singular and
(87S)~* cannot be computed. Therefore, an approach must be
developed that can estimate PV injections, tap changes, and
switching capacitor actions regardless of the structure of .

The method extends the principles used for PV location and
injection estimation by first determining whether a VRE actions
is present in the voltage magnitude measurement data stream.
Let us define dyzy as the estimation of the changes in voltage
due to VRE actions in a distribution circuit. The correct
estimation of the PV injections would discount the effect due to
the VRE in changes in voltages d:

X= (578)18T(d — dyrp) ©

The changes in voltage occur in fixed amounts, proportional
to the number of taps changed. It is possible to obtain an
estimation of a voltage changes due to VRE, dygg by
simulating VRE actions in the distribution circuit and
performing an estimation for the resulting voltage changes. Let
us denote the result of this estimation by Xy zg:

Zyrp = (578)7'STdygg

(10)

This particular estimation vector corresponds to a single
VRE device. A matrix X,z can be formed when considering
all the VRE devices in the circuit:

Xvre = (STS)_lsTDVRE (11)
where Xygg = [Ryrg,, - Xvreg] Dvee = [dvreys - dyre | and
K is the number of total VRE devices considered. We have that
each vector Xygp in Xygp is the expected footprint that a tap
change will leave in the estimation. Once Xygr has been
determined, it can be used to determine the presence of tap
change actions, if the resulting estimation vector is similar to
Xyre- When a change in voltage contains the impact of VRE
and PV for a given point in time, the resulting estimation vector
will contain components associated with both the PV location
and the expected estimation X, gg:

Xpysvre = (878)7'STd (12)

The matrix Xy z; can now be used to determine whether any
VRE action took place by performing a second estimation on
the resulting estimation vector:

v = ((XVreXvre) " XVRE) * Xpv4vee (13)
The resulting vector v will provide non-zeros values for those
components associated with the VRE devices that operated at
that specific point in time. For example, if 2 step changes
occurred for a certain voltage regulator, the resulting v
component may be 2.03. For those devices that did not take
action at that point in time, a value close to 0 will appear. A
non-linear filter ¢p needs to be applied to remove the values
close to zero and to obtain integer components from v. For
illustration purposes, let’s consider the following example.
Assume that there are 3 voltage regulators in a distribution
circuit, and the results of our second estimation is: v =
[0.04 0.98 — 0.01]7, then the filter ¢(v) = [0 1 0]7, which
corresponds to the actual tap changes that occurred at that point
in time. Once a VRE action is detected, the impact on the
voltage is computed by multiplying by Xy g, which leads to the
estimation components of tap change, and finally by S, which
leads to the estimated voltage increase due to that VRE action:

dyrg = S - Xygg - $(V) (14)

With the subtraction of the impact of VRE on voltage
increments it is not only possible to predict the location of PV
systems, but also the action taken by controlling devices.

Putting together equations (11), (12), (13), and (14) in (9)
the formulation of the method now becomes:

®= (5"S)'S" (d— 5 Xyms

: (P(((XgREXVRE)_ngRE)(STS)_lsrd))

(15)

where:
* S is the sensitivity matrix. It has N rows and L columns.
» d is the measurement vector: [d, ..., dy]".
* Xy includes all the estimation vectors due to VRE
devices. It has L rows and K columns.



* wvis the vector of estimated VRE actions. Hence its
dimension is equal to the number of total VRE devices in
the circuit: [vy, ..., vg]7.

N is the number of monitored nodes, L is the number of PV
locations candidates, and K is the number of VRE devices
considered. The number of tap changes can be predicted by
looking at the term ¢((XTreXyre) ' Xbre)(STS) 18T d).

VI. NUMERICAL RESULTS

A. Case Description

The IEEE 123-bus distribution system operates at 4.16 kV
and has an unbalanced loading. The circuit has a several voltage
control devices in addition to the regulator located at the
substation: a 1-phase regulator between nodes 9 and 14, two 1-
phase regulators between 25 and 26, and three 1-phase voltage
regulators between nodes 160 and 67. The system presents
switches that have been configured to preserve a radial
topology. It is assumed that voltage magnitude measurements
are obtained from 10 IntelliRupters, which cover 8% of the per
phase voltage magnitudes. The circuit topology and
IntelliRupters location are presented in Fig. 6.
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Fig. 6: Diagram of the IEEE 123-bus system.

To enable the algorithm to work with less available
measurements, the number of PV location candidates must be
lower to avoid singularities in the computations. In the results
that follow below, different PV case scenarios are simulated to
test the methodologies presented to address both linear
dependent and independent impact of VRE. The PV profile is
based on irradiance data provided by NREL [12] and represents
the actual irradiation values observed on January 1, 2011 in
Oahu, Hawaii. The time resolution selected for the QSTS
simulations is 300 seconds.

B. Results with linearly independent VRE impact

The first experiment considered 9 different PV scenarios.
Nine simulations were run placing a l-phase 100 kW PV
system at each of the nodes of buses 23, 197 and 83. In order to
get an accurate estimation, it is necessary to look at points in
time that are partly cloudy so that the node experiences large
changes in PV injection. Based on the selected PV profile, the
time window 12:25pm to 12:30pm is appropriate to estimate a

PV injection. Fig. 7 shows the results of an estimation for this
time frame in terms of two spider plots. The spider plots are
graphical representations of the vectors X and v for each
simulation. The more a subplot in the spider plot tilts towards
an outer label, the higher PV injection and hence a higher the
probability of a PV system at that location. The more the plot
bends closer to the inner zero points, the less likely it is that the
PV is present at that location. Out of the 9 simulations, only the
one with PV at node 23.1 experienced a tap change in voltage
regulator 67A. As can be observed, the method is able to
capture both the change in the PV injection (approximately 25
kW at that point in time) and the tap change.
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Fig. 7: PV and VRE Estimation results for simulations from 12:25pm
to 12:30pm of 9 scenarios with a single PV.

The method works in the case of multiple PV as well, since for
small PV injections the system behaves linearly. That is, the
impact of 2 different PV systems on the voltage increment will
be the sum of the resulting independent estimation. To verify
this hypothesis, several simulations with multiple PV were run
and analyzed. Fig. 8 shows the estimation results of three
multiple PV case scenarios: 2 PVs at 21A and 56C, 2 PVs at
68A, 114A and 3 PVs at 7C, 105B and 97B for the time frame
from 11:35am to 11:40am.
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Fig. 8: PV estimation results for simulations from 12:25pm to
12:30pm of 3 scenarios with PV at multiple locations.

We observe that the method can detect and predict multiple
PV injections with the same accuracy as with 1-phase PV. The
Chi-Square test indicated a confidence level of 100% in all
estimations.

C. Results with linearly dependent VRE impact

This section presents the particular case when the PV and VRE
impacts are linearly dependent. This conflict causes
singularities in the Gramian of S and hence it is necessary to
use the formulation presented in (15). To represent this
particular case, some buses close to bus 67 have been chosen as
potential candidates. Let us consider buses 67, 62 and 68 as
potential candidates. When X 5 is calculated, it is verified that



the voltage regulator sensitivities can be expressed in terms of
the sensitivity vectors associated to PV located at bus 62 and
67. Fig. 9 shows a bar chart of the vectors that compound Xy zg.
It can be observed that the impact of VRE affects the estimation
at buses 67 and 62, but has little significant impact on bus 68.
In addition, when Dygz = S - Xygp is computed, we find that
Dyrr = Dygp and the confidence level is equal to 1. This
indicates that the VRE sensitivity falls within the PV sensitivity
hyperplane.
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To test the accuracy of this methodology, several simulations
were conducted placing PV systems at conflicting and non-
conflicting nodes. These 7 simulations include a PV at each
phase of buses 62, 67 and 68. The time window between
11:55am to 12:05pm had samples that included tap changes in
addition to PV injection. Fig. 10 shows the resulting estimation.
The method provides high accuracy predictions of the PV
injection in addition to the exact 3 tap changes that occurred in
the simulations with a PV located at 62B, 67A and 68A.
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Fig. 10: PV and VRE Estimation for 7 simulations using (15).

VII. LIMITATIONS

The proposed method has the following limitations, which
will require further analysis in a broader set of test cases:

a) It assumes a perfect model of the distribution feeder and
no noise in the measurements. Real modes usually contain
errors which will reduce the accuracy of the estimations.

b) When there is are multiple very high PV injections that
cause a similar impact in the estimation as VREs (Xyxg), the
method may misclassify as a tap change. Very high PV
injections are very unlikely due to hosting capacity limits.

¢) The method takes as input the time-point voltage samples.
However, some measurement devices only provide the average
voltage over a sampling period, which leads to a measurement
vector that can impact the accuracy of estimations.

VIII. CONCLUSIONS

A method has been described that is able to estimate PV
locations with high accuracy, based on a limited number of
available voltage magnitude measurement streams under the
presence of voltage regulation equipment.

The impact of capacitors and voltage regulators on the
estimation has been analyzed. The knowledge of the expected
impact is used to determined when VRE actions took place.
Depending on the structure of VRE is in terms of the PV
sensitivities, two methodologies presented in this study can be
utilized. If the increase of voltage is linearly independent from
the expected voltage increment due to PV, VRE sensitivity can
be added to the § matrix. On the other hand, if the impact is
linearly dependent, a second estimation is required to determine
the voltage increase due to VRE and to subtract it from the
measurement vector. The simulations carried out on the IEEE
13-bus and IEEE 123-bus test feeders result in highly accurate
results in terms of PV injection estimation, and VRE action
detection.
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