


# Roadmap for Solar Cybersecurity



Resilience Week  
Salt Lake City, 19-22 Oct 2020

*Jay Johnson*

Sandia National Laboratories



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Motivation for the Solar Cybersecurity Roadmap

DER must provide critical reliability services going forward

Interconnection and interoperability standards in the US require DER to provide communication-based grid services

- IEEE 1547-2018 includes communication-enabled grid-support functions for DER
- California Electric Rule 21 requires DER communications

DER cybersecurity is inherently different than ‘business-as-usual’ because:

- Unlike bulk generators, DER often connected to grid operators via public internet
- Unlike most internet-of-things (IoT) devices, DER can directly impact power system operations
- DER typically have limited processing capabilities, so they often do not natively support encryption or other security features

Why should DOE and the national labs have a role here?

- Address long-term and short-term threats
- Promote harmonization across the broader DER and utility sectors
- Assist with orderly evolution of standards

**SANDIA REPORT**  
SAND2017-13262  
Unlimited Release  
Printed December 2017

**Roadmap for Photovoltaic Cyber Security**

Jay Johnson

Prepared by  
Sandia National Laboratories  
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Approved for public release; further dissemination unlimited.

[https://www.researchgate.net/publication/322568290\\_Roadmap\\_for\\_Photovoltaic\\_Cyber\\_Security](https://www.researchgate.net/publication/322568290_Roadmap_for_Photovoltaic_Cyber_Security)

 Sandia National Laboratories

# Roadmap for PV Cyber Security

## Roadmap

- Published in Dec 2017, it outlines a **5-year strategy** for DOE, industry, and standards development organizations in areas of Identify/Protect, Detect, and Respond/Recover
- Focused on PV, but highly **extensible to other DER**
- Closely aligned with 2011 “Roadmap to Achieve Energy Delivery Systems Cybersecurity”
- Explores existing research by DOE, other agencies, and industry

## Major recommendations

- Engage in cross-industry communication and collaborations (e.g., information sharing programs)
- Develop standards, guidelines, and best practices (leveraging existing work)
- Foster R&D programs to develop solutions for protecting infrastructure, detecting threats, and recovering from attacks
- Work to harden infrastructure, conduct self-evaluations, and practice good cyber hygiene to stay ahead of adversaries

**SANDIA REPORT**  
SAND2017-13262  
Unlimited Release  
Printed December 2017

## Roadmap for Photovoltaic Cyber Security

Jay Johnson

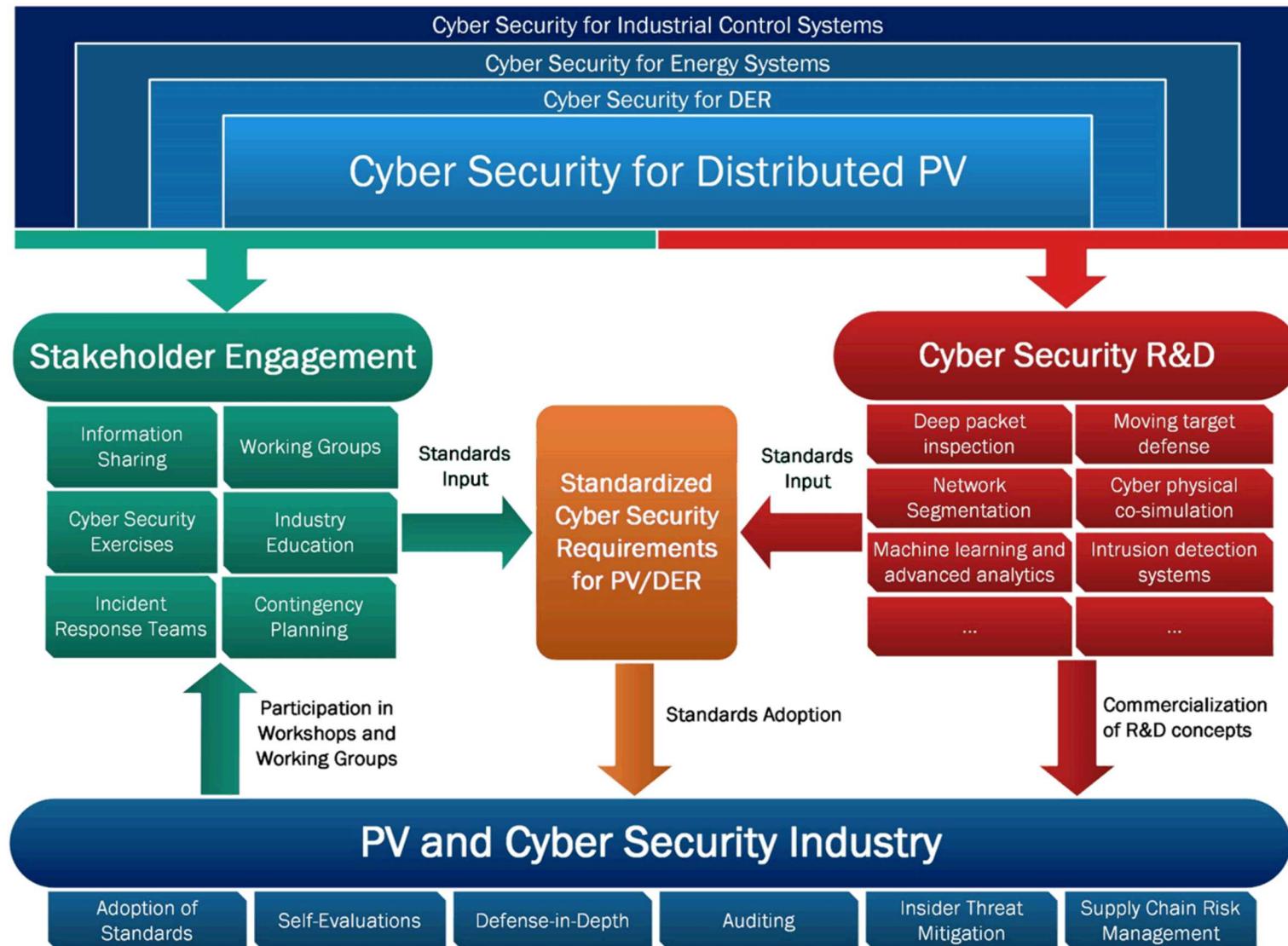
Prepared by  
Sandia National Laboratories  
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Approved for public release; further dissemination unlimited.

[https://www.researchgate.net/publication/322568290\\_Roadmap\\_for\\_Photovoltaic\\_Cyber\\_Security](https://www.researchgate.net/publication/322568290_Roadmap_for_Photovoltaic_Cyber_Security)

 Sandia National Laboratories


Table 1: Photovoltaic Cyber Security Roadmap.

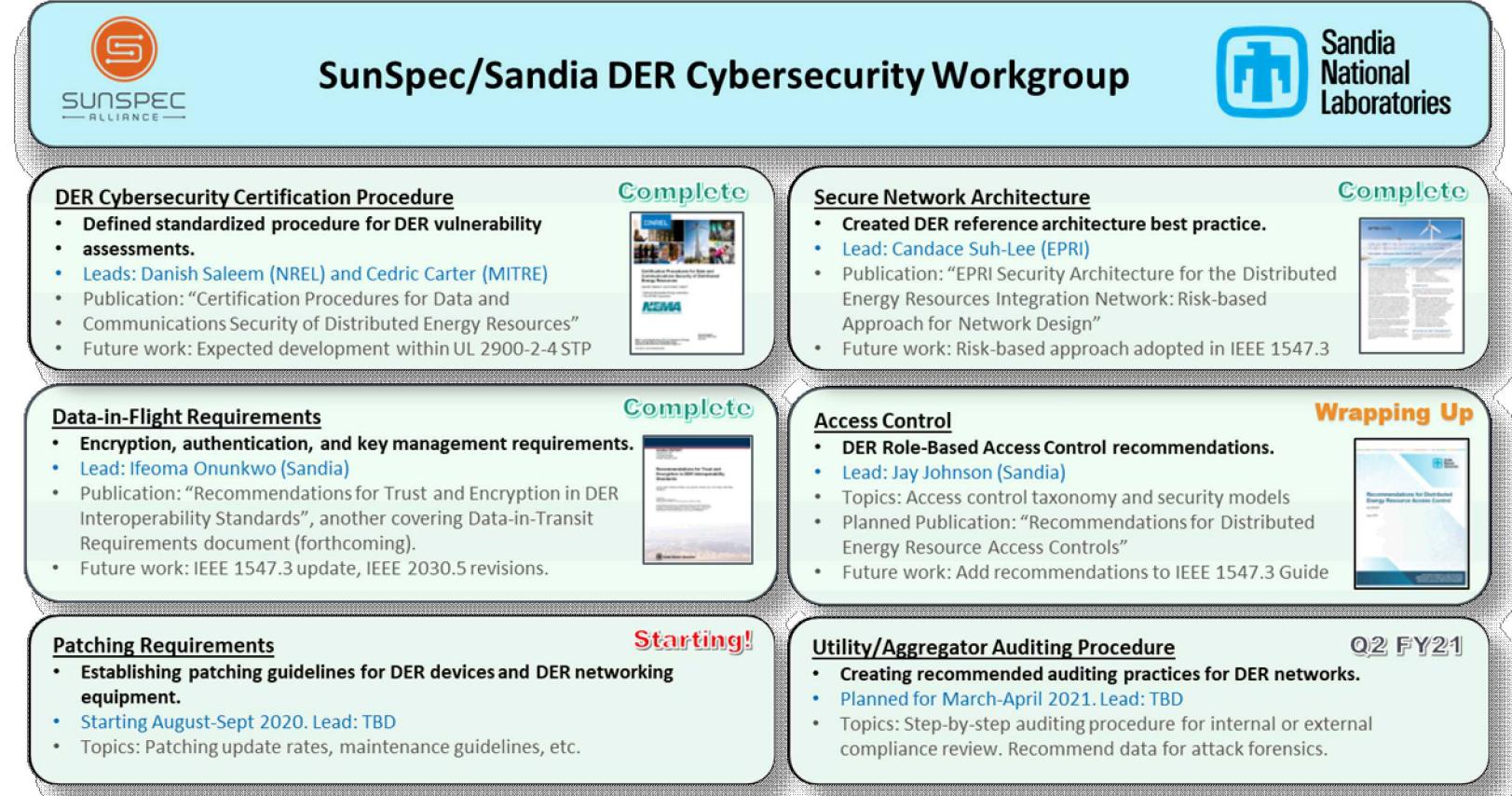
# Roadmap

- **Vision:** By 2023, grid operators, system owners, and aggregators communicate with interoperable photovoltaic systems using safe, secure, resilient networks with high availability, data integrity, and confidentiality.
- **Broken into 3 strategy areas:**
  - Identify and Protect
  - Detect
  - Respond and Recover
- **Focused on 4 areas/user groups:**
  - Stakeholder Engagement
  - Research and Development
  - Industry (grid operators, aggregators, and PV vendors)
  - Standards and Guidelines
- **Major goals:**
  - Commercialize security R&D
  - Create cyber security standards
  - Use situational awareness and intrusion detection systems
  - Standardize response procedures

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Vision</b>                                                   | By 2023, grid operators, system owners, and aggregators communicate with interoperable photovoltaic systems using safe, secure, resilient networks with high availability, data integrity, and confidentiality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Barriers</b>                                                 | <ul style="list-style-type: none"> <li>• Cyber threats are unpredictable and evolve faster than the industry's ability to develop and deploy countermeasures</li> <li>• Security upgrades to legacy systems are constrained by inherent limitations of the equipment and architectures</li> <li>• Performance/acceptance testing of new control and communication solutions is difficult without disrupting operations</li> <li>• Threat, vulnerability, incident, and mitigation information sharing is insufficient among government and industry</li> <li>• Weak business case for cybersecurity investment by industry</li> <li>• Regulatory uncertainty in photovoltaic cyber security</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Strategies</b>                                               | <b>Identify and Protect:</b> Improve security posture and harden PV communication infrastructure to protect PV assets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Detect:</b> Implement tools with protective measures which automatically recognize and warn operators of security breaches                                                                                                                                                                                                                                                                                      | <b>Respond and Recover:</b> Create tools and contingency plans to maintain critical operations and recuperate from cyber security attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Stakeholder Engagement</b>                                   | <ul style="list-style-type: none"> <li>- Establish awareness trainings and information sharing programs for protecting critical infrastructure</li> <li>- Create working groups to establish industry best practices (e.g., patch management)</li> <li>- Conduct cyber security exercises</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   | <ul style="list-style-type: none"> <li>- Establish public-private information sharing program and industry education programs for detecting malicious network activities</li> <li>- Create contingency plans for the loss of DER due to cyber attack</li> </ul>                                                                                                                                                    | <ul style="list-style-type: none"> <li>- Establish incident response teams and associated incident command structure between industry and government agencies</li> <li>- Design resilience into PV equipment so devices fail gracefully and power system operations are not impacted</li> <li>- Create intrusion detection systems to act after detection</li> <li>- Create dynamic assessment tools to manage failures, initiate cyber security remedial action schemes, and regain control given controller compromise or failure</li> <li>- Create forensics and investigatory tools to attribute attacks to those responsible in a timely manner</li> </ul> |
| <b>Research and Development</b>                                 | <ul style="list-style-type: none"> <li>- Create threat models based on risk quantification, red team assessments on virtualized testbeds</li> <li>- Design new segmentation schemes, software defined networks, engineering controls, cryptographic and obfuscation approaches for PV control networks</li> <li>- Assess and protect PV systems with novel physical security, supply chain, and authentication approaches</li> </ul>                                                                                                                                                                                                                                                                   | <ul style="list-style-type: none"> <li>- Establish situational awareness for PV OT networks using advanced analytics and visualization</li> <li>- Design intrusion detection systems using out-of-band data, deep packet inspection, trust monitors, trust-weighting schemes, etc.</li> <li>- Create machine learning-based cyber detection tools which identify atypical network traffic or operations</li> </ul> | <ul style="list-style-type: none"> <li>- Document and eradicate intrusion footholds</li> <li>- Design and implement response, recovery, and contingency plans</li> <li>- Work with government to conduct investigations</li> <li>- Document &amp; share lessons learned</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Industry Best Practices (Grid Operators and Aggregators)</b> | <ul style="list-style-type: none"> <li>- Implement risk management plan</li> <li>- Implement cyber security maintenance and hygiene practices</li> <li>- Use role-based access controls</li> <li>- Implement defense-in-depth approaches to cyber security</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul style="list-style-type: none"> <li>- Implement situational awareness and intrusion detection systems at the grid operator and aggregator levels</li> <li>- Conduct continuous security monitoring with warning and alarm systems</li> </ul>                                                                                                                                                                    | <ul style="list-style-type: none"> <li>- Design PV equipment to fail in predictable, safe manner</li> <li>- Maintain trusted gold master firmware for re-flashing equipment after cyber attack</li> <li>- Respond to newfound vulnerabilities with patches</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Industry Best Practices (PV Industry)</b>                    | <ul style="list-style-type: none"> <li>- Harden PV inverters through aggressive in-house and external testing</li> <li>- Create patching release methodology and assign personnel to rapidly respond to new vulnerabilities</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul style="list-style-type: none"> <li>- Establish anti-tamper mechanisms</li> <li>- Participate in information sharing programs to determine if vulnerabilities detected in other products or networks affect PV equipment</li> </ul>                                                                                                                                                                             | <ul style="list-style-type: none"> <li>- Design PV equipment to fail in predictable, safe manner</li> <li>- Maintain trusted gold master firmware for re-flashing equipment after cyber attack</li> <li>- Respond to newfound vulnerabilities with patches</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Standards and Guidelines</b>                                 | <ul style="list-style-type: none"> <li>- Develop and standardize secure communication architectures and protocols, access rules, and certification procedures</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul style="list-style-type: none"> <li>- Create recommendations for situational awareness programs and best practices for intrusion detection system software</li> </ul>                                                                                                                                                                                                                                           | <ul style="list-style-type: none"> <li>- Establish industry-wide guidelines for contingency operations, restoration procedures, and cyber investigations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>0-2 Year Milestones</b>                                      | <ul style="list-style-type: none"> <li>- Widespread industry engagement in working groups, trainings, and workshops</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>- IDS technologies field tested for aggregator and grid operator PV networks</li> </ul>                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li>- Industry recommendations for PV operations and recovery strategies based on simulations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>3-5 Year Milestones</b>                                      | <ul style="list-style-type: none"> <li>- Create standards or guideline recommendations for cyber-secure protocols, architectures, and certification procedures</li> <li>- Threat intelligence and data sharing between stakeholders</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>- All grid operators and aggregators have situational awareness capabilities and intrusion detection systems</li> <li>- Anonymize and publicize operational datasets for security analytics</li> </ul>                                                                                                                                                                      | <ul style="list-style-type: none"> <li>- Standardize resilient design for PV/DER and associated control networks</li> <li>- Established cyber response teams</li> <li>- Field tests of automated response and recovery</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Goals</b>                                                    | <ul style="list-style-type: none"> <li>- Commercialization and adoption of protection R&amp;D solutions</li> <li>- Publication of cyber security standards for PV control networks</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul style="list-style-type: none"> <li>- Commercialization of intrusion detection R&amp;D solutions</li> <li>- Widespread use of situational awareness and IDS technologies</li> </ul>                                                                                                                                                                                                                             | <ul style="list-style-type: none"> <li>- Commercialization and adoption of recovery R&amp;D solutions</li> <li>- Standardize response and recovery procedures for grid operators</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

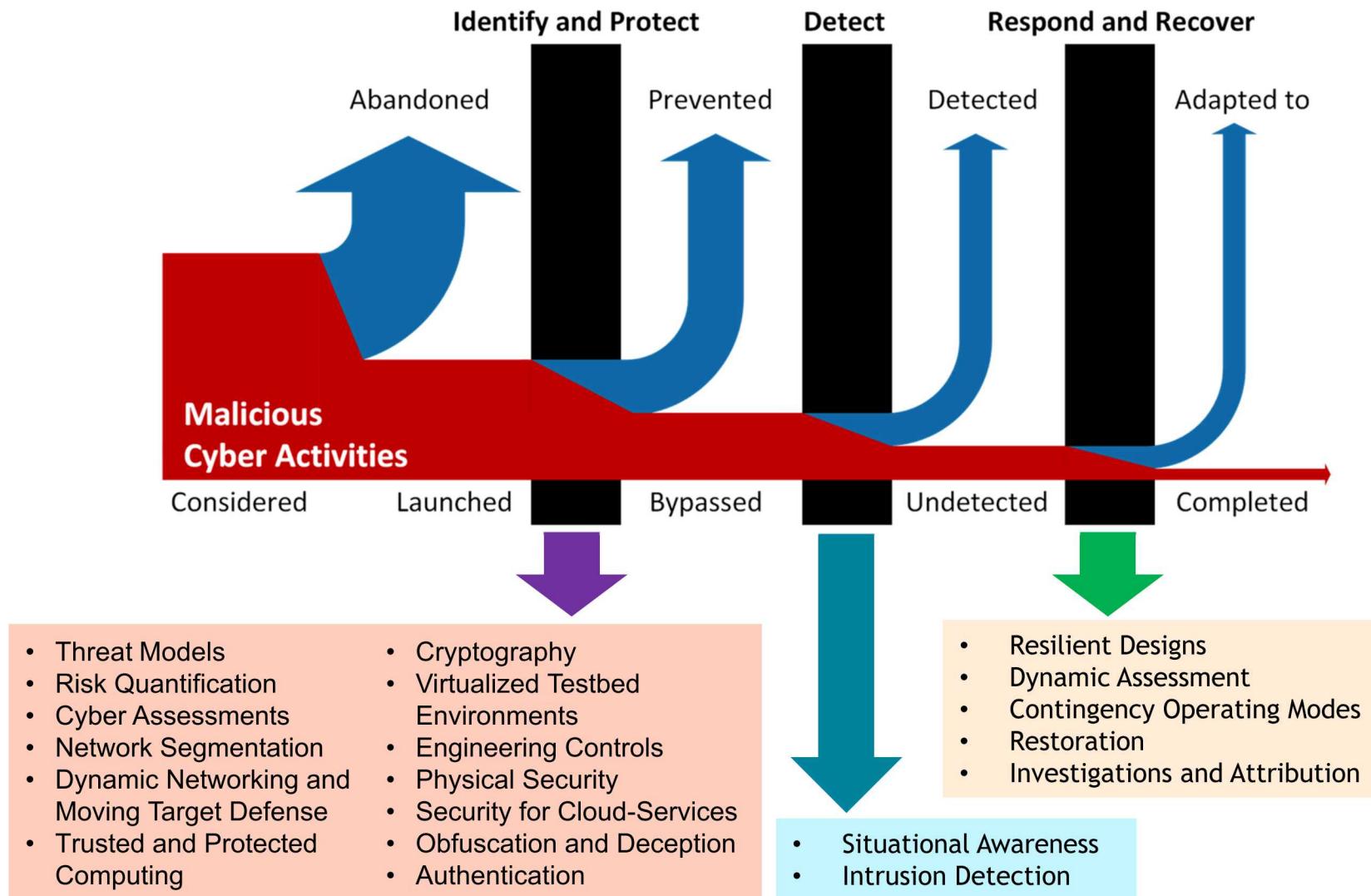
# Roadmap for Cybersecurity for Building Technologies




# Stakeholder Engagement

Engagement activities bring together individuals across industry, academia, and government to exchange ideas and learn

- Typically government (e.g., DOE), industry groups, or NGOs will organize gatherings


## Types of stakeholder engagement

- Information sharing programs:** sharing actionable threat information
- Industry education:** workshops, webinars, conferences, etc.
- Working groups:** e.g., the DER Cybersecurity Workgroup
- Cybersecurity exercises:** industry participates in simulated cyber security attacks to discover system weaknesses (e.g., GridEx)
- Incident response:** public-private coordination to contain, eradicate, and recover from attacks



Workgroup information: <https://sunspec.org/cybersecurity-work-group/>  
Email: [support@sunspec.org](mailto:support@sunspec.org) to participate!

# Cybersecurity R&D



## 8 | Industry Best Practices

DER operators and vendors must make cybersecurity a priority at all levels of their organizations:

- **Adopt industry standards and guidelines**, e.g., NIST SP 800-82 “Guide to ICS Security”
- **Cybersecurity self-evaluations**: use DHS US-CERT Cyber Security Evaluation Tool (CSET) or DOE/DHS Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) to identify critical assets and protect them appropriately
- **Audit control networks** to ensure the system is appropriately architected, patched, and monitored
- **Cyber security hygiene and patching**:
  - Fully document inventories, system topologies, controls, and security practices
  - Use strong passwords
  - Define roles and responsibilities for patching known vulnerabilities
- **Employ defense-in-depth** (layering multiple security features) so the system is less attractive to would be attackers
- Address **supply chain** management and **insider threats**

# So how are we doing after 3 years? (my personal scorecard)

| Strategies                 | <b>Identify and Protect:</b> Improve security posture and harden PV communication infrastructure to protect PV assets                                                                                                                                                                                                                                                                                                                                                                              | <b>Detect:</b> Implement tools with protective measures which automatically recognize and warn operators of security breaches                                                                                                                                                                                                                                                                                                                    | <b>Respond and Recover:</b> Create tools and contingency plans to maintain critical operations and recuperate from cyber security attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0-2 Year Milestones</b> | <ul style="list-style-type: none"> <li>- Widespread industry engagement in working groups, trainings, and workshops</li> <li>- Improving representation at DER Cybersecurity Workgroup meetings, Rule 21 SIWG Cyber calls, etc. <b>Many attend but few engage in conversation.</b></li> </ul>                                                                                                                                                                                                      | <ul style="list-style-type: none"> <li>- IDS technologies field tested for aggregator and grid operator PV networks</li> <li>- <b>DOE funded projects investigating intrusion detection systems for PV/DER applications. Little progress in commercialization/deployment.</b></li> </ul>                                                                                                                                                         | <ul style="list-style-type: none"> <li>- Industry recommendations for PV operations and recovery strategies based on simulations.</li> <li>- <b>Many papers investigating power system impacts from DER cybersecurity attacks. Power system recovery (black start) is known, but few address cybersecurity breach recovery strategies.</b></li> </ul>                                                                                                                                                                                                                                                |
| <b>3-5 Year Milestones</b> | <ul style="list-style-type: none"> <li>- Create standards or guideline recommendations for cyber-secure protocols, architectures, and certification procedures</li> <li>- <b>IEEE 1547.3 Guide is a start, but need to create a national standard for the solar industry</b></li> <li>- Threat intelligence and data sharing between stakeholders</li> <li>- <b>No program at this time. A newly starting DOE TCF project will investigate the creation of a DER-CERT and DER-ISAC.</b></li> </ul> | <ul style="list-style-type: none"> <li>- All grid operators and aggregators have situational awareness capabilities and intrusion detection systems</li> <li>- <b>Discussed extensively. Operational systems are not wide-spread.</b></li> <li>- Anonymize and publicize operational datasets for security analytics.</li> <li>- <b>No known data sharing programs.</b></li> </ul>                                                               | <ul style="list-style-type: none"> <li>- Standardize resilient design for PV/DER and associated control networks</li> <li>- <b>There's a start with the EPRI reference architecture and IEEE 1547.3 guidance.</b></li> <li>- Established cyber response teams</li> <li>- <b>Nothing specific to DER, but the DHS ICS-CERT could respond.</b></li> <li>- Field tests of automated response and recovery</li> <li>- <b>No known demonstrations of cyber response and recovery drills. No automated recovery (e.g., Security Orchestration, Automation and Response) tools exist for PV.</b></li> </ul> |
| <b>Goals</b>               | <ul style="list-style-type: none"> <li>- Commercialization and adoption of protection R&amp;D solutions</li> <li>- <b>PV industry, service providers, and utilities are adding new security features to fielded hardware and OT networks. Much more should be done.</b></li> <li>- Publication of cyber security standards for PV control networks</li> <li>- <b>No standard, but a growing collection of guides for PV applications.</b></li> </ul>                                               | <ul style="list-style-type: none"> <li>- Commercialization of intrusion detection R&amp;D solutions</li> <li>- <b>Many products on the market, but none specifically tailored to PV/DER applications.</b></li> <li>- Widespread use of situational awareness and IDS technologies</li> <li>- <b>Utilities and 3rd party aggregators/DER service providers are exploring options. Implemented systems are for generic OT networks.</b></li> </ul> | <ul style="list-style-type: none"> <li>- Commercialization and adoption of recovery R&amp;D solutions</li> <li>- <b>No known solutions.</b></li> <li>- Standardize response and recovery procedures for grid operators</li> <li>- <b>Extensive guidance for grid recovery, but no procedures for DER cyber-attacks.</b></li> </ul>                                                                                                                                                                                                                                                                   |

# Conclusion

Roadmap highlighted a 5-year strategy focused on:

- Stakeholder engagement
- Codes and standards development
- Research and development
- Industry best practices

Many reasons for government to engage in cybersecurity activities

- Harmonize security practices and standards across the nation
- Accelerate the research, development, and adoption of secure technologies

We're making progress as a community, but there is still substantial work to do in this area. We need prioritize:

- Commercialization of R&D technologies
- Acceleration of codes and standards for DER
- Industry education programs, best practice dissemination, etc.

Thank you!

# Questions?

Jay Johnson  
Renewable and Distributed Systems Integration  
Sandia National Laboratories  
P.O. Box 5800 MS1033  
Albuquerque, NM 87185-1033  
Phone: 505-284-9586  
[jjohns2@sandia.gov](mailto:jjohns2@sandia.gov)