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2 Through-Silicon Vias (TSVs) for MEMS Applications

Benefits of mesoscale Cu TSVs

• Increase I/0

• Aid in system miniaturization

• Simplify design and assembly

• Improve thermal management

• Reduce electrical parasitics

• Span full wafer thickness, required for
MEMS applications

Geometry of our TSVs

• 625 µm in depth

• 62.5 µm in diameter

• 10:1 aspect ratio
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3 Single-additive Electrolyte for Void-free Filling
S-Shaped Negative Differential Resistance (S-NDR) Mechanism, pioneered by Dan Josell and Tom Moffat at NIST1,2

• Plating electrolyte containing Cu salt, acid, chloride, and suppressor

• At a given suppressor concentration more negative applied potential pushes deposition higher in the TSV

• Operational window can be roughly determined through cyclic voltammetry

More negative potential  
1. Journal of the Electrochemical Society, 159 (4) D208-D216 (2012)

2. Journal of the Electrochemical Society, 159 (10) D570-D576 (2012)

• Void-free filling can be achieved
• Delicate balance of applied bias, electrolyte

composition, and solution replenishment
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4 Controlling Suppressor Behavior

• Suppressor molecules and chloride coadsorb to the metal surface

• Changing the suppressor concentration or the chloride concentration can alter the level of
suppression in the system

Tetronic 701 Suppressor Effects on Cu Plating Chemistry
1.25 M Cu504, 0.25 M MSA, 1 mM KCI, and variable Tetronic 701
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CI Concentration Effects on Cu Plating Chemistry
1.25 M Cu504, 0.25 M MSA, 5011M Tetronic 701, variable KCI
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Establishing an Operational Window
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RDE Voltammetry
1 M CuSO4, 0.5 M H2504, 401..IM

Tetronic 701, 80 p.M KCI
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Apply these results to voltage stepping recipe

• Start at a voltage more positive than -520 mV (MSE)

• Sustain each voltage for —1-2 hours



6 Stepping Applied Voltage to Fill the Vias

• Based on the operational window established, create
voltage stepping recipe. Step voltage from -500 mV to
-560 mV (MSE) in 10 mV increments for 2 hours each
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4 CT scan shows minor seam voids

4 Increasing time held at step 5 may eliminate voids
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, I Experimental Changes Leading to Void-free Filling

• Increase length of step number 5 (-540 mV) to mitigate void formation
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8 Endpoint Detection Method to Determine Fill Completion

Why is there a characteristic dip in current the end of the deposition?
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9 Endpoint Detection Method to Determine Fill Completion
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10 Moving from Die Level to Wafer Plating (WLP)

Potential issues when moving to WLP
1. Voltage-controlled filling is not compatible

with production scale plating tools
2. Sample surface area will increase from

small 1 cm2 die to full wafer size
3. Vias at different points along wafer radius

move at different linear velocities

=>

How can these issues be solved?
1. Can we derive current-controlled plating processes from

our voltage-controlled deposition recipe?
2. How does current scale with increasing die size? Does

current scale with total conductive surface area or via
cross-sectional area?

3. What is the impact of rotation rate on Cu fill profile?



11 Developing a Current-controlled Filling Solution

4 Take voltage-controlled method and measure current. Use measured current to develop a current- controlled process.

Voltage-controlled Cross-Section

Current-controlled Cross-Section

• Current-controlled sample appears to be void-free

• Deposition slower than for voltage-controlled

• For current-controlled deposition, voltage
tracks well with the applied voltage recipe
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12 
Scaling Die Size for WLP Development

• Determine required current density profile for plating a full wafer

• Does current scale with number of vias or conducting surface?

Sample is

fastened to Al

rod and rotates
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Voltage-Controlled Recipe

13 Rotation Rate Experiments
• Rotate die level samples at different rotation rates to

obtain information about fluid velocity relative to TSVs

and corresponding TSV fill profiles

• Mimic these conditions for wafer level plating
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14 Future Work

4 Process tuning and development will continue as we scale the single die,
voltage-controlled recipe, performed in a 200 mL plating bath, to a current-
controlled, full wafer level process in a 10 L tool.

4 Perform more targeted studies to evaluate if current scales with number of
vias or the sample's total conducting surface.

Produce a wafer level plating process for full wafer thickness TSVs for MEMS
applications and other microelectronics applications.
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