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2, | Through-Silicon Vias (TSVs) for MEMS Applications

M. Yoo, SEMICON Taiwan 2012

Benefits of mesoscale Cu TSVs prace
* Increase I/0 ;
Aid in system miniaturization
Simplify design and assembly
Improve thermal management
Reduce electrical parasitics

Span full wafer thickness, required for
MEMS applications
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Geometry of our TSVs
* 625 um in depth
* 62.5 um in diameter
* 10:1 aspect ratio

DRAM die TSV

3D Stacked Die with integrated TSVs




Single-additive Electrolyte for Void-free Filling

S-Shaped Negative Differential Resistance (S-NDR) Mechanism, pioneered by Dan Josell and Tom Moffat at NIST%?
* Plating electrolyte containing Cu salt, acid, chloride, and suppressor

* At agiven suppressor concentration more negative applied potential pushes deposition higher in the TSV

e QOperational window can be roughly determined through cyclic voltammetry
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4 ‘ Controlling Suppressor Behavior @

* Suppressor molecules and chloride coadsorb to the metal surface

* Changing the suppressor concentration or the chloride concentration can alter the level of
suppression in the system

Tetronic 701 Suppressor Effects on Cu Plating Chemistry KCl Concentration Effects on Cu Plating Chemistry
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— Chloride concentration can be used to tune electrolyte system behavior



-1 Establishing an Operational Window @ |
RDE Voltammetry
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. | Stepping Applied Voltage to Fill the Vias

= Based on the operational window established, create

: . Step 2
voltage stepping recipe. Step voltage from -500 mV to -510Finv
-560 mV (MSE) in 10 mV increments for 2 hours each (MSE)
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- CT scan shows minor seam voids -560 mV
- Increasing time held at step 5 may eliminate voids (MSE)




; | Experimental Changes Leading to Void-free Filling

= |ncrease length of step number 5 (-540 mV) to mitigate void formation

Applied Voltage
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CT scan results confirm void-free, bottom-up filling!

Short Step #5 (2 hrs)




s | Endpoint Detection Method to Determine Fill Completion

Why is there a characteristic dip in current the end of the deposition?

| Current|/mA

Measured Current for Voltage-controlled Experiments

Time/hr

1 L e OB " r I EeEeEEm == |



» | Endpoint Detection Method to Determine Fill Completion
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Current minima indicating
deposition reached top of via.
After suppression breakdown
on the field surface, current
increases rapidly.




10 ‘ Moving from Die Level to Wafer Plating (WLP) @

Potential issues when moving to WLP

1.

Voltage-controlled filling is not compatible
with production scale plating tools
Sample surface area will increase from
small 1 cm? die to full wafer size

Vias at different points along wafer radius
move at different linear velocities

/ msesupplies.com

How can these issues be solved?

1.

Can we derive current-controlled plating processes from
our voltage-controlled deposition recipe?

How does current scale with increasing die size? Does
current scale with total conductive surface area or via
cross-sectional area?

What is the impact of rotation rate on Cu fill profile?

T '



. ‘ Developing a Current-controlled Filling Solution

— Take voltage-controlled method and measure current. Use measured current to develop a current- controlled process.

Voltage-controlled Cross-Section Measured current from voltage-controlled process

<
é 0.60 -
— 0.40 -
c
© 0.20 |
i 0.00 T T 1 T 1 T T 1 T 1 T T T T | T 1
0 4 8 12
Time/hr
<Ef 0.60 {4 Applied currentin current-controlled process
= 0.40 - /
e
2 0.20 A :
500 +—/—-r—+++—+—+—++++—
0 4 _ 8 12
Time/hr
= Current-controlled sample appears to be void-free 0.56 - Tracking Voltage
= Deposition slower than for voltage-controlled %" 054 - Iy
= For current-controlled deposition, voltage < 052 -
tracks well with the applied voltage recipe L% 0.50 -
048 T T T T T T T T T T T T T T T
0 12

Time/hr 8



., | Scaling Die Size for WLP Development

Voltage-Controlled Recipe

— Determine required current density profile for plating a full wafer 057 -
: . : 0.56 - e
— Does current scale with number of vias or conducting surface?
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Rotation Rate Experiments

— Rotate die level samples at different rotation rates to
obtain information about fluid velocity relative to TSVs
and corresponding TSV fill profiles

- Mimic these conditions for wafer level plating
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Future Work

— Process tuning and development will continue as we scale the single die,
voltage-controlled recipe, performed in a 200 mL plating bath, to a current-
controlled, full wafer level process in a 10 L tool.

— Perform more targeted studies to evaluate if current scales with number of
vias or the sample’s total conducting surface.

—> Produce a wafer level plating process for full wafer thickness TSVs for MEMS
applications and other microelectronics applications.
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Thank you — Questions?
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