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Better Electrolytes for Batteries

Lithium-ion rechargeable battery
Discharge mechanism

•-•> Load

Electrons

Separator
Anode

Current

Cathode

Electrolyte
(Polyrner battery: gel polymer electrolyte) 02006 IlowStuf fWorks

http://electronics.howstuffworks.com/everyday-tech/lithium-ion-
battery.htm
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standard electrolytes: salt in organic liquid
high conductivity > 1 mS/cm

• flammable

• poor mechanical properties

• Los Alamos
NATIONAL LABORATORY

Wood, K. N et al ACS Central Science, 2(11), 790-801.

• polarization since both ions move

• low transference #
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Polymer Electrolytes

salt in polymer: e.g. LiTFSI in PEO

v not flammable x
v better mechanical properties

• polarization since both ions move

• low transference #
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low conductivity!

-(1k1)_
N.

A C2E05 o C2E04
0 C4E05 • C4E04
• C6E05 • C6E04
• PEO

• Los Alamos
„  

NATIONAL LABORATORY

1903

Pesko, D. M., et al. (2016). Macromolecules, 49(14), 5244-5255.

Timachova, K., Watanabe, H., & Balsara, N. P. (2015). Macromolecules, 48(21), 7882-7888. 6



Single-lon Conductors (SICs)

SIC: a material with only 1 mobile ion; other ion is covalently bound

b

ceramics

25 mS/cm at room temp
but brittle

M(4d)X4 P(2b)X4

(M = P or Si; X = S or CI)

Li(16h), Li(8f) Li(4c)

Li(4d)X6

c

A

polymers

t+ z 0.85
but 6 = 1.310-5 S/cm at 60C

0 Sandia
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r„,  

s/ not flammable

s( better mechanical properties

s( no polarization

s( high transference #

Kato, Y et al. (2016). Nature Energy, 16030. Bouchet, R et al. (2013). Nature Materials, 12(5), 452-457. 7



Conductivity in Polymer SICs

still too low!
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10-8

' Traditional Liquid Electrolyte at Room Temperature '
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Diederichsen, K. M., McShane, E. J., & McCloskey, B. D. (2017). "ICS Energy Letters, 2(11), 2563-2575.
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Electrostatics of lons

interaction energy: U (r) =

in water: E rz 80
NaCI dissolves

1  ql q2 
E = dielectric

47E0E r constant

electrostatics favor aggregation

entropy favors dispersion

http://wps.prenhall.com/wps/media/objects/3312/3391718/b1b1301.html

in polymers: 2 < E < 10
for E = 2.5, d = 2Å

+ +
-112 kT

-66 kT

ions strongly aggregate

0 Sandia
National
Laboratories
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Ionic Aggregates form in Polymer SICs

ionomer melts

TEM showing
aggregates

PEpAA9.5-Zn56

Seitz et al., J Am Chem Soc 132, 8165 (2010)

PSS with Zn+2

—(nrn-3)
leV

2CCC 

1600'

12001-

›P

800L

•

400

0 
0 0 20 3.0

q(nrn— l)

+ A

x s

o C

o D

50

Yarusso & Cooper, Macromolecules, 1983
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  E, 1903  

"ionomer peak"
• ubiquitous
• low wavevector peak in scattering
• from inter-aggregate scattering

ionic aggregates

d = Zrc/q
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Many Ionic Aggregate Morphologies

Experiment (X-ray scattering) 

disordered

0 0 Zn
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14
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Seitz et al, JACS (2010)

1% humidity, = 1

Trigg et al, Nature Mat (2018)

Temperature
►
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MD Simulation 

isolated aggregates
ro

SO3Na

layers

O

C — (OCH2CH2)17 
O

• LosAlamos
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Lin, K.-J., & Maranas, J. K. (2013)

Trigg et al, Nature Mat (2018)

percolated aggregates

PES23Li 3/-4,

a = 75.8 (A)

0 0- Li+
22N/F)'/

171 I 
/ 
/
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0.1 0.2 0.3 0.4 0:5

q (Al 11
Lu et al, JACS (2020) Frischknecht et al (2020)



What Influences lon Transport?

Polymer mesostructure,
architecture

le •
stringy

sph9eical
•• •

•
•

Segmental dynamics

• 
•••

isolated-
••

lon aggregation structure

0 Sandia
National
Laboratories

lon-ion
interactions

yCation
solvation
dynamics
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Schauser, N. S., et al. (2020). J Am Chem Soc, 142(15), 7055-7065.

• polymer dielectric constant
• ionic aggregate morphology
• ion—ion interactions
• ion solvation energetics and dynamics
• polymer segemental dynamics (Tg)

12



Could lons Move in Aggregates?

Evidence from coarse-grained MD simulations

= 4

p9AA n

discrete clusters

ri-ChS fcrr

percolated

ions change places with neighbors
clusters merge/break up

h

C) SandiaNational
laboratories

+ — pair energy = 48 kT

energy to move between clusters:

about 2 kT

(up to 6 kT)

h 5.96

Hall et al., Macromolecules (2012) 13



Questions for Today

• what is the nanoscale morphology of ionic aggregates?

• pnAA-y%X

• p5PhSA-X

• how do ions move in polymers with ionic aggregates?

• atomistic MD simulations

• coarse-grained MD simulations

• can spatially-continuous, percolated aggregates improve ion transport?

• partial evidence from simulation

.

C) SandiaNational
laboratories • IsN-A'F'PN!!`,12,,,,r99,,,
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Modeling (Simulating) Polymers

M

/'61:
—wielk

0

CoeIs de, a sfAer.cd Cool

04. raGLAS

string model
• good for theory
• mesoscales

coarse-grained model
• used a lot in simulations
• intermediate length, time scales

0 Sandia
National
Laboratories

atomistic model
• chemically specific
• limited in time, length scales

\ 1 1
• Los Alamos

NATIONAL LABORATORY
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Computational Methods in Polymers

Peters, Langmuir, 2012

Yao, Sci Rep, 2014

Quantum
mechanics

Atomistic
molecular dynamics

Voss, Phys Chem Chem Phys, 2016

Simocko, ACS Macro Lett, 2016

Coarse-grained
molecular dynamics

Field
theory

2

2
2
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3

0 0
Arora, Macromolecules, 2016

Arnarez, J Chem Theory Comput, 2015

• Los Alamos
NATIONAL LABORATORY
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Molecular Dynamics Simulations

• put atoms in a box
• solve F = ma for each atom
• calculate statistical properties (averages) over trajectories

need to know forces on each atom: "force field"

• intramolecular
• bonds
• angles
• torsions

• intermolecular
• nonbonded, i.e. van der Waals
• electrostatics (Coulomb)
• polarizability

100

E/cm-1

50

0

-50

-100

0 Sandia
National
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Repulsive +A/r12

V(r) = 4E 
12 ( 0 )6 

— —
r•

Attractive —B/t6

3.0 4.0 5.0 6.0

r/Å

7.0 8 0

• LosAlamos
NATIONAL LABORATORY

http://chemistry.stackexchange.com/questions/34214/physical-significance-of-
double-well-potential-in-quantum-bonding

17



Output from MD Simulations

"trajectories": coordinates of all the atoms, as a function of time
• average over time to get spatial information
• analyze in time for dynamics (e.g., ion motion)

whole system

60

single polymer chain

0 Sandia
National
Laboratories

• Los Alamos
NATIONAL LABORATORY
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Precision PE-Based Polymers I

.e•

00H p9AA

(22 mol% AA)

2000

1500

1000

500

0

p9AA

Precise spacer
length (p9, p15,
p21)

0 OH

(9.5 mol% AA)

43%

Neutralization
level

2 4 6 8 10

q [nm 1]

1 2 14

Zn82
Zn81

ZnO
ZnO

Li

p21AA

Counterion
type (Li', Na+,
Cs', Zn2+)

n

glass transitions
• pnAA: Tg = 3-13 °C
• p9AA-35%Li: Tg = 69 °C
• p15AA-38%Li: Tg = 53 °C

0 Sandia
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Atomistic MD Simulations

• Los Alamos
NATIONAL LABORATORY

• OPLS-AA force field

• 80-200 polymers

• 81, 90, or 84 backbone carbons/polymer

•- 6 nm box, total of -25,000 atoms

• NVT ensemble, T well above Tg

• LAMMPS

19
M. E. Seitz et al., J. Am. Chem. Soc. 2010, 132, 8165-8174.



Ionic Aggregate Morphologies

aggregates: all ions + C00- groups within a cutoff distance

100% neutralized systems form
percolated aggregates at long times

p9-100%Li

p21-100%Li

p15-100%Li

ci Sandia
National
Laboratories

partially neutralized systems form
isolated aggregates

p9-20%Li

p21-38%Li

• Los Alamos
NATIONAL LABORATORY
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Comparison to X-ray Scattering

calculate total scattering from MD simulations
• include scattering functions I.; for each atom type

35

30

25

20
CT

(7) 15

10

p9AA-35%Li

5 10

q (nm
1
)

5 10 15 20
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15 20

S (q) =

40

35
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25
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10

5

fi2 p

pl 5AA-38%Li

lo

C) SandiaNational
Laboratories
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” sin(qr) 2  
 r f (gii (r) — 1)dr

qr

0  
0

X-ray

MD

5 10

q (nm
1
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excellent agreement!
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0 5 10

p21AA-38%Li

- X-ray

 MD
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1
)

15 20

Middleton, L.R. et al, Polymer 144, 184 (2018)
Frischknecht and Winey, J Chem Phys 150, 064901 (2019) 21



X-ray Scattering Doesn't Determine Morphology

need simulations
or imaging!

d)

p21AA-56%Zn
Type 1

30

as 20

c
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c

2 4 6 8 10 12 14 16

q(nm-1)

e)
50

40
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c
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10

p9AA-43%Li
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fl
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q(nm-1)
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0 Sandia
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Buitrago, C. F. et al. Macromolecules 48, 1210-1220 (2015).
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Precision PE-Based Polymers 2

precise sulfonated polymer

4PCP P4PCP p5Ph

o

SO3X

710
p5PhSA-X

X=Li+, Na+, Cs+
p5PhSA

Kendrick IV, A. (2018). Macromolecular Rapid Communications, 25,
1800145-1800148.

polymers are glassy!

Ir ITV III 1 • • I • • • I f I • I 'V • II • •

p5PhSA-Cs

p5PhSA-Na

p5PhSA-Li

p5PhSA
'7-9=103°C

286°C286°C:
••

510 0 .20.6 .3660 
T(°C)

0 Sandia
National
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Tg=103°
in p5PhSA
(acid form)

Tg is absent or
very high in
p5 PhSA-X

Atomistic MD Simulations

• OPLS-AA force field

• 216-1728 polymers

• 8 repeat units/polymer, - 8 nm box

• extensive annealing at high temperature/pressure

• production runs at 160 °C in GROMACS

• Los Alamos
„  

NATIONAL LABORATORY

1903
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Ionic Aggregate Morphology

p5PhSA-Li p5PhSA-Na

103-

C13 
1 02 -

(7)

LE'1O1 -:

(a) —Exp (160°C)_
c11 Exp. (40°C)

p5PhSA-Cs

— Exp. (160°C)_
  Sim. (160°C)

p5PhSA-Li

p5PhSA-Na

.••

p5PhSA-Cs•
•• ....... •

6 8 10 12 14 16 18 20

q (nm
-1
)

4 6 8 10 12 14 16 18 20 0

q (nm 1)

0 Sandia
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all ionic aggregates percolate
through the simulation box

good agreement with X-ray

Paren, Thurston et al, Macromolecules (2020)

• Los Alamos
NATIONAL LABORATORY
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Intermediate-Scale Morphology

extract subclusters from percolated aggregates
use graph theory: who is connected to who?

0 Sandia
riataxial
Laboratories

for each subcluster: calculate gyration tensor
• 3 eigenvalues: give relative shape
• shape anistropy K2

• K = 0: sphere
• K = 1 : rod

• IsN-A'F'PN!!`,12,,,,r99,,,

Ribbon-like:

K1=0.52

/1 > /2 > /3 Planar:

0=0.22t

/1 •-=, /2 > /3

.

Isotropic: /1 •-',

0=0.059t
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Paren, Thurston et al, Macromolecules (2020) 25



Subcluster Shape Distributions

U 0.10-

w 0.05-

0.00

0.0

Polymer (median Ki?)

• • . • p9AA-100%Li (0.47).

p5PhSA-Li (0.21)

p5PhSA-Na (0.15) -

— p5PhSA-Cs (0.06)

a •
e • • *.

• * **
st • Ike • • 'A

s*
*•*1

. • • • • . .

0.5 1:0

K2.

Paren, Thurston et al, Macromolecules (2020)

0 Sandia
National
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sulfonates: planar/ribbon

(a) p5PhSA-Li (b) p5PhSA-Na

‘911:11rAir

carboxylates: stringy

• Los Alamos
NATIONAL LABORATORY

26



Questions for Today

• what is the nanoscale morphology of ionic aggregates?

• pnAA-y%X

• p5PhSA-X

• how do ions move in polymers with ionic aggregates?

• atomistic MD simulations

• coarse-grained MD simulations

• can spatially-continuous, percolated aggregates improve ion transport?

• partial evidence from simulation

.

C) SandiaNational
laboratories • IsN-A'F'PN!!`,12,,,,r99,,,
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Slow Dynamics in pxAA SICs

p21-100%Li, T = 600K

clusters showing only Li+ and 0-

t to

0 Sandia
National
Laboratories

t = to + 1 µs (1000 ns!)

• Los Alamos
NATIONAL LABORATORY

Frischknecht et al, Macromolecules 52, 7939 (2019) 28



lon Motion in pxAA-35%Li

0 0-M+

p9AA

p9AA-35%Li

isolated clusters

n

• > 1 !us simulation time
• T = 600K

t = 298.8 ns

C) SandiaNational
laboratories • IN-.'?P.!!`,1:?,,,,T.TT,

A.L. Frischknecht et al., Macromolecules 52, 7939 (2019)
29



lon Motion in pxAA-35%Li

0 UM+

p9AA

p9AA-35%Li

isolated clusters

n

• > 1 !us simulation time
• T = 600K

t = 298.8 ns

0 Sandia
National
Laboratories

t = 327.6 ns

t = 403.6 ns

t = 453.2 ns

Win

• Los Alamos
NATIONAL LABORATORY

A.L. Frischknecht et al., Macromolecules 52, 7939 (2019)
30



Dynamics in Isolated Aggregates

coarse-grained simulations

isolated clusters

clusters merge/break up

NO'

0 Sandia
National
Laboratories

time

• Los Alamos
NATIONAL LABORATORY

Hall et al., Macromolecules (2012) 31



lon Motion in pxAA-I00%Li

0, 0-M±

p9AA n

p9AA-100%Li 102 

percolated aggregate `-‘<C 

a

0 Sandia
National
Laboratories
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10°

10-1

.....................................................

........
..................................

p21-100%Li, Li
p9-100%Li, Li

  p21-100%Li, C
  p9-100%Li, C -

10° 101

time (ns)

102

• at long times, ions move
faster than polymer

• not close to diffusive regime
after > 1 vis

A.L. Frischknecht et al., Macromolecules 52, 7939 (2019) 32



lon Motion in p5PhSA-X

(a)
10°-

(b)

10- -

Cation / SO3

p5PhSA-Cs —/ 
p5PhSA-Na —/ 
p5PhSA-Li —/

-----------

.••••

•••• 
••••••

-----------------
. 

.

10° 101 102 103
t (ns)

p5PhSA-Na
Na

 SO3

— - — C (backbone)

---------

---------

10° 101 102 103
t (ns)

•

t = 1.85 ps

• ions move faster than S03-, backbone
• not diffusive after several ps
• ions rearrange with neighbors in the aggregate

SO3X

-6-

r-1

-7-

(i)
-8 -

"Z-.)
-9 -

-11-

0 Sandia
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T (°C)
210 180 150 120 90 60

1 l.

• p5PhSA-Cs -
A p5PhSA-Na
• p5PhSA-Li

2 0 2.2 2.4 2.6 2.8 3.0 3.2

1000K/T

• Los Alamos
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• conductivity measured by EIS
• Arrhenius temperature dependence
• ion dynamics in same relative order as

in MD (Cs+ is fastest, Li+ is slowest) 33
Paren, Thurston et al, Macromolecules (2020)



Comparisons

Would a larger anion help?
by leading to better ion dissociation...

0®
0 X

00==0

p5PhSA-X

X=Li+, Na+, Cs+

0 \S/
0, CF3

X ON• \\O
so==c)

n

PSTFSI-X

X=Li", Cs+

c] SandiaNational
Laboratories

Ea (kJ/mol) log (A)
(Scm2/mol)

p5PhSA-Li

p5PhSA-Cs

pSTFSI-Li

105 -11.0 > 220

76 -9.8 > 260

127 -12.9 234

pSTFSi-Cs 85 -9.2 197

larger anion has higher activation energy
larger anion has lower conductivity

differences in morphology?

• Los Alamos
 „,aoaAroaY

Stacy, E. W. et al, Macromolecules 51, 8637 (2018) 34



Coarse-grained MD Simulations

Previous work: conductivity is higher in percolated aggregates

0.001

0.0001

0

105
2 4

ionenes
pendants

0 Sandia
National
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n-percolated morphology

6 7 8 9 10

N

• conductivity decreases with decreasing ion concentration
• lowest for non-percolated aggregate morphology

• IN-A'F'PN!!`,12,,,,T.2s,,,

Ting et al., Macromolecules, 2015 3 5



lon motion in CG simulations

"Hall" model: bead-spring chains + charges
bead size G, cation size .56
N = 35-39
800 polymers
melt (T>Tg)
vary dielectric constant E

pl 3 polymer (sparse)

10-5
0.0

•
p5

P7
*

p9

pl 1 •
•

P13 • spacer length

•
• p1

• p2
p3

0.2 0.4 0.6

mol frac. ions (CB+CI)

0.8

0 Sandia
National
Laboratories

0

p 1 polymer ("polyllr)

negative correlation between Da and ionic content

• Los Alamos
NATIONAL LABORATORY
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Effect of morphology on ion diffusion
pr
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lon association lifetime

SOO =
< # CBs cont. bonded to Cls from to < t < to+ A t >

< # CBs bonded to CI at time to >

ions associated if within 1.16; unassociated if outside 1.76

<11=

cr)
v) 10°-o
o_a
o

y I 0-1
o
"E
0

0
1 0-2

2u_

S(At) ~ exp { —(At/ )16 }

10° 10' 102 103
105 lag time At

S. Mogurampelly, J.R. Keith, and V. Ganesan,
J Am Chem Soc 139, 9511 (2017)

104

0 Sandia
National
Laboratories

• LosAlamos
NATIONAL LABORATORY

polymerized ionic liquid
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lon association lifetime

S(At) =
< # CBs cont. bonded to Cls from to < t < to+ A t >

< # CBs bonded to CI at time to >

I I I 1 ' 1 ' 1 ' 1 ' 1 '

10 0 0 0

i clustered 
l crossover -

7m percolated
-W1,1,1.1.1.1.

0 2 4 6 8 101214
N

1 0-1

1 0-2

c\I
t;) 1 0-3

0

1 0-4

1 0-5

10-2 10-1-1 , -1
s k-u )

for percolated aggregates: Dc cx 1/Ts

C) SandiaNational
Laboratories

CEP • Los Alamos
NATIONAL

„ 

LABORATORY

39



lon "stepping" along percolated aggregates

p = 3, E = 4.0

full system 1 0 6 slice
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Bollinger, Stevens, & Frischknecht, ACS Macro Lett 9, 583 (2020) 40



lon "stepping" along percolated aggregates

Anion network (at At=0), 407 slice

Cation

of interest

p3, 8 = 4 — percolated

Path of anion neighbors

Path covers

At=34-us

At=2Ts
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capture when counterion moves to
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lon "stepping" along percolated aggregates

Anion network (at At=0), 46 slice

Cation

of interest

p3, E = 4 — percolated

-

A 'M. Ord ar

--opar

Path of anion neighbors
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anion neighbors at

various lag-times

Yellow anions are

distinct from pink

anions (i.e., new colors

equal completely new

neighbors)
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lon "stepping" along percolated aggregates

Anion network (at At=0), 46 slice

Cation

of interest
Path of anion neighbors

Path covers

At=34ts

At=2T5

Ad=30ff
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anion neighbors at

various lag-times
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Percolated Aggregates to Enhance Conductivity?

co
>,
'5

O

can spatially-continuous, percolated aggregates improve ion transport?

percolated aggregates good for conduction in:

• ceramics

• polymerized ionic liquids (?)

• hydrated SIC polymers (eg Nafion, p5PhSA, ...)

103 
0 10 20 30 40 50 60 70 80 90 100

% RH

0 Sandia
National
laboratories

for melt polymer SICs

• Los Alamos
NATIONAL

„ 

LABORATORY

need to reduce ion association lifetime

• add solvent to aggregates?

• use larger anions?

• better polymer architecture?
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Conclusions

• ionic aggregate morphology dependent on

• anionic functional group, cation, polymer backbone

• ions in discrete ionic aggregates move by cluster rearrangements

• ions in percolated ionic aggregates move by stepping along the aggregate

• the "stepping" time is the ion association lifetime Ts

• diffusion constant proportional to inverse lifetime Dc oc 1 /-cs

• better ion conductors: lower Ts!

• weaker electrostatic interactions

• larger ions, more delocalized ions

• add solvent for better screening/dissociation
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lon motion in discrete aggregates
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Energies in CG Simulations

ideal cluster:
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— pair energy (contact) is 48 kT.

pairs are not likely to separate.
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