

Real-time Parameter Estimation of Lithium-Ion Battery Models Using a Novel Tanks-in-Series Approach

**Modeling, Analysis, and Process-control Laboratory for
Electrochemical systems**

Suryanarayana Kolluri^a, Akshay Subramaniam^b, Prateek Mittal^a,
Yuliya Preger^c, Krishna A. Shah^a,
and
Prof. Venkat R. Subramanian^a

^aWalker Department of Mechanical Engineering & Material Science Engineering,
Texas Material Institute, The University of Texas at Austin, Austin, TX

^bDepartment of Chemical Engineering, University of Washington,
Seattle, WA

^cSandia National Laboratories, Albuquerque, NM

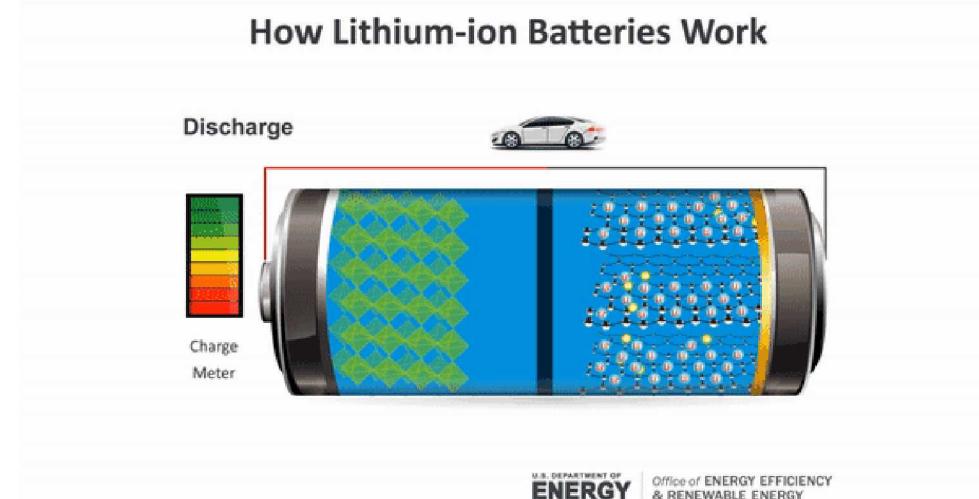
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Overview

- ▶ **Introduction**
- ▶ **Background**
- ▶ **Novel Tanks-in-Series model**
- ▶ **Problem Formulation**
- ▶ **Proposed Methodology**
- ▶ **Results and Discussions**
- ▶ **Conclusion**

Introduction

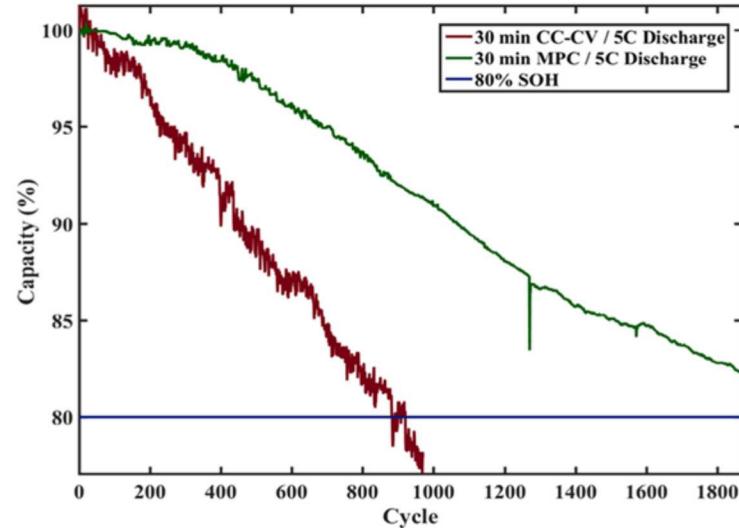
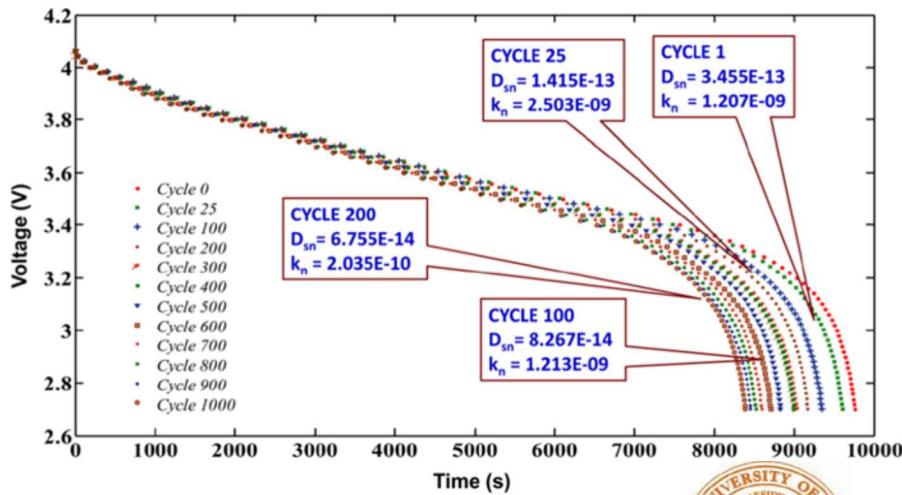
- **Lithium-Ion batteries are becoming increasingly popular.**



- **To monitor, control, and predict the performance of Li-ion batteries, advanced electrochemical model-based battery management systems (BMS) play a vital role.**

Physics Based Battery Management System

- Model-based BMS can double the cycle life.
- Physics-based battery models are complex, and parameters change over cycles.
- Accuracy of the model parameters determines model's predictability of internal states.

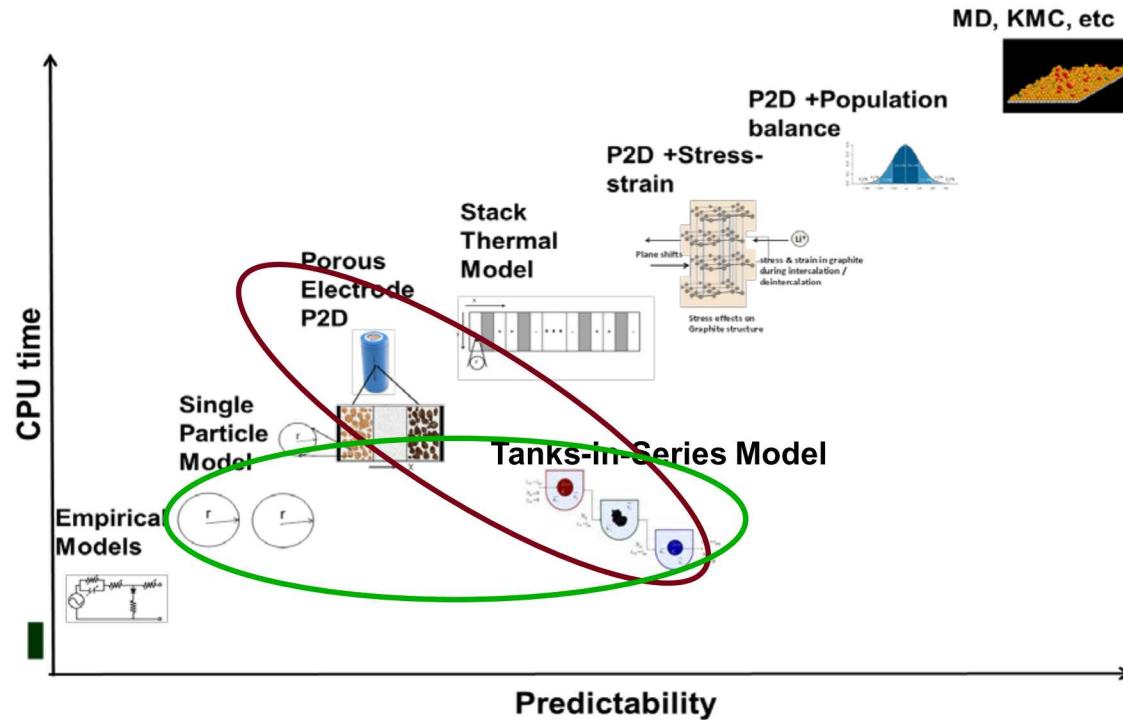


Ref: Pathak, M. et. al. (2017). ECS transactions, 75(23), 51.

Ramadesigan, V. et. al. (2011). JES, 158(9), 1048-1054.

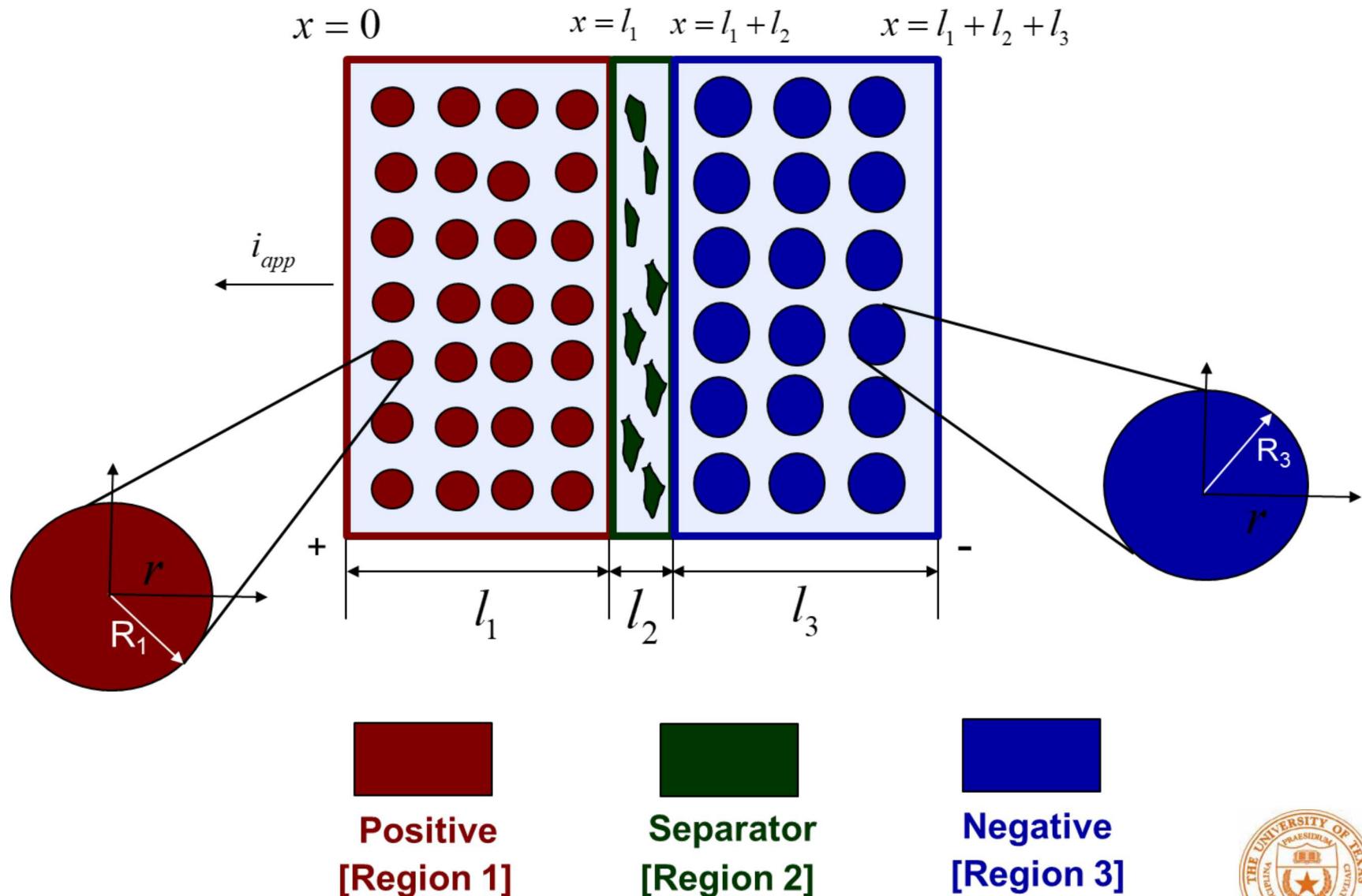
Speed Vs Accuracy

► Trade-off between CPU time vs. predictability.



- Develop a robust approach for estimating the parameters of physics-based lithium-ion battery model.

The p2D Model For Lithium-ion Batteries



The p2D Li-ion Battery Model

- Coupled Conservation Laws :**

Electronic Charge :

$$\sigma_{\text{eff,p}} \frac{\partial^2 \Phi_1}{\partial x^2} = a_p F j_p; \Phi_1 \text{ is the solid-phase potential}$$

Electrolyte Mass:

$$\varepsilon_p \frac{\partial c}{\partial t} = D_{\text{eff,p}} \frac{\partial^2 c}{\partial x^2} + a_p (1 - t_+) j_p;$$

c is the electrolyte concentration

Solid Phase Mass:

$$\frac{\partial c_p^s}{\partial t} = D_{s,p} \left(\frac{\partial^2 c_p^s}{\partial r^2} + \frac{2}{r} \frac{\partial c_p^s}{\partial r} \right); c_p^s \text{ is the solid phase concentration}$$

Overall Charge :

$$-\sigma_{\text{eff,p}} \frac{\partial \Phi_1}{\partial x} - \kappa_{\text{eff,p}} \frac{\partial \Phi_2}{\partial x} + \frac{2\kappa_{\text{eff,p}} RT}{F} (1 - t_+) \frac{\partial \ln c}{\partial x} = I;$$

Φ_2 is the liquid phase potential

Parameters and Constitutive Equations

$$\kappa_{\text{eff,p}} = \varepsilon_p^{\text{brugg,p}} \kappa = 0.01775 \times \begin{pmatrix} 4.1253 \times 10^{-2} + 5.007 \times 10^{-1} c - 4.7212 \times 10^{-1} c^2 \\ + 1.5094 \times 10^{-1} c^3 - 1.6018 \times 10^{-2} c^4 \end{pmatrix}$$

$$j_p = 2k_p \left(c_{s,\text{max,p}} - c_p^s \right)^{0.5} c_p^s 0.5 c^{0.5} \sinh \left[\frac{0.5F}{RT} (\Phi_1 - \Phi_2 - U_p) \right]$$

$$U_p = f(SOC)$$

Computational Complexity has spurred active investigation of different simplification and reformulation techniques

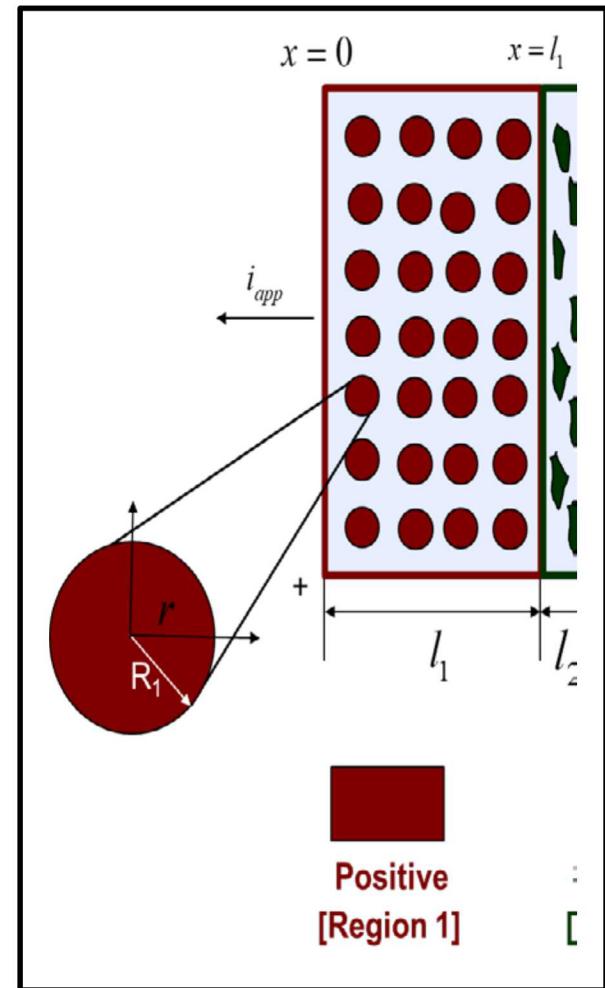
The Single Particle Model

Neglect Electrolyte Effects:

$$\frac{\partial c_1^s}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_1^s \frac{\partial c_1^s}{\partial r} \right)$$

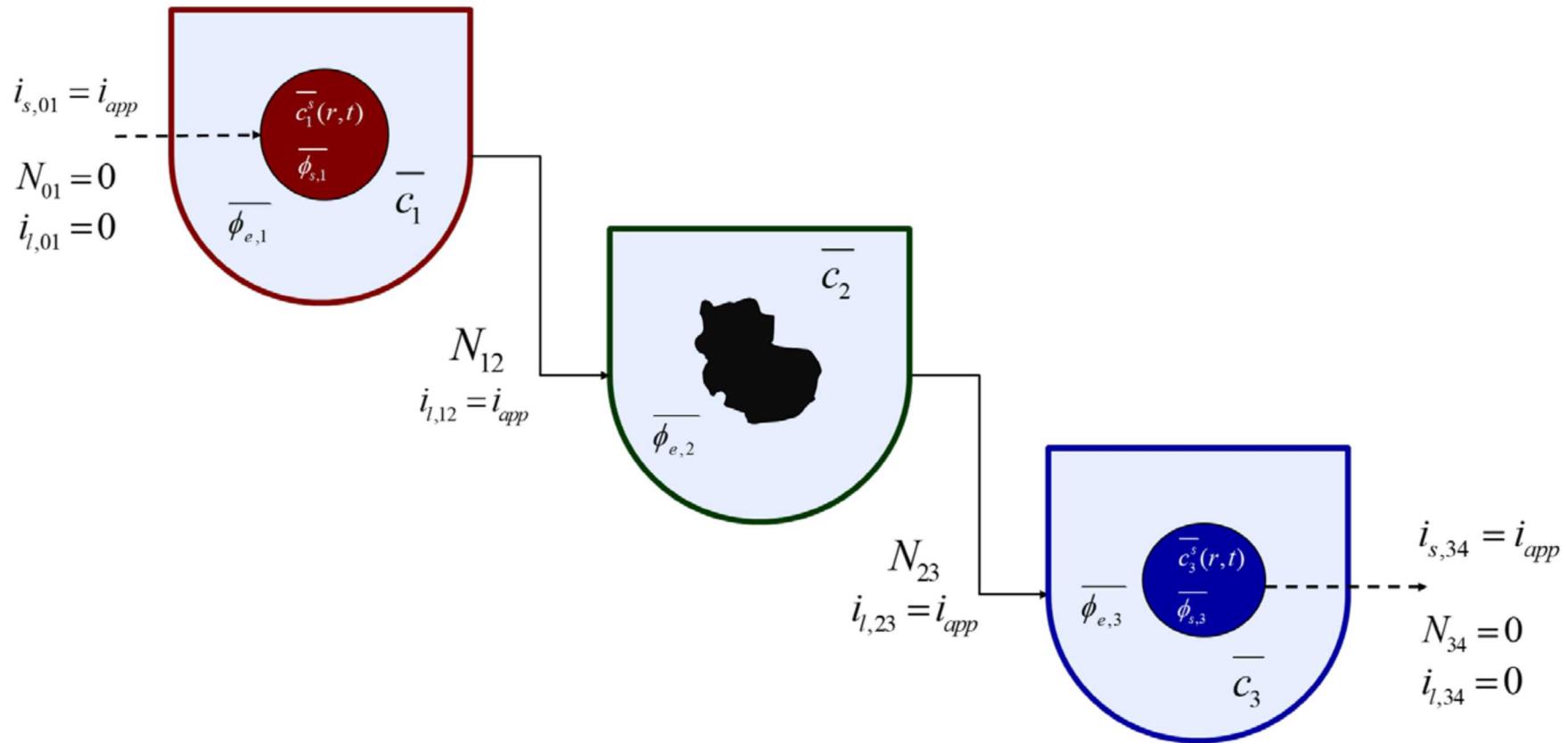
$$\frac{\partial \int_{x=0}^{x=l_1} c_1^s dx}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_1^s \frac{\partial \int_{x=0}^{x=l_1} c_1^s dx}{\partial r} \right)$$

$$\frac{\partial \bar{c}_1^s}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_1^s \frac{\partial \bar{c}_1^s}{\partial r} \right)$$



Restricted to moderate current scenarios, where liquid phase polarizations aren't significant

Lithium-ion Battery as Tanks in Series



Can we incorporate average electrolyte dynamics by a similar volume-averaging approach?

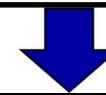
Generating the Tank Model

Example Conservation Equation:

$$\varepsilon_1 \frac{\partial c_1}{\partial t} = -\frac{\partial N_1}{\partial x} + a_1 (1 - t_+^0) j_1$$

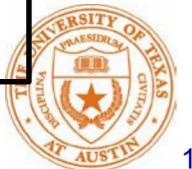


$$\frac{d \int_{V_1} \varepsilon_1 c_1 dV}{dt} = - \int_{V_1} \frac{\partial N_1}{\partial x} dV + \int_{V_1} a_1 (1 - t_+^0) j_1 dV$$

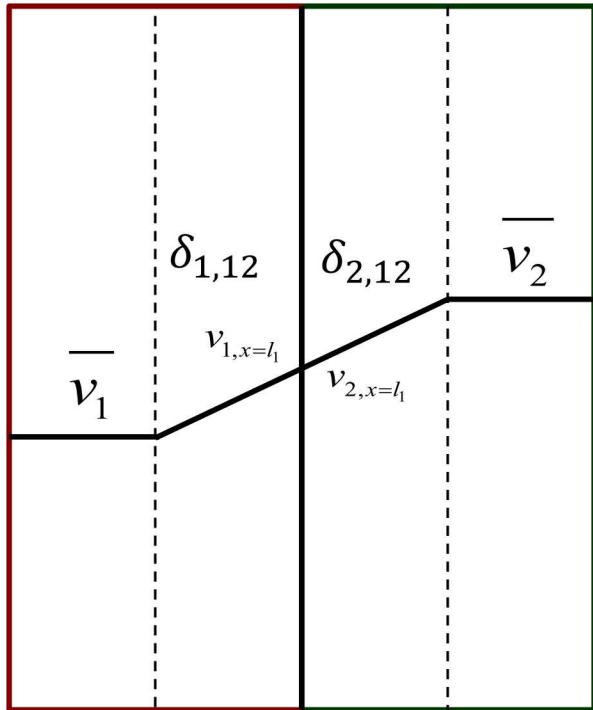


$$\varepsilon_1 \frac{d \bar{c}_1}{dt} = - \frac{\int_{x=0}^{x=l_1} \frac{\partial N_1}{\partial x} dx}{l_1} + a_1 (1 - t_+^0) \bar{j}_1$$

$\frac{N_{1,x=0} - N_{1,x=l_1}}{l_1} + a_1 (1 - t_+^0) \bar{j}_1$



Approximating Interfacial Fluxes



$$N_{1,x=l_1} = -D(c_{1,x=l_1})\varepsilon_1^{b_1} \frac{\partial c_1}{\partial x} \Big|_{x=l_1} \quad \square \quad D(c_{1,x=l_1})\varepsilon_1^{b_1} \left(\frac{\Delta c_1}{\delta_{1,12}} \right) = D(c_{1,x=l_1})\varepsilon_1^{b_1} \left(\frac{\bar{c}_1 - c_{1,x=l_1}}{\frac{l_1}{2}} \right)$$

$$N_{2,x=l_1} = -D(c_{2,x=l_1})\varepsilon_2^{b_2} \frac{\partial c_2}{\partial x} \Big|_{x=l_2} \quad \square \quad D(c_{2,x=l_1})\varepsilon_2^{b_2} \left(\frac{\Delta c_2}{\delta_{2,12}} \right) = D(c_{2,x=l_1})\varepsilon_2^{b_2} \left(\frac{-\bar{c}_2 + c_{2,x=l_1}}{\frac{l_2}{2}} \right)$$

$$D(c_{1,x=l_1})\varepsilon_1^{b_1} \left(\frac{\bar{c}_1 - c_{1,x=l_1}}{\frac{l_1}{2}} \right) = D(c_{2,x=l_1})\varepsilon_2^{b_2} \left(\frac{-\bar{c}_2 + c_{2,x=l_1}}{\frac{l_2}{2}} \right)$$

Naive assumptions of 'film thickness', can be regarded an adjustable parameter

Tank Model DAE System

Electronic Charge :

$$\bar{j}_1 = \frac{i_{app}}{a_1 Fl_1} \quad \bar{j}_3 = -\frac{i_{app}}{a_3 Fl_3}$$

Electrolyte Mass:

$$\begin{aligned} \varepsilon_1 \frac{d\bar{c}_1}{dt} &= \frac{\frac{2D(c_{12})(\bar{c}_2 - \bar{c}_1)}{\frac{l_1}{\varepsilon_1^b} + \frac{l_2}{\varepsilon_2^b}} + a_1(1-t_+) \bar{j}_1}{l_1} \\ &\quad + \frac{\frac{-2D(c_{12})(\bar{c}_2 - \bar{c}_1)}{\frac{l_1}{\varepsilon_1^b} + \frac{l_2}{\varepsilon_2^b}} + \frac{2D(c_{23})(\bar{c}_3 - \bar{c}_2)}{\frac{l_2}{\varepsilon_2^b} + \frac{l_3}{\varepsilon_3^b}}}{l_2} \\ \varepsilon_2 \frac{d\bar{c}_2}{dt} &= \frac{\frac{-2D(c_{23})(\bar{c}_3 - \bar{c}_2)}{\frac{l_2}{\varepsilon_2^b} + \frac{l_3}{\varepsilon_3^b}} + a_3(1-t_+) \bar{j}_3}{l_3} \end{aligned}$$

Liquid Charge (plus reference) :

$$i_{l,1,x=l_1} = -2\kappa(c_{12}) \left(\frac{\bar{\phi}_{l,2} - \bar{\phi}_{l,1}}{\frac{l_1}{\varepsilon_1^b} + \frac{l_2}{\varepsilon_2^b}} \right) + \frac{4RT(1-t_+^0)}{F} \kappa(c_{12}) \frac{1}{c_{12}} \left(\frac{\bar{c}_2 - \bar{c}_1}{\frac{l_1}{\varepsilon_1^b} + \frac{l_2}{\varepsilon_2^b}} \right) = i_{app}$$

$$i_{l,3,x=l_1+l_2} = -2\kappa(c_{23}) \left(\frac{\bar{\phi}_{l,3} - \bar{\phi}_{l,2}}{\frac{l_3}{\varepsilon_3^b} + \frac{l_2}{\varepsilon_2^b}} \right) + \frac{4RT(1-t_+^0)}{F} \kappa(c_{23}) \frac{1}{c_{23}} \left(\frac{\bar{c}_3 - \bar{c}_2}{\frac{l_2}{\varepsilon_2^b} + \frac{l_3}{\varepsilon_3^b}} \right) = i_{app}$$

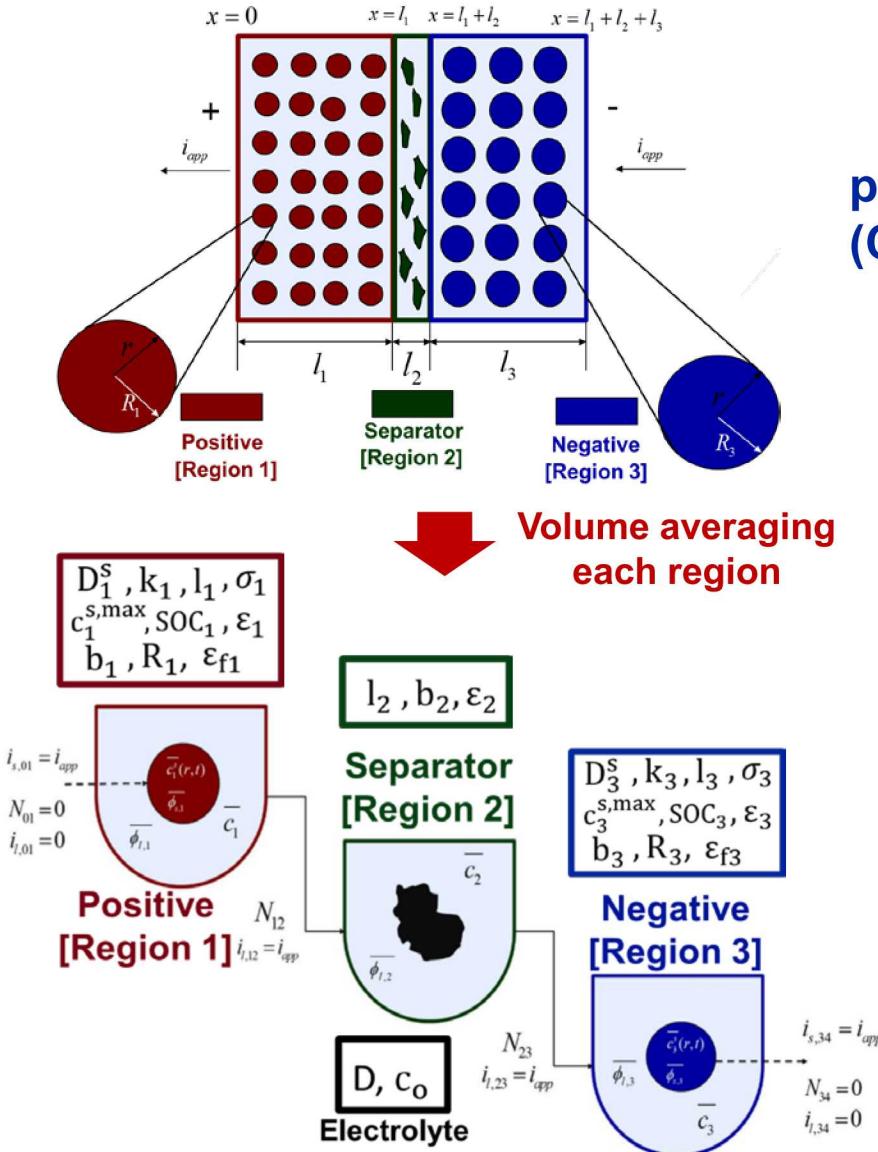
$$\bar{\phi}_{l,12} = \left(\frac{\frac{\varepsilon_1^b}{l_1} \bar{\phi}_{l,1} + \frac{\varepsilon_2^b}{l_2} \bar{\phi}_{l,2}}{\frac{\varepsilon_1^b}{l_1} + \frac{\varepsilon_2^b}{l_2}} \right) = 0$$

Solid Phase Mass (SPM):

$$\frac{\partial \bar{c}_1^s}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_1^s \frac{\partial \bar{c}_1^s}{\partial r} \right)$$

PDE Model is thus reduced to simplified DAE system for liquid phase.

Novel Tanks-in-Series Model

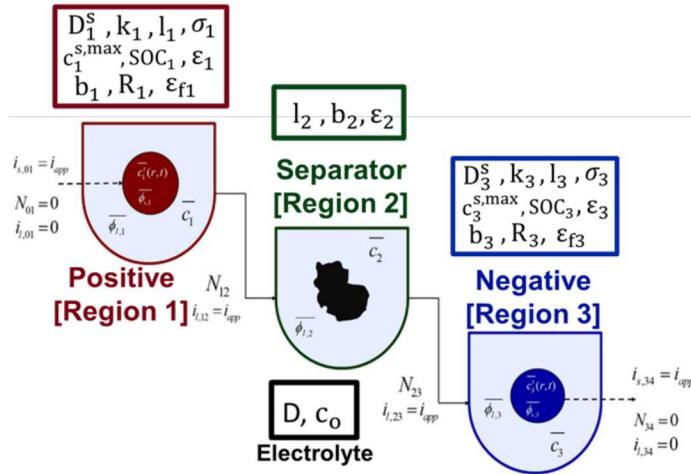


p2D model > 1000 DAEs (complex)
(Computation time, C++: 1493ms)

Tanks-in-Series model ~10 DAEs
(Computation time, C++: 2.1ms)

<1% error observed as compared
to existing physics-based battery
models (SPM, P2D, etc.)

Novel Tanks-in-Series Model

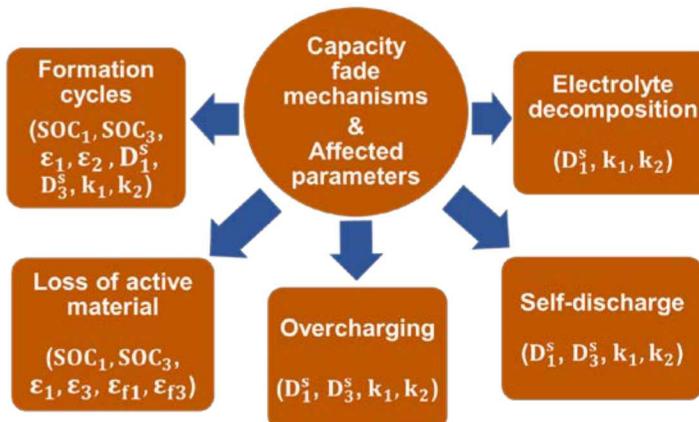


List of Tanks-in-Series model parameters

Parameter	Symbol
Electrolyte Diffusivity	D
Solid Phase Diffusivity	D_1^s, D_3^s
Reaction Rate Constant	k_1, k_3
Solid Phase Conductivity	σ_1, σ_3
Electrolyte Conductivity	κ
Electrolyte Concentration	c_0
Maximum Solid Phase Concentration	$c_1^{s,\max}, c_3^{s,\max}$
Initial SOC	SOC_1, SOC_3
Transference Number	t_+^0
Porosity	ϵ_1, ϵ_2
Filler Fraction	$\epsilon_{f1}, \epsilon_{f3}$
Bruggeman Constant	b_1, b_2, b_3
Thickness	l_1, l_2, l_3
Particle Size	R_1, R_3

index: 1 (+ve electrode), 2 (separator), 3 (-ve electrode)

Parameters to be estimated to model Battery aging



Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534.

Optimization Formulation

Objective:
$$\min \sqrt{\frac{\left[\sum_{t_0=0}^{t_n=t_f} (V_{\text{exp}}(t_i) - V_{\text{model}}(t_i))^2 \right]}{N_{\text{exp}}}}$$

where, V_{exp} : experimental voltage profile

V_{model} : Tanks – in – Series model voltage profile

Subject to:

$$\frac{\partial}{\partial x} g_j(\bar{x}) = 0, \quad j = 1, \dots, J \quad \text{Ordinary differential equations (ODEs)}$$

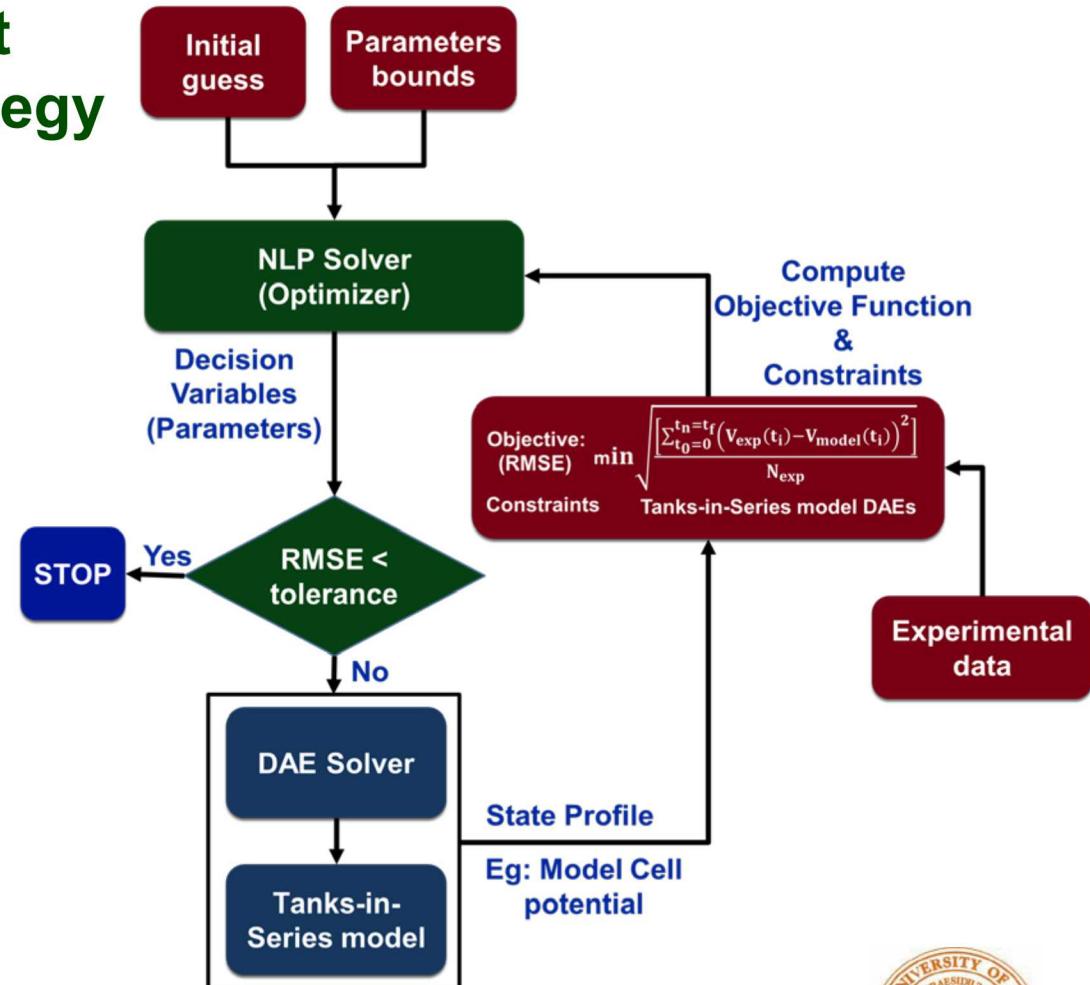
$$h_k(\bar{x}) = 0, \quad k = 1, \dots, K \quad \text{Algebraic equations (AEs)}$$

Differential algebraic equations (DAEs)

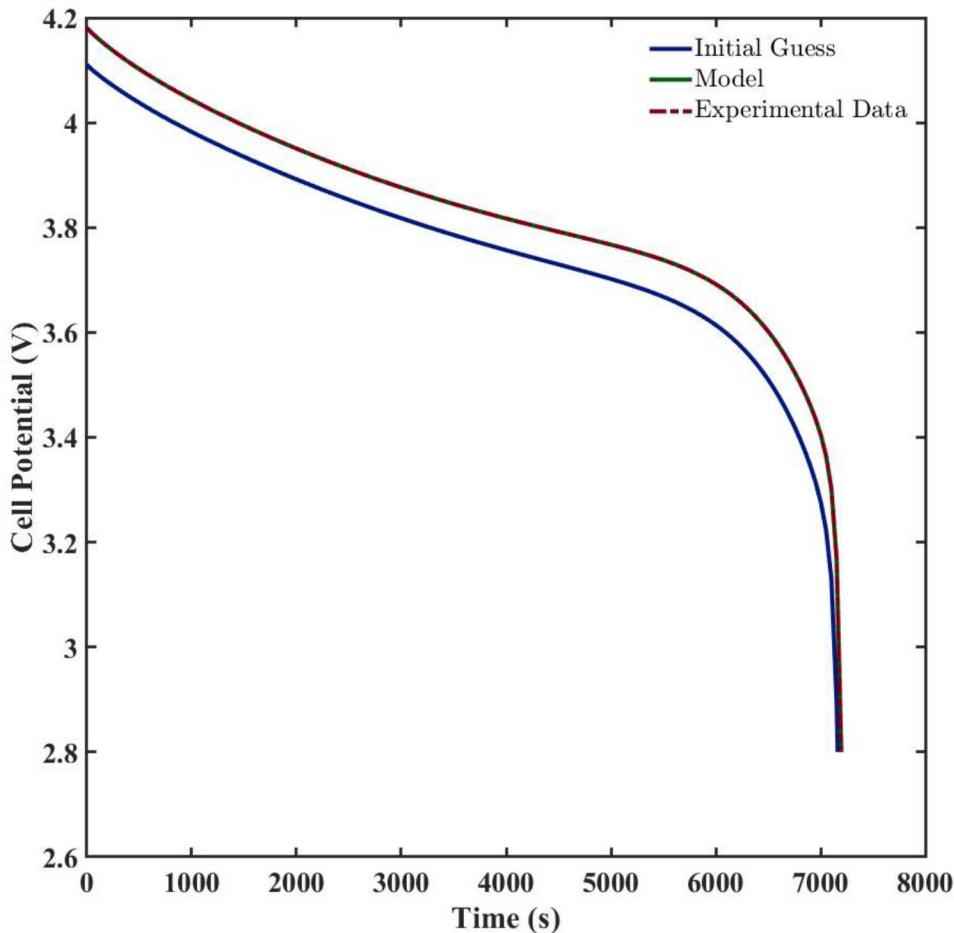
Variables: $\bar{x} \in \Omega$ $lb \leq \bar{x} \leq ub$

Proposed Methodology

Sequential parameter estimation using robust dynamic optimization strategy



Fast Computation

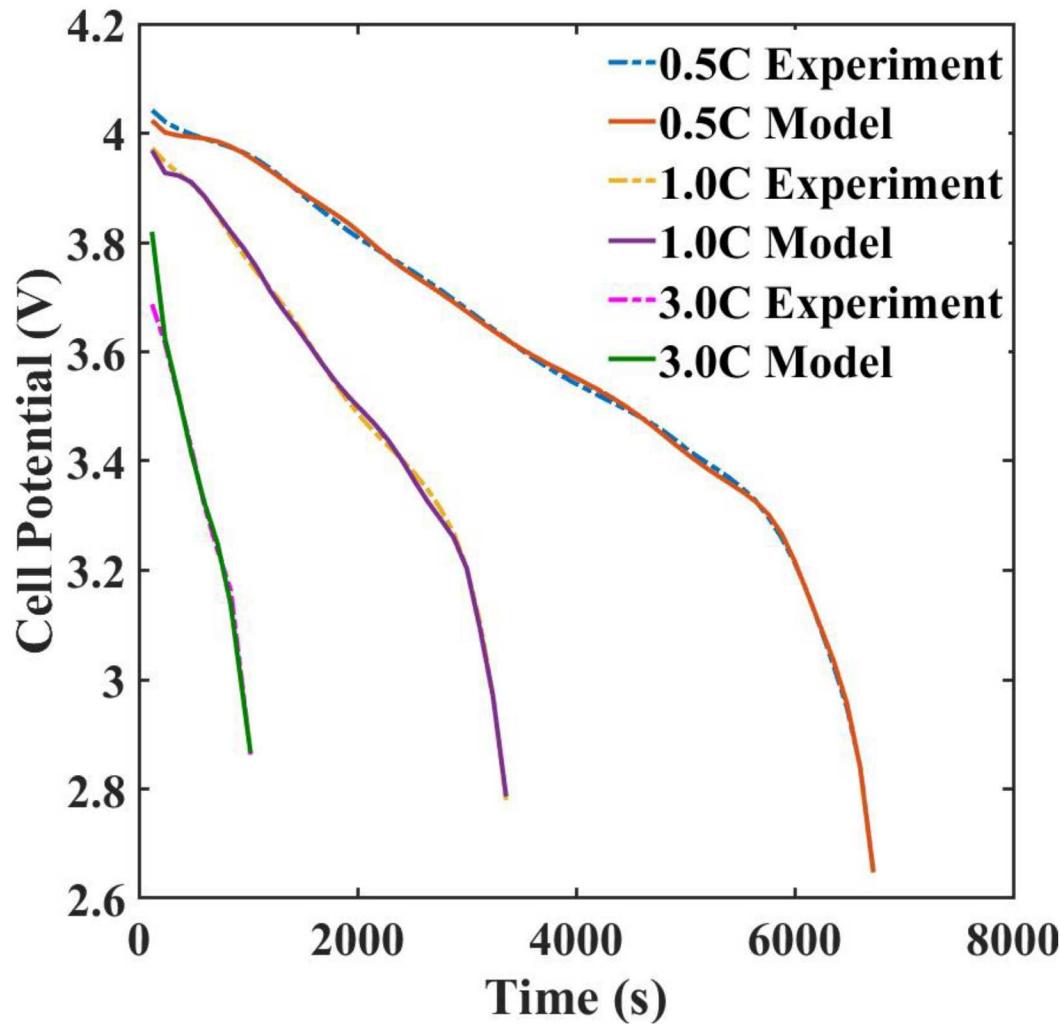


► **Tanks-in-Series model enables
Fast Computation in MATLAB**

Battery Model	Total Estimation Time (s)
SPM	~40
Tanks-in-Series	~45
p2D	~900

Comparison plot between Initial Guess and Optimal parameters of Tanks-in-Series model for 0.5C synthetic discharge data.

Results and Discussions



RMSE error values (in mV)

Crate	RMSE (mV)
0.5	7.22
1.0	10.13
3.0	11.64

Note: Experiments are performed on 3Ah 18650 cylindrical cell (Cathode: NMC811 and Anode: Si-C) at different discharge rates (C/2, 1C and 3C) at Sandia National Laboratories.

Conclusions

- ▶ Novel Tanks-in-Series approach is adopted to model the cell behavior at different discharge rates (0.5C, 1C, and 3C).
- ▶ The adopted model competes with SPM (in terms of simulation time) and complies with the synthetic experimental data within 15 mV error.
- ▶ A robust sequential optimization approach is proposed to estimate the parameters of the battery model with <12 mV error.

Acknowledgements

- ▶ This research was funded by the U.S. Department of Energy Office of Electricity Energy Storage Program through Sandia National Laboratories, under the guidance of Dr. Imre Gyuk (PO 2105167).

THANK YOU!

Any Questions?

