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Introduction

Lithium-lon batteries are becoming increasingly popular.

How Lithium-ion Batteries Work
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To monitor, control, and predict the performance of Li-ion

batteries, advanced electrochemical model-based battery

management systems (BMS) play a vital role.

Ref: https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work
https://www.annova.biz/en/top-5-benefits-of-lithium-batteries



Physics Based Battery Management System

Model-based BMS can

double the cycle life.

Physics-based battery models

are complex, and parameters

change over cycles.

Accuracy of the model

parameters determines

model's predictability of

internal states.
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Ref: Pathak, M. et. al. (2017). ECS transactions, 75(23), 51.
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Speed Vs Accuracy

Trade-off between CPU time vs. predictability.
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Develop a robust approach for estimating the parameters of

physics-based lithium-ion battery model.

Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534.



The p2D Model For Lithium-ion Batteries

x = 0

Top

x =11 x = Il +12 x =11 +12 +1,

•
•
•
•
•
•
•
 

•
 ••
•
•
•
•
 

•
•
•
•
•
•
•
 

•
 ••
•
f
N
!
•
 

/

1

•
•
•
•
•
•
 

0
0
0
0
0
0
 

•
,
/
,
0
0
0
  

t

,

J4

/
'41 111-4

/ L.
1

Positive Separator Negative

[Region 1] [Region 2] [Region 3]



The p2D Li-ion Battery Model

• Coupled Conservation Laws :
Electronic Charge :
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c is the electrolyte concentration
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Parameters and Constitutive Equations

; csi, is the solid phase concentration
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Computational Complexity has spurred active investigation of different simplification and reformulation
techniques

sits

[J. S. Newman+, (1993-2012)]



The Single Particle Model

Neglect Electrolyte Effects:
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Restricted to moderate current scenarios, where liquid phase polarizations aren't significant



Lithium-ion Battery as Tanks in Series

Can we incorporate average electrolyte dynamics by a similar volume-averaging approach?

Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534. 9



Generating the Tank Model

Example Conservation Equation:
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Approximating Interfacial Fluxes
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Tank Model DAE System

Electronic Charge :
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PDE Model is thus reduced to simplified DAE system for liquid phase.
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Novel Tanks-in-Series Model
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p2D model > 1000 DAEs (complex)
(Computation time, C++: 1493ms)
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<1% error observed as compared
to existing physics-based battery
models (SPM, P2D, etc.)

(2020). JES, 167(1), 013534. 13



Novel Tanks-in-Series Model
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Optimization Formulation

Objective: 
min

Subject to:

a
ax

g.
i 
(R) = o,

ttno = 

2
otf (vexp (to _

Vmodel (ti))  1

Nexp

where, Vexp: experimental voltage profile

Vmodel: Tanks — in — Series model voltage profile

hk(R) = 0, k = 1, ... , K

1Ordinary differential
equations (ODEs)

Algebraic
equations (AEs)

Differential
algebraic
equations
(DAEs)

Variables: x E n lb < fc < ub
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Proposed Methodology

Sequential parameter
estimation using robust

dynamic optimization strategy
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Fast Computation
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Results and Discussions
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RMSE error values (in mV)

Crate RMSE (mV)

0.5 7.22

1.0 10.13

3.0 11.64

Note: Experiments are performed on 3Ah
18650 cylindrical cell (Cathode: NMC811
and Anode: Si-C) at different discharge
rates (C/2,1C and 3C) at Sandia National
Laboratories.

* All reported simulations are performed on Intel® Core TM i5-8265U CPU @ 1.6GHz 8 GB RAM machine
18



Conclusions

Novel Tanks-in-Series approach is adopted to model the cell

behavior at different discharge rates (0.5C, 1C, and 3C).

The adopted model competes with SPM (in terms of simulation

time) and complies with the synthetic experimental data within

15 mV error.

A robust sequential optimization approach is proposed to

estimate the parameters of the battery model with <12 mV error.
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THANK YOU!

Any Questions?
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