This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 10416C

Real-time Parameter Estimation of Lithium-lon Battery
Models Using a Novel Tanks-in-Series Approach

Modeling, Analysis, and Process-control Laboratory for
Electrochemical systems

Suryanarayana Kolluri?, Akshay SubramaniamP®, Prateek Mittal?,
Yuliya Pregere¢, Krishna A. Shah?,
and
Prof. Venkat R. Subramanian?

aWalker Department of Mechanical Engineering & Material Science Engineering,
Texas Material Institute, The University of Texas at Austin, Austin, TX

bDepartment of Chemical Engineering, University of Washington,
Seattle, WA

cSandia National Laboratories, Albuquerque, NM

v[;;\/\/\‘\. £s “ 7\"0‘/\\\ =
Q7 ¥ 1\ \ | 1
o [ Em | TEXAS Sandia
2 \Ehe )/ 57/ \ National
\ «\ % ;.,'-..""“ LY, H
e s . Enginon Laboratories
N4
— Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy's National Nuclear Security 1
Administration under contract DE-NA-0003525.



Overview

= |[ntroduction

= Background

= Novel Tanks-in-Series model
= Problem Formulation

= Proposed Methodology

= Results and Discussions

=» Conclusion




Introduction

= Lithium-lon batteries are becoming increasingly popular.

How Lithium-ion Batteries Work
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= To monitor, control, and predict the performance of Li-ion
batteries, advanced electrochemical model-based battery

management systems (BMS) play a vital role.

Ref: https://www.energy.gov/eere/articles/how-does-lithium-ion-battery-work
https://www.annova.biz/en/top-5-benefits-of-lithium-batteries




Physics Based Battery Management System
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=» Model-based BMS can
double the cycle life.
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Speed Vs Accuracy

= Trade-off between CPU time vs. predictability.

MD, KMC, etc

P2D +Population
balance
P2D +Stress-
strain A
Stack o=
Thermal

CPU time

Models

gy
i

Predictability

= Develop a robust approach for estimating the parameters of

physics-based lithium-ion battery model.

Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534.



The p2D Model For Lithium-ion Batteries
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The p2D Li-ion Battery Model

 Coupled Conservation Laws :
Overall Charge :

ot

Electronic Charge :
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Computational Complexity has spurred active investigation of different simplification and reformulation

techniques

[J. S. Newman+, (1993-2012)]



The Single Particle Model

Neglect Electrolyte Effects: x=0 v=l
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Battery as Tanks in Series
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Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534. G g



Generating the Tank Model

Example Conservation Equation:




Approximating Interfacial Fluxes
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Tank Model DAE System

Electronic Charge :
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Novel Tanks-in-Series Model
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Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534.




Novel Tanks-in-Series Model

Di ’ kl ) 11 ’ 0‘1
;™ S0C, , &1

bl ) Rl/ €f1
l,by,8;
Sepa.rator D3 ,Ks3,l3,03
[Region 2] cy™*,50C;, €3
b3, R3, &3
Positive y, Negative

[Region 1]i.=i, [Region 3]

D,co | b=
Electrolyte

Parameters to be estimated to model
Battery aging

Capacity
Formation fade
cycles mechanisms
(S0C,,S0C;, &
€1,€2, Dfi’ Affected
D3, Ky, Kk3) parameters

Electrolyte
’ decomposition

(D1, kq, kz)

¢ g &

material Self-discharge
Overcharging

Loss of active

(soc,,S0C;, (D}, D3, kq, kz)

€1, €3, €1, £f3) (D, D3, ky, k)

List of Tanks-in-Series model parameters

Parameter

Electrolyte Diffusivity
Solid Phase Diffusivity
Reaction Rate Constant
Solid Phase Conductivity
Electrolyte Conductivity
Electrolyte Concentration
Maximum Solid Phase
Concentration

Initial SOC

Transference Number
Porosity

Filler Fraction
Bruggeman Constant
Thickness

Particle Size

Symbol
D
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K
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t
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Iz, 13
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index: 1 (+ve electrode), 2 (separator), 3 (-ve electrode)

Ref: Subramaniam, A. et. al. (2020). JES, 167(1), 013534.




Optimization Formulation

2
Objective: [Ztn_tf exp(ti) — Vmodel(ti)) ]
min

\ N exp

where, Veyp: experimental voltage profile
Vinodel: Tanks — in — Series model voltage profile
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Proposed Methodology

Sequential parameter
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dynamic optimization strategy s
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Fast Computation
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Comparison plot between Initial Guess and Optimal
parameters of Tanks-in-Series model for 0.5C synthetic

discharge data.




Results and Discussions
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* All reported simulations are performed on Intel® Core™ i5-8265U CPU @ 1.6GHz 8 GB RAM machine \z,\~



Conclusions

= Novel Tanks-in-Series approach is adopted to model the cell

behavior at different discharge rates (0.5C, 1C, and 3C).

= The adopted model competes with SPM (in terms of simulation
time) and complies with the synthetic experimental data within

15 mV error.

= A robust sequential optimization approach is proposed to

estimate the parameters of the battery model with <12 mV error.
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