Sandia
National
Laboratories

Exceptional

service
in the
national

interest

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 11597C

Design and Implementation Techniques for
an MPI-Oriented AMT Runtime

Team (alphabetically):

Jakub Domagala (NGA) Cezary Skrzynski (NGA)

Ulrich Hetmaniuk (NGA) Nicole Slattengren (SNL)
Jonathan Lifflander (SNL) Paul Stickney (NGA)

Braden Mailloux (NGA) Jakub Strzebonski (NGA)

Phil B. Miller (IC) Philippe P. Pébay (NGA)
Nicolas Morales (SNL)

NGA = NexGen Analytics, Inc
SNL = Sandia National Labs

e IC = Intense Computing
{©ENERGY MINSSH

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

What iS DARMA? @ Lﬁggﬁiﬁlﬂries

A toolkit of libraries to support incremental AMT adoption in production scientific applications

N I S

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime
DARMA/checkpoint Checkpoint Serialization & checkpointing library
DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis Python framework for simulating LBs and
Framework experimenting with load balancing strategies
DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates

serialization sanitization at runtime

DARMA Documentation: https.//darma-tasking.github.io/docs/html/index.html|

Sandia

0 u t I i n e LNaatfliJorg:titgries

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
= Handler registration
= Lightweight, composable termination detection
= Safe MPI collectives

3. Serialization
= ‘Serialization Sanitizer’ Analysis

= Polymorphic classes

4. Application demonstration

5. Conclusion

Sandia

O u t I i n e LNaatfliJorg:titgries

1. Motivation for developing our AMT runtime

Execution model and implementation ideas
= Handler registration
= Lightweight, composable termination detection
= Safe MPI collectives

3. Serialization
= ‘Serialization Sanitizer’ Analysis

= Polymorphic classes

4. Application demonstration

5. Conclusion

. . ﬁan_dia |
M Ot l Va t | O n Laat}::t(:g:tiuries
» Context of AMT development

= MPI has dominated as a distributed-memory programming model (SPMD-style)

= Deep technical and intellectual ecosystem
= Developers and training materials, courses, experiences
= Ubiquitous implementations across a variety of platforms
= Application code & Libraries
= Integration with execution environments
= Development tools for debugging and performance analysis
= Extensive research literature

= Production Sandia applications are developed atop large MPI libraries/toolkits
= e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing

= There’s little chance that the litany of MPI libraries used by production apps at Sandia will be
rewritten to target an AMT runtime

= Conclusion
= We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Sandia

M Ot i Va t i O n LNaatfliJ(:g:ti(lries
» Philosophy

= Thus, our philosophy:

= AMT runtimes must be highly interoperable allowing parts of applications to be incrementally
overdecomposed

= This provides an incremental value model for adoption

= Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI
to AMT runtime (many times, every timestep!)

= For domain developers:
= Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony

= Coexist with existing diversity of on-node techniques
= CUDA, OpenMP, Kokkos, etc.

= Allow MPI operations to be safely interwoven with AMT execution

= Side note:
= We've found that serialization and checkpointing is a backdoor into introducing AMT libraries

Sandia

O u t I i n e LNaatfliJorg:titgries

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
= Handler registration
= Lightweight, composable termination detection
= Safe MPI collectives
3. Serialization
= ‘Serialization Sanitizer’ Analysis

= Polymorphic classes

4. Application demonstration

5. Conclusion

Sandia
National

EXECUtiOn MOdEl Laboratories
» Handler Registration

= Handler registration across nodes
= Many lower-level runtimes (e.g., GASNet, Converse) rely on manual registration of function
pointers/methods for correctness
= Manual registration is error prone and is not cleanly composable across modules of an
application
= Any potential solution must be valid with ASLR (memory addresses can vary across nodes)

= Example of manual registration:
void activeFunc(MyMsg* m) { /* handler code */ }

int main() {
int handle_id = registerFuncCollective(activeFunc);

if (rank == 0) {
send(1l, handle_id, new MyMsg);
}
}

Sandia

Execution Model National

Laboratories

» Handler Registration

= Potential solutions

= Code generation to generate registrations at startup
" Charm++ does this with the Cl file
= Disadvantage: requires an extra step/interpreter

= Try to match the name of the function/method at runtime?
= Not C++ standard compliant/fragile

= |n the future: maybe C++ proposals on reflection could aid?
= VT’s solution:

= We initially started with manual, collective registration; then, we had a breakthrough

= Build a static template registration pattern that consistently maps types (encoded as “non-type”
templates) to contiguous integers across ranks

= Across a broad range of compilers, linkers, loaders, and system configurations we find this
method to be effective!

= i.e.,, GNU (4.9.3,5,6, 7, 8,9, 10), Clang (3.9, 4,5, 6, 7, 8, 9, 10), Intel (18, 19), Nvidia (10.1, 11)

Sandia
National _
Laboratories

Execution Model
» Handler Registration

= C++11 compatible technique struct Mylsg

: vt::Message {};
= User code in VT with automatic
registration

= The highlighted handler automatically
registers the function pointer across all ranks

void handler (MyMsg* msg) {
/* handler code to execute */

}

int main() {

at the send callsite through a non-type
template instantiation

Registration occurs at load time during
dynamic initialization

= This technique is highly composable,

coupling the use of a handler with its
registration across all ranks

if (rank == 0) {
auto msg = vt::makeMessage<MyMsg>();
// send a message to node 1

vt::theMsg()->send<MylMsg,
}
}

handler -(1,

msg) ;

Sandia

Execution Model Lioreeorics
» Handler Registration

= C++11 compatible technique struct Mylisg : vt::Message {};
= User code in VT with automatic void handler (MyMsg* msg) {
registration) /* handler code to execute */

= The highlighted handler automatically
registers the function pointer across all ranks ~ 1nt mainQ {

at the send callsite through a non-type 1t (rank == 0) { _
_ o auto msg = vt::makeMessage<MyMsg>();
template instantiation

// send a message to node 1
= Registration occurs at load time during vt::theMsg()->send<MyMsg, handler >(1, msg);

dynamic initialization) }

" For details on the C++ implementation
and example code, read our paper at the
SC’20 workshop ExaMPI !

' J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney, P. P. Pebay’
Design and Implementation Techniques for an MPI-Oriented AMT Runtime, ExaMPI 2020

Sandia

Execution Model s

» Lightweight, composable termination detection

= Granular, multi-algorithm distributed termination detection with epochs
= Rooted epochs (starts on a single rank and uses a DS-style algorithm)
= Collective epochs (starts on a set of ranks and uses a wave-based algorithm)

= Rooted and collective epochs can be nested arbitrarily
= Runtime manages a graph of epoch dependencies

using MyMsg = vt::Message; Rooted example: Collective example:
void ring(MyMsg” msg) { void sendRing() { void sendRing() {
if (rank != nranks - 1) { if (rank == 0) { vt: :runInEpochCollective([]{
sendToNext () ; vt : :runInEpochRooted ([]{ if (rank == 0) {
} sendToNext () ; sendToNext () ;
} b }

});
void sendToNext() { 1 } }
auto next = (rank + 1) % nranks;

auto msg = vt::makeMessage<MyMsg>(); * . .
vt: :theMsq()—~sendMsg-MyMsg, ring-(next, msg): After this statement, all messages are received,

} including causally-related message chains

Sandia

Execution Model Limoratories
» Lightweight, composable termination detection

= Whatdoesvt: :runInEpochCollective actually do?

void runInEpochCollective(ActionType&& fn) {
/*uint64_t*/ EpochType ep = theTerm()->makeEpochCollective();
theMsg () - >pushEpoch(ep) ;
fnQ;
theMsg () ->popEpoch(ep) ;
theTerm() - >finishedEpoch(ep);
theSched() ->runSchedulerWhile([=]1{
return !theTerm()->isEpochTerminated(epoch);

1)

Sandia

Execution Model Lioreeorics
» Lightweight, composable termination detection

= Advantages

= Asynchronous runtimes often induce a pattern where work must be synchronized with messages
if there is a dependency or work relies on the completion
= For example, broadcasts followed by a reduction
= Epochs make ordering work (especially in a SPMD context) easier and enable lookahead

vt::PendingSend createFutureSend() {

auto msg = vt::makeMessage<MyMsg>(): Ordering two operations (e7, e2) with epochs

// does not send the message until PendingSend)

// is released or goes out of scope void sequencedSends() {

vt::PendingSend p - vt::DependentSendChain chain;

vt: :theMsg() ->sendMsg<MyMsg, handler>(msg);

return p; vt::EpochType el = vt::theTerm() ->makeEpochRooted();
} chain.add(el, createInEpoch(el));
vt: :PendingSend createInEpoch(vt::EpochType ep) {

thensg() _}pushEpoch(ep) : // pUSh on stack vt: :EpOChT}’pE e2 = vt: :thETerm.() —>makEEp0ChR00tEd() '

auto psl = createFutureSend(); chain.add(e2, createInEpoch(e2));

theMsg () >popEpoch(ep); // pop off of stack ¥

return psl;

}

Sandia
National

EXGCUtiOn MOdEl Laboratories
» Lightweight, composable termination detection

= EMPIRE

= Electromagnetic/electrostatic plasma physics application
= |nitial PIC particle distributions can be spatially concentrated, creating heavy load imbalance

= Particles may move rapidly across the domain, inducing dynamic workload variation over time

= Qur overdecomposition strategy
= Develop VT implementation of PIC while retaining the existing pure MPIl implementation to
demonstrate the value of load balancing

= Main application/PIC driver should be agnostic to backend implementation or asynchrony that is
introduced

= EMPIRE physics developers should not need to fully understand VT’s asynchrony to add
operations

Execution Model

Sandia
National _
Laboratories

» Lightweight, composable termination detection

= Example code of EMPIRE’s VT code

= Calls into VT implementation
without knowing about the
asynchrony or overdecomposition

void vtAgnosticTimestepper() {
for (int t = 0; t < nstep; t++) {

frontend->setDT (myDT) ;
frontend->injectParticles();
frontend->weightFields();
frontend->accelerateParticles();
frontend->moveParticles();
/ATy

struct ParticleFrontendVT {

void setDT(double dt) {
// Similar to injectParticles, weightFields,
// accelerateParticles
chains_->nextStep([=](vt::Index2D idx) {

return proxy[idx].send<DTMsg, Backend::setDT>(dt);

};

}

void moveParticles() {
chains_->nextStepCollective([=] (vt::Index2D idx) {
return proxy[idx].send<MoveMsg, Backend: :moveParts>();
;s
}

private:
// set of element chains managed by this rank

vt::CollectionChainSet<vt: :Index2D> chains_;

| H

Execution Model
» Safe MPI Collectives

= Problem

= A runtime, application, or library may want to embed MPI
operations while the runtime scheduler is running

= Multiple asynchronous operations dispatched to collective
MPI calls might be ordered improperly (see example)

= A rank might hold up progress on another rank

— The runtime scheduler and progress function may stop turning
when one rank starts executing a collective MPI invocation

— That progress might be required to start the operation (e.g.,
broadcast along spanning tree) on another node

= Any blocking call that uses MPI can cause this problem
= MPI window creation for one-sided RDMA
= MPI barriers, reduces, gathers, scatters, group creation, ...
= Zoltan hypergraph partitioning invocation
= Libraries that rely on blocking MPI collectives

Sandia
National _
Laboratories

Example code snippet:

void foo() { MPI_Reduce(...); }
void bar() { MPI_Reduce(...); }

void main() {
async_broadcast (&foo);
async_broadcast (&bar) ;

}

What order do these get scheduled?
|s that order consistent across
nodes?

Program specification? What did the
user intend here?

How do we guarantee that all ranks
are ready for an operation before we
start it?

Sandia

Execution Model ehorories
» Safe MPI Collectives

= Qur solution
= We use distinct collective scopes to create independently matched strands of collective
operations
= Each collective scope is identified with a tag: t
= Each operation within a scope is identified with a sequence integer: s

= Thus, every operation can be distinctly identified as the tuple (t, s)

= Runtime employs a distributed consensus algorithm to agree on a collective operation (t, s) to
execute across ranks

Example user code: Optional tag, defaults to increment
void main() { void foo(Q) {
auto scope = vt::theCollective()->makeCollectiveScope(); MPI_Reduce(...);
vt: :runInEpochCollective([&]{ }
scope.mpiCollectiveAsync([]{ foo(Q); });
scope.mpiCollectiveAsync([]1{ bar(Q); }); void bar() {
IDF MPI_Reduce(...);
} }

Sandia
National

EXECUtiOn MOdEl Laboratories

» Safe MPI Collectives
procedure ACHIEVECONSENSUS(rank, q)

l:
. 2 MPI_Request req;
= Consensus Algorithm 3 if rank is designated root then
1. When a MPI collective is enqueued, start 4 (t,s) < select arbitrary from g
an asynchronous VT reduction tagged on 3: else
6: (t,s) < 0
(t, s) :
. 7 end if
2. When the reduction completes, broadcast ¢ MPI_IBCAST((t,), root, &req)
d message that putS (t, S) ina SpECiaI queue 9 while req not Completed do

3. Achieve consensus by picking an operation 10: vt::runScheduler(); > Keep progressing scheduler

consistently 11: ~ end while
, , 12: MPI_IBARRIER(&7eq) > Ensure all ranks have
= Could also be achieved with an async all- (. 5)
reduce min over (t, s 13: while req not completed do
4. Use an Ibcast to inform all ranks of (t, s) 14: vt::runScheduler(); > Keep progressing scheduler
5. Use an Ibarrier to ensure all ranks have the 15 end while
operation 16: op <~ GETACTION((t, s))
17: op() > Execute the collective operation

6. Stop running the scheduler and execute
the action on every rank

18: end procedure

Sandia

0 u t I i n e LNaatfliJorg:titgries

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
= Handler registration
= Lightweight, composable termination detection
= Safe MPI collectives

3. Serialization
= ‘Serialization Sanitizer’ Analysis

= Polymorphic classes

4. Application demonstration

5. Conclusion

Sandia

Serialization Lioreeorics
» ‘Serialization Sanitizer’ Analysis

= Serializers are difficult and error prone to maintain
= Difficult to test and maintain as application evolves

= |f serialization tests aren’t updated with changes to a class, a difficult-to-find bug can be easily
introduced

= C++ static reflection proposals may address this problem (and even make explicit
traversal unnecessary?)

= For now, we are stuck with manually traversing classes

= Qur prototyped solution:

= A combination of static instrumentation and dynamic analysis to verify serializers

= Relies on a new Clang frontend AST pass which can be hooked into the build process

Sandia
National

Se ria I izatiOn Laboratories
» ‘Serialization Sanitizer’ Analysis

= Static instrumentation using Clang frontend compiler toolkit
= Traverse all members of all classes with intrusive or non-intrusive serialization methods

= Generate an alternative partial specialization of the serialize method that traverses all members
with a special serializer type

= Dynamic checks at runtime

= Run the checker specialization alongside the serialize method; use sets to compare memory
addresses of actually serialized and checked members; allow users to explicitly skip members

struct MyClass {
template <typename SerializerT>

void serlal?ze(SerlallzerT& s) { void MyClass::serialize<checkpoint: :Checker>(checkpoint::Checker& s) {
sl alc s.check(a, "MyClass::a");

} s.check(b, "MyClass::b");

s.check(c, "MyClass::c");

/* begin generated code */
template <>

std: :vector<int> a; }
int b; . .
. * end generated code *
std: :unordered_set<int> c; / 9 /
};

Sandia
Serialization Limoratories
» Polymorphic classes

= Applications often use object polymorphism to express hierarchies of classes and
behaviors
= Polymorphic objects may need to be serialized
= While messages and simple structures used for communication may avoid polymorphism,
checkpoints of application data will often include these data structures
= Polymorphic objects are difficult to serialize correctly
= The serializer needs to be invoked on all classes in the hierarchy recursively
= The proper concrete type must be transmitted/reconstituted if the object is sent

= Existing solutions rely on C++ strings
" PUP:uses register PUP ID with a stringto register the type

" Boost: uses BOOST CLASS EXPORT GUID orregister type to rely ontypeinfo or user
-specified strings to register the classes

= For templates this might be difficult and very expensive, especially when writing to disk or
sending across the network

Sandia

Serialization Limoratories
» Polymorphic classes

= We exploit the static template registration pattern to generate integers for each
type

= This solves the problem of generating a unique, consistent identifier across ranks for each type

= We insert with a shim layer in the hierarchy or a macro virtual methods that
automatically traverse the hierarchy

= Because serializers are templated, we explicitly instantiate them at compile time
with all possible serializer types and register the serializer types

Serialization
» Polymorphic classes

= Example user code:

N Base class
struct A {

checkpoint_virtual_serialize_root()

template <typename SerializerT>
void serialize(SerializerT& s) {
s | a | b;

}

int a, b;

}s

struct B : A {
checkpoint_virtual_serialize_derived_from(A)

template <typename SerializerT>
void serialize(SerializerT& s) {
s | ¢ | d;

struct C : A {
checkpoint_virtual_serialize_derived_from(Aa)

template <typename SerializerT>
void serialize(SerializerT& s) {

Sandia
National _
Laboratories

s | e | f;
}
int e, f;
};
struct D { A
D() : ptr(std::make_unique<C>()) { } f k
L. B C
template <typename SerializerT>
void serialize(SerializerT& s) {
s | ptr;
} \ Automatically
serializes and
std: :unique_ptr<A> ptr; reconstructs the
};

correct type

Sandia

0 u t I i n e LNaatfliJorg:titgries

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
= Handler registration
= Lightweight, composable termination detection
= Safe MPI collectives

3. Serialization
= Polymorphic classes

= ‘Serialization Sanitizer’ Analysis

4. Application demonstration

5. Conclusion

Application Demonstration: EMPIRE

10] |) 1) L]
VT w/24 colors
9 MPI| —
o 8
3
o 7°F
E
c 6r
o
5 §5F
3
5 4
g s
7]
s
s Hmumwmw"ﬂ*

0 1000 1200 1400
Tlmestep

(a) Per-timestep Execution Time

Cumulative full step execution time (sec.)

3000

2500

2000

1500

1000

500

Sandia
National _
Laboratories

VTwr:’24 colorls S—
MP| ———

1

200 400 600

(b) Cumulative Execution Time

800
Timestep

1600

Fig. 2: Per-timestep performance comparison of EMPIRE “B-Dot” problem using the VT and MPI implementations of PIC.
The run was performed on 900 nodes of a cluster with dual socket Intel Sandy Bridge Xeon CPUs, with two processes per node
and an Infiniband network. The VT implementation attains a 2.5x speedup over the MPI implementation for the whole run
using 24 colors per process and load balancing every 100 simulation time steps. The MPI implementation suffers substantially
more from the severe noise on the system than the V7' implementation.

Sandia

Conclusion ational s

= We are working on an AMT runtime that provides incremental value as users adopt
it for small segments of their applications

= We’ve found that serialization/checkpointing is a good way to introduce our toolkit
to applications

= Thus, we’ve build the DARMA/checkpoint library as a small, distinct piece that can be used
standalone

= We can retain a SPMD style that is familiar to domain experts while still obtaining
the benefits of asynchrony, overdecomposition, and load balancing

= Virtual Transport is moving into production use for the EMPIRE L1 milestone

= Supports a wide range of problem configurations on the largest supercomputers

Sandia

Execution Model Laboraiories
» Generalized Requests

= |n our ideal vision, driving execution progress to termination of an epoch, would be
expressed as an MPI_Wait or MPI_Test

= Generalized MPI requests as standardized are insufficient due to our need to call the VT
scheduler inline

= The Extended Generalized Requests interface proposed by Latham, et al. would suffice

MPI_Request transferParticles() {
MPI_Request req = vt::makeEpochCollective([]{
/* recursively move particles */

s

return req;

}

void caller() {

MPI_Request req = transferParticles();
MPI_Wait(&req, MPI_STATUS_NULL);

}

