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What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis 

Framework
Python framework for simulating LBs and 
experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates 
serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications
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 MPI has dominated as a distributed-memory programming model (SPMD-style)
 Deep technical and intellectual ecosystem

 Developers and training materials, courses, experiences
 Ubiquitous implementations across a variety of platforms
 Application code & Libraries
 Integration with execution environments
 Development tools for debugging and performance analysis
 Extensive research literature

 Production Sandia applications are developed atop large MPI libraries/toolkits
 e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing
 There’s little chance that the litany of MPI libraries used by production apps at Sandia will be 

rewritten to target an AMT runtime

 Conclusion
 We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Motivation
➤ Context of AMT development



 Thus, our philosophy:
 AMT runtimes must be highly interoperable allowing parts of applications to be incrementally 

overdecomposed
 This provides an incremental value model for adoption

 Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI 
to AMT runtime (many times, every timestep!)

 For domain developers:
 Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony
 Coexist with existing diversity of on-node techniques

 CUDA, OpenMP, Kokkos, etc.
 Allow MPI operations to be safely interwoven with AMT execution

 Side note:
 We’ve found that serialization and checkpointing is a backdoor into introducing AMT libraries

Motivation
➤ Philosophy
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Execution Model

 Handler registration across nodes
 Many lower-level runtimes (e.g., GASNet, Converse) rely on manual registration of function 

pointers/methods for correctness
 Manual registration is error prone and is not cleanly composable across modules of an 

application
 Any potential solution must be valid with ASLR (memory addresses can vary across nodes)

 Example of manual registration:

➤ Handler Registration



 Potential solutions
 Code generation to generate registrations at startup

 Charm++ does this with the CI file
 Disadvantage: requires an extra step/interpreter

 Try to match the name of the function/method at runtime?
 Not C++ standard compliant/fragile

 In the future: maybe C++ proposals on reflection could aid?

 VT’s solution:
 We initially started with manual, collective registration; then, we had a breakthrough
 Build a static template registration pattern that consistently maps types (encoded as “non-type” 

templates) to contiguous integers across ranks
 Across a broad range of compilers, linkers, loaders, and system configurations we find this 

method to be effective!
 i.e., GNU (4.9.3, 5, 6, 7, 8, 9, 10), Clang (3.9, 4, 5, 6, 7, 8, 9, 10), Intel (18, 19), Nvidia (10.1, 11)

Execution Model
➤ Handler Registration



 C++11 compatible technique
 User code in VT with automatic 

registration
 The highlighted handler automatically 

registers the function pointer across all ranks 
at the send callsite through a non-type 
template instantiation

 Registration occurs at load time during 
dynamic initialization

 This technique is highly composable, 
coupling the use of a handler with its 
registration across all ranks

Execution Model
➤ Handler Registration



 C++11 compatible technique
 User code in VT with automatic 

registration
 The highlighted handler automatically 

registers the function pointer across all ranks 
at the send callsite through a non-type 
template instantiation

 Registration occurs at load time during 
dynamic initialization

 For details on the C++ implementation 
and example code, read our paper at the 
SC’20 workshop ExaMPI ¹

Execution Model
➤ Handler Registration

¹ J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney, P. P. Pébaÿ
Design and Implementation Techniques for an MPI-Oriented AMT Runtime, ExaMPI 2020 



 Granular, multi-algorithm distributed termination detection with epochs
 Rooted epochs (starts on a single rank and uses a DS-style algorithm)
 Collective epochs (starts on a set of ranks and uses a wave-based algorithm)

 Rooted and collective epochs can be nested arbitrarily
 Runtime manages a graph of epoch dependencies

Execution Model
➤ Lightweight, composable termination detection

Rooted example:

*After this statement, all messages are received, 
including causally-related message chains

Collective example:



 What does vt::runInEpochCollective actually do?

Execution Model
➤ Lightweight, composable termination detection



 Advantages
 Asynchronous runtimes often induce a pattern where work must be synchronized with messages 

if there is a dependency or work relies on the completion
 For example, broadcasts followed by a reduction

 Epochs make ordering work (especially in a SPMD context) easier and enable lookahead

Execution Model
➤ Lightweight, composable termination detection

Ordering two operations (e1, e2) with epochs



Execution Model
➤ Lightweight, composable termination detection

 EMPIRE
 Electromagnetic/electrostatic plasma physics application
 Initial PIC particle distributions can be spatially concentrated, creating heavy load imbalance
 Particles may move rapidly across the domain, inducing dynamic workload variation over time

 Our overdecomposition strategy
 Develop VT implementation of PIC while retaining the existing pure MPI implementation to 

demonstrate the value of load balancing
 Main application/PIC driver should be agnostic to backend implementation or asynchrony that is 

introduced
 EMPIRE physics developers should not need to fully understand VT’s asynchrony to add 

operations



 Example code of EMPIRE’s VT code
 Calls into VT implementation 

without knowing about the 
asynchrony or overdecomposition

Execution Model
➤ Lightweight, composable termination detection



 Problem
 A runtime, application, or library may want to embed MPI 

operations while the runtime scheduler is running
 Multiple asynchronous operations dispatched to collective 

MPI calls might be ordered improperly (see example)
 A rank might hold up progress on another rank

– The runtime scheduler and progress function may stop turning 
when one rank starts executing a collective MPI invocation

– That progress might be required to start the operation (e.g., 
broadcast along spanning tree) on another node

 Any blocking call that uses MPI can cause this problem
 MPI window creation for one-sided RDMA
 MPI barriers, reduces, gathers, scatters, group creation, …
 Zoltan hypergraph partitioning invocation
 Libraries that rely on blocking MPI collectives

Execution Model
➤ Safe MPI Collectives

Example code snippet:

• What order do these get scheduled?
• Is that order consistent across 

nodes?
• Program specification? What did the 

user intend here?
• How do we guarantee that all ranks 

are ready for an operation before we 
start it?



 Our solution
 We use distinct collective scopes to create independently matched strands of collective 

operations
 Each collective scope is identified with a tag: t
 Each operation within a scope is identified with a sequence integer: s
 Thus, every operation can be distinctly identified as the tuple (t, s)

 Runtime employs a distributed consensus algorithm to agree on a collective operation (t, s) to 
execute across ranks

Execution Model
➤ Safe MPI Collectives

Example user code: Optional tag, defaults to increment



 Consensus Algorithm
1. When a MPI collective is enqueued, start 

an asynchronous VT reduction tagged on 
(t, s)

2. When the reduction completes, broadcast 
a message that puts (t, s) in a special queue

3. Achieve consensus by picking an operation 
consistently
 Could also be achieved with an async all-

reduce min over (t, s)
4. Use an Ibcast to inform all ranks of (t, s)
5. Use an Ibarrier to ensure all ranks have the 

operation
6. Stop running the scheduler and execute 

the action on every rank

Execution Model
➤ Safe MPI Collectives
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Serialization
➤ ‘Serialization Sanitizer’ Analysis

 Serializers are difficult and error prone to maintain
 Difficult to test and maintain as application evolves

 If serialization tests aren’t updated with changes to a class, a difficult-to-find bug can be easily 
introduced

 C++ static reflection proposals may address this problem (and even make explicit 
traversal unnecessary?)
 For now, we are stuck with manually traversing classes

 Our prototyped solution:
 A combination of static instrumentation and dynamic analysis to verify serializers
 Relies on a new Clang frontend AST pass which can be hooked into the build process



Serialization
➤ ‘Serialization Sanitizer’ Analysis

 Static instrumentation using Clang frontend compiler toolkit
 Traverse all members of all classes with intrusive or non-intrusive serialization methods
 Generate an alternative partial specialization of the serialize method that traverses all members 

with a special serializer type

 Dynamic checks at runtime
 Run the checker specialization alongside the serialize method; use sets to compare memory 

addresses of actually serialized and checked members; allow users to explicitly skip members



Serialization
➤ Polymorphic classes

 Applications often use object polymorphism to express hierarchies of classes and 
behaviors
 Polymorphic objects may need to be serialized
 While messages and simple structures used for communication may avoid polymorphism, 

checkpoints of application data will often include these data structures 

 Polymorphic objects are difficult to serialize correctly
 The serializer needs to be invoked on all classes in the hierarchy recursively
 The proper concrete type must be transmitted/reconstituted if the object is sent 

 Existing solutions rely on C++ strings
 PUP: uses register_PUP_ID with a string to register the type
 Boost: uses BOOST_CLASS_EXPORT_GUID or register_type to rely on typeinfo or user

-specified strings to register the classes
 For templates this might be difficult and very expensive, especially when writing to disk or 

sending across the network



Serialization
➤ Polymorphic classes

 We exploit the static template registration pattern to generate integers for each 
type
 This solves the problem of generating a unique, consistent identifier across ranks for each type

 We insert with a shim layer in the hierarchy or a macro virtual methods that 
automatically traverse the hierarchy

 Because serializers are templated, we explicitly instantiate them at compile time 
with all possible serializer types and register the serializer types



Serialization
➤ Polymorphic classes

 Example user code:

Automatically 
serializes and 
reconstructs the 
correct type

Base class

A

B C
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Application Demonstration: EMPIRE



Conclusion

 We are working on an AMT runtime that provides incremental value as users adopt 
it for small segments of their applications

 We’ve found that serialization/checkpointing is a good way to introduce our toolkit 
to applications
 Thus, we’ve build the DARMA/checkpoint library as a small, distinct piece that can be used 

standalone

 We can retain a SPMD style that is familiar to domain experts while still obtaining 
the benefits of asynchrony, overdecomposition, and load balancing

 Virtual Transport is moving into production use for the EMPIRE L1 milestone
 Supports a wide range of problem configurations on the largest supercomputers



Execution Model

 In our ideal vision, driving execution progress to termination of an epoch, would be 
expressed as an MPI_Wait or MPI_Test
 Generalized MPI requests as standardized are insufficient due to our need to call the VT 

scheduler inline
 The Extended Generalized Requests interface proposed by Latham, et al. would suffice

➤ Generalized Requests


