
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Design and Implementation Techniques for
an MPI-Oriented AMT Runtime

Jakub Domagala (NGA)
Ulrich Hetmaniuk (NGA)
Jonathan Lifflander (SNL)
Braden Mailloux (NGA)
Phil B. Miller (IC)
Nicolas Morales (SNL)

Cezary Skrzynski (NGA)
Nicole Slattengren (SNL)
Paul Stickney (NGA)
Jakub Strzeboński (NGA)
Philippe P. Pébaÿ (NGA)

Team (alphabetically):

NGA = NexGen Analytics, Inc
SNL = Sandia National Labs
IC = Intense Computing

SAND2020-11597C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library
DARMA/LBAF Load Balancing Analysis

Framework
Python framework for simulating LBs and
experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates
serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications

Outline

1. Motivation for developing our AMT runtime
2. Execution model and implementation ideas

 Handler registration
 Lightweight, composable termination detection
 Safe MPI collectives

3. Serialization
 ‘Serialization Sanitizer’ Analysis
 Polymorphic classes

4. Application demonstration
5. Conclusion

Outline

1. Motivation for developing our AMT runtime
2. Execution model and implementation ideas

 Handler registration
 Lightweight, composable termination detection
 Safe MPI collectives

3. Serialization
 ‘Serialization Sanitizer’ Analysis
 Polymorphic classes

4. Application demonstration
5. Conclusion

 MPI has dominated as a distributed-memory programming model (SPMD-style)
 Deep technical and intellectual ecosystem

 Developers and training materials, courses, experiences
 Ubiquitous implementations across a variety of platforms
 Application code & Libraries
 Integration with execution environments
 Development tools for debugging and performance analysis
 Extensive research literature

 Production Sandia applications are developed atop large MPI libraries/toolkits
 e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing
 There’s little chance that the litany of MPI libraries used by production apps at Sandia will be

rewritten to target an AMT runtime

 Conclusion
 We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Motivation
➤ Context of AMT development

 Thus, our philosophy:
 AMT runtimes must be highly interoperable allowing parts of applications to be incrementally

overdecomposed
 This provides an incremental value model for adoption

 Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI
to AMT runtime (many times, every timestep!)

 For domain developers:
 Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony
 Coexist with existing diversity of on-node techniques

 CUDA, OpenMP, Kokkos, etc.
 Allow MPI operations to be safely interwoven with AMT execution

 Side note:
 We’ve found that serialization and checkpointing is a backdoor into introducing AMT libraries

Motivation
➤ Philosophy

Outline

1. Motivation for developing our AMT runtime
2. Execution model and implementation ideas

 Handler registration
 Lightweight, composable termination detection
 Safe MPI collectives

3. Serialization
 ‘Serialization Sanitizer’ Analysis
 Polymorphic classes

4. Application demonstration
5. Conclusion

Execution Model

 Handler registration across nodes
 Many lower-level runtimes (e.g., GASNet, Converse) rely on manual registration of function

pointers/methods for correctness
 Manual registration is error prone and is not cleanly composable across modules of an

application
 Any potential solution must be valid with ASLR (memory addresses can vary across nodes)

 Example of manual registration:

➤ Handler Registration

 Potential solutions
 Code generation to generate registrations at startup

 Charm++ does this with the CI file
 Disadvantage: requires an extra step/interpreter

 Try to match the name of the function/method at runtime?
 Not C++ standard compliant/fragile

 In the future: maybe C++ proposals on reflection could aid?

 VT’s solution:
 We initially started with manual, collective registration; then, we had a breakthrough
 Build a static template registration pattern that consistently maps types (encoded as “non-type”

templates) to contiguous integers across ranks
 Across a broad range of compilers, linkers, loaders, and system configurations we find this

method to be effective!
 i.e., GNU (4.9.3, 5, 6, 7, 8, 9, 10), Clang (3.9, 4, 5, 6, 7, 8, 9, 10), Intel (18, 19), Nvidia (10.1, 11)

Execution Model
➤ Handler Registration

 C++11 compatible technique
 User code in VT with automatic

registration
 The highlighted handler automatically

registers the function pointer across all ranks
at the send callsite through a non-type
template instantiation

 Registration occurs at load time during
dynamic initialization

 This technique is highly composable,
coupling the use of a handler with its
registration across all ranks

Execution Model
➤ Handler Registration

 C++11 compatible technique
 User code in VT with automatic

registration
 The highlighted handler automatically

registers the function pointer across all ranks
at the send callsite through a non-type
template instantiation

 Registration occurs at load time during
dynamic initialization

 For details on the C++ implementation
and example code, read our paper at the
SC’20 workshop ExaMPI ¹

Execution Model
➤ Handler Registration

¹ J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney, P. P. Pébaÿ
Design and Implementation Techniques for an MPI-Oriented AMT Runtime, ExaMPI 2020

 Granular, multi-algorithm distributed termination detection with epochs
 Rooted epochs (starts on a single rank and uses a DS-style algorithm)
 Collective epochs (starts on a set of ranks and uses a wave-based algorithm)

 Rooted and collective epochs can be nested arbitrarily
 Runtime manages a graph of epoch dependencies

Execution Model
➤ Lightweight, composable termination detection

Rooted example:

*After this statement, all messages are received,
including causally-related message chains

Collective example:

 What does vt::runInEpochCollective actually do?

Execution Model
➤ Lightweight, composable termination detection

 Advantages
 Asynchronous runtimes often induce a pattern where work must be synchronized with messages

if there is a dependency or work relies on the completion
 For example, broadcasts followed by a reduction

 Epochs make ordering work (especially in a SPMD context) easier and enable lookahead

Execution Model
➤ Lightweight, composable termination detection

Ordering two operations (e1, e2) with epochs

Execution Model
➤ Lightweight, composable termination detection

 EMPIRE
 Electromagnetic/electrostatic plasma physics application
 Initial PIC particle distributions can be spatially concentrated, creating heavy load imbalance
 Particles may move rapidly across the domain, inducing dynamic workload variation over time

 Our overdecomposition strategy
 Develop VT implementation of PIC while retaining the existing pure MPI implementation to

demonstrate the value of load balancing
 Main application/PIC driver should be agnostic to backend implementation or asynchrony that is

introduced
 EMPIRE physics developers should not need to fully understand VT’s asynchrony to add

operations

 Example code of EMPIRE’s VT code
 Calls into VT implementation

without knowing about the
asynchrony or overdecomposition

Execution Model
➤ Lightweight, composable termination detection

 Problem
 A runtime, application, or library may want to embed MPI

operations while the runtime scheduler is running
 Multiple asynchronous operations dispatched to collective

MPI calls might be ordered improperly (see example)
 A rank might hold up progress on another rank

– The runtime scheduler and progress function may stop turning
when one rank starts executing a collective MPI invocation

– That progress might be required to start the operation (e.g.,
broadcast along spanning tree) on another node

 Any blocking call that uses MPI can cause this problem
 MPI window creation for one-sided RDMA
 MPI barriers, reduces, gathers, scatters, group creation, …
 Zoltan hypergraph partitioning invocation
 Libraries that rely on blocking MPI collectives

Execution Model
➤ Safe MPI Collectives

Example code snippet:

• What order do these get scheduled?
• Is that order consistent across

nodes?
• Program specification? What did the

user intend here?
• How do we guarantee that all ranks

are ready for an operation before we
start it?

 Our solution
 We use distinct collective scopes to create independently matched strands of collective

operations
 Each collective scope is identified with a tag: t
 Each operation within a scope is identified with a sequence integer: s
 Thus, every operation can be distinctly identified as the tuple (t, s)

 Runtime employs a distributed consensus algorithm to agree on a collective operation (t, s) to
execute across ranks

Execution Model
➤ Safe MPI Collectives

Example user code: Optional tag, defaults to increment

 Consensus Algorithm
1. When a MPI collective is enqueued, start

an asynchronous VT reduction tagged on
(t, s)

2. When the reduction completes, broadcast
a message that puts (t, s) in a special queue

3. Achieve consensus by picking an operation
consistently
 Could also be achieved with an async all-

reduce min over (t, s)
4. Use an Ibcast to inform all ranks of (t, s)
5. Use an Ibarrier to ensure all ranks have the

operation
6. Stop running the scheduler and execute

the action on every rank

Execution Model
➤ Safe MPI Collectives

Outline

1. Motivation for developing our AMT runtime
2. Execution model and implementation ideas

 Handler registration
 Lightweight, composable termination detection
 Safe MPI collectives

3. Serialization
 ‘Serialization Sanitizer’ Analysis
 Polymorphic classes

4. Application demonstration
5. Conclusion

Serialization
➤ ‘Serialization Sanitizer’ Analysis

 Serializers are difficult and error prone to maintain
 Difficult to test and maintain as application evolves

 If serialization tests aren’t updated with changes to a class, a difficult-to-find bug can be easily
introduced

 C++ static reflection proposals may address this problem (and even make explicit
traversal unnecessary?)
 For now, we are stuck with manually traversing classes

 Our prototyped solution:
 A combination of static instrumentation and dynamic analysis to verify serializers
 Relies on a new Clang frontend AST pass which can be hooked into the build process

Serialization
➤ ‘Serialization Sanitizer’ Analysis

 Static instrumentation using Clang frontend compiler toolkit
 Traverse all members of all classes with intrusive or non-intrusive serialization methods
 Generate an alternative partial specialization of the serialize method that traverses all members

with a special serializer type

 Dynamic checks at runtime
 Run the checker specialization alongside the serialize method; use sets to compare memory

addresses of actually serialized and checked members; allow users to explicitly skip members

Serialization
➤ Polymorphic classes

 Applications often use object polymorphism to express hierarchies of classes and
behaviors
 Polymorphic objects may need to be serialized
 While messages and simple structures used for communication may avoid polymorphism,

checkpoints of application data will often include these data structures

 Polymorphic objects are difficult to serialize correctly
 The serializer needs to be invoked on all classes in the hierarchy recursively
 The proper concrete type must be transmitted/reconstituted if the object is sent

 Existing solutions rely on C++ strings
 PUP: uses register_PUP_ID with a string to register the type
 Boost: uses BOOST_CLASS_EXPORT_GUID or register_type to rely on typeinfo or user

-specified strings to register the classes
 For templates this might be difficult and very expensive, especially when writing to disk or

sending across the network

Serialization
➤ Polymorphic classes

 We exploit the static template registration pattern to generate integers for each
type
 This solves the problem of generating a unique, consistent identifier across ranks for each type

 We insert with a shim layer in the hierarchy or a macro virtual methods that
automatically traverse the hierarchy

 Because serializers are templated, we explicitly instantiate them at compile time
with all possible serializer types and register the serializer types

Serialization
➤ Polymorphic classes

 Example user code:

Automatically
serializes and
reconstructs the
correct type

Base class

A

B C

Outline

1. Motivation for developing our AMT runtime
2. Execution model and implementation ideas

 Handler registration
 Lightweight, composable termination detection
 Safe MPI collectives

3. Serialization
 Polymorphic classes
 ‘Serialization Sanitizer’ Analysis

4. Application demonstration
5. Conclusion

Application Demonstration: EMPIRE

Conclusion

 We are working on an AMT runtime that provides incremental value as users adopt
it for small segments of their applications

 We’ve found that serialization/checkpointing is a good way to introduce our toolkit
to applications
 Thus, we’ve build the DARMA/checkpoint library as a small, distinct piece that can be used

standalone

 We can retain a SPMD style that is familiar to domain experts while still obtaining
the benefits of asynchrony, overdecomposition, and load balancing

 Virtual Transport is moving into production use for the EMPIRE L1 milestone
 Supports a wide range of problem configurations on the largest supercomputers

Execution Model

 In our ideal vision, driving execution progress to termination of an epoch, would be
expressed as an MPI_Wait or MPI_Test
 Generalized MPI requests as standardized are insufficient due to our need to call the VT

scheduler inline
 The Extended Generalized Requests interface proposed by Latham, et al. would suffice

➤ Generalized Requests

