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Abstract—The Message Passing Interface (MPI) standard
allows user-level threads to concurrently call into an MPI library.
While this feature is currently rarely used, there is considerable
interest from developers in adopting it in the near future. There
is reason to believe that multithreaded communication may incur
additional message processing overheads in terms of number of
items searched during demultiplexing and amount of time spent
searching because it has the potential to increase the number of
messages exchanged and to introduce non-deterministic message
ordering. Therefore, understanding the implications of adding
multithreading to MPI applications is important for future
application development.

One strategy for advancing this understanding is through
‘low-cost’ benchmarks that emulate full communication patterns
using fewer resources. For example, while a complete, ‘real-
world’ multithreaded halo exchange requires 9 or 27 nodes, the
low-cost alternative needs only two, making it deployable on
systems where acquiring resources is difficult because of high
utilization (e.g., busy capacity-computing systems), or impossible
because the necessary resources do not exist (e.g., testbeds with
too few nodes). While such benchmarks have been proposed,
the reported results have been limited to a single architecture
or derived indirectly through simulation, and no attempt has
been made to confirm that a low-cost benchmark accurately
captures features of full (non-emulated) exchanges. Moreover,
benchmark code has not been made publicly available.

The purpose of the study presented in this paper is to quantify
how accurately the low-cost benchmark captures the matching
behavior of the full, real-world benchmark. In the process,
we also advocate for the feasibility and utility of the low-cost
benchmark. We present a ‘real-world’ benchmark implementing
a full multithreaded halo exchange on 9 and 27 nodes, as defined
by 5-point and 9-point 2D stencils, and 7-point and 27- point
3D stencils. Likewise, we present a ‘low-cost’ benchmark that
emulates these communication patterns using only two nodes.
We then confirm, across multiple architectures, that the low-cost
benchmark gives accurate estimates of both number of items
searched during message processing, and time spent processing
those messages. Finally, we demonstrate the utility of the low-cost
benchmark by using it to profile the performance impact of state-
of-the-art Mellanox ConnectX-5 hardware support for offloaded
MPI message demultiplexing. To facilitate further research on
the effects of multithreaded MPI on message matching behavior,
the source of our two benchmarks is to be included in the next
release version of the Sandia MPI Micro-Benchmark Suite.

I. INTRODUCTION

The Message Passing Interface (MPI) standard includes
support for allowing user-level threads to concurrently call
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into an MPI library [1]. While this level of thread support
(MPI_THREAD_MULTIPLE) is rarely used in current practice,
a recent survey of application developers in the United States’
Department of Energy Exascale Computing Project indicates
a majority (86%) are interested in taking advantage of the
opportunities it affords [2]. Specifically, emerging memory
technologies such as high-bandwidth memories (HBM) offer
significantly higher memmory bandwidths at the cost of available
storage, precluding the standard ‘MPI everywhere’ strategy of
instantiating a distinct MPI process per core or thread context.
A single, multithreaded MPI process is one solution. Therefore,
understanding the implications of adding multithreading to MPI
codes is important for future application development.

Contributing to this need are performance considerations.
Since under MPI_THREAD MULTIPLE, individual threads
can issue sends and receives, this mode of operation may lead
to significant increases in the number of messages exchanged.
Furthermore, since many threads in a process may be issuing
receives or sends concurrently, multithreaded communication may
result in deviations to the expected ordering of messages, making
the standard strategy of posting receives in the order incoming
messages are anticipated to arrive ineffective. This suggests that
utilizing multithreaded communication can result in more time
spent in MPI message matching, with potential consequences for
application performance. This calls for methods for assessing the
impacts of pursuing multithreaded communication under MPL

One such method is to emulate a multithreaded halo exchange,
as in [3]. This approach has the benefit of being ‘low-cost’
in the sense it requires fewer resources to execute, e.g., two
nodes rather than the 9 or 27 required by full exchanges.
Consequently, the benchmark can be deployed on systems where
acquiring a full allocation is difficult (e.g., because it is under
high utilization) or even impossible (e.g., because it lacks the
necessary number of nodes). However, to our knowledge, studies
based on this approach were limited to a single architecture, and
their authors made no attempt to confirm that such a strategy
accurately represents the behavior of a multithreaded halo
exchange involving a full complement of processes.

An alternative is to provide a benchmark implementing the
complete, ‘real-world” multithreaded halo exchange. In compar-
ison to the low-cost approach, this strategy has the benefit of
imposing more realistic demands on MPI and the underlying net-
work, but also incurs additional resource costs. There exists pub-
lished work based on this ‘real-world’ approach: Levy et. al. [4]
used such a benchmark to collect MPI traces that were then input



into a simulator. However, the authors of that paper did not evalu-

ate the matching behavior of the benchmark on actual hardware.

The purpose of the study we present in this paper is to bridge
the gap between the low-cost and real-world approaches by
quantifying how accurately the former captures the matching be-
havior of the latter. In the process, we advocate for the feasibility
and utility of the low-cost benchmark. We present a ‘real-world’
benchmark implementing a full multithreaded halo exchange on 9
and 27 nodes, as defined by 5-point and 9-point 2D stencils, and 7-
point and 27-point 3D stencils. Likewise, we present a ‘low-cost’
benchmark that emulates these communication patterns using
only two nodes. We then confirm, across multiple architectures,
that the low-cost benchmark gives reasonable estimates of both
number of items searched during message processing, and time
spent processing those messages. Finally, we demonstrate the
utility of the low-cost benchmark by using it to profile the
performance impact of state-of-the-art Mellanox ConnectX-5
hardware support for offloaded MPI message demultiplexing.

In this paper we make the following contributions:

« an evaluation of the low-cost benchmark relative to the
baseline, across multiple architectures;

o a case study using the low-cost benchmark to examine the
effect of message matching offloading on a multithreaded
halo exchange;

« the public release of the source code for the low-cost and
real-world multithreaded communication benchmarks that we
designed and implemented.'

The remainder of this paper is structured as follows. In
section II we describe the low-cost and real-world benchmarks,
and the systems upon which they are executed. In section III
we compare results obtained from the low-cost and real-world
benchmarks. In section IV, we deploy the low-cost benchmark
to evaluate performance using offloaded message matching.
We provide a summary of related work and briefly conclude
in Sections V and VI.

II. METHODOLOGY

Fig. 1: A single-threaded, nine-point halo exchange.

IThe benchmarks will be included in the next release version of the Sandia
MPI Micro-Benchmark Suite (SMB) [5].
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Fig. 2: A multithreaded, nine-point halo exchange.

The halo exchange communication pattern is common among
scientific applications [6], [7]. Figure 1 illustrates a simple
single-threaded, 9-point, two-dimensional halo exchange between
process py4 and its neighbors. In a typical bulk-synchronous
processing (BSP) application using this stencil, after each
process completes its assigned work, it exchanges data with
its eight nearest neighbors. Once this exchange is complete,
it continues into a new work phase.

Figure 2 represents a straightforward multithreaded version
using the same stencil communication pattern. In this scenario,
work on py is divided between 16 threads (fy through t;5).
During the communication phase, each thread is responsible
for exchanging messages with its neighboring threads, based
on the same 9-point stencil pattern shown in Figure 1.

Assuming that inter-thread communication within the same
process is handled outside of the MPI matching engine (e.g.,
via shared memory), one can calculate the number of sending
and receiving threads, and the total number of messages
exchanged between processes. Specifically, a decomposition
can be viewed as a collection of ‘faces’ of different dimensions.
For example, a square (2D) decomposition comprises 4 faces
of dimension 0 (corners)?, 4 faces of dimension 1 (edges)® and
1 face of dimension 2 (interior)*. If we assume, for purposes of
exposition, that all dimensions have the same length, x, then the
total number of threads, ¢(k), on faces of dimension k can be
expressed as a variation on the standard equation for calculating
the faces of a hypercube of dimension d:

t(k) = (z — 2)’“2‘“@@) (1)

for z > 2. In this equation, the first factor ((x—2)*) is the volume
of the k-dimensional face, expressed as the number of threads
it contains. The remainder of the equation computes the number

2Each corner comprises a face containing a single thread (ie., a
zero-dimensional point).

3Each edge comprises a face containing a one-dimensional line of threads
(e.g., t1-t2 in Figure 2).

4The interior comprises a face containing a two-dimensional grid of threads
(e.g., t5,t6,t9, and t1¢o in Figure 2



of k-dimensional faces. The total number of threads is simply
the sum of the number of threads for each possible dimension:

> k) )

k=0

The number of threads involved in inter-process communication
depends on the dimensionality of the stencil used to define the
communication. For this work, we limit our analysis to standard
5 and 9-point 2D stencils, and 7 and 27-point 3D stencils. If the
dimensionality of the stencil (d;), is greater than the dimension
of the thread decomposition (d), then the set of participating
threads includes every thread in the decomposition. Otherwise,
the number of participating threads is equal to Equation 2,
where the upper bound of the summation is reduced to d — 1,
i.e., the single d-dimensional face is excluded. The case where
ds < d is beyond the scope of this paper.

The number of messages exchanged by each thread depends
on the face it belongs to and the stencil used. For communication
limited to the Von Neumann neighborhood (5 and 7-point
stencils), the number of messages is given by Equation 3. For
communication within the Moore neighborhood (9 and 27-point
stencils) the number of messages is given by Equation 4.

m(k) =2ds — (d+ k) 3)
m(k) = 3% — 3k2¢7* 4)
That is, the number of messages exchanged by a thread is equal
to the total number of messages (2ds for the Von Neumann
neighborhood, and 3% for the Moore neighborhood) minus
the number of intra-process messages. The total number of

messages exchanged is therefore the sum of the messages
processed by each thread on each face:

> t(k)ym(k) (5)

k=0

If ds = d, the upper bound of the summation is reduced to d —1.

This analysis can be straightforwardly extended to handle
the case where the number of threads in each dimension is
not equal, e.g., in two dimensions, a rectangular decomposition
instead of a square decomposition. Table I summarizes the
number of messages processed by the receiver for each of
the decompositions and stencils considered in the experiments
reported in this paper. These data illustrate how multithreading
can significantly increase the number of messages exchanged.

The low-cost multithreaded benchmark we consider in this
study emulates a full halo exchange using two MPI processes:
a sender and a receiver (cf. [3]). The number of OpenMP
threads that the receiver uses is determined by a version of our
Equation 2. The number of OpenMP threads that the sender uses
is equal to the number of threads issuing sends to the receiver,
across all communicating neighbor processes; this number can
be calculated with a minor modification to Equations 1 and 2.
That is, while the receiver corresponds to the center process
in an actual halo exchange (e.g., p4 in Figure 1), the threads
from surrounding processes (e.g., pg-ps and ps-pg in Figure 1)
are collected onto a single sending process.

Following a bulk synchronous processing pattern, the
receiving threads post their receives, and then, after a barrier, the

1x1 2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16
Spt 4 6 8 12 16 24 32 48 64
9pt 8 14 20 32 44 68 92 140 188
IxIxl  2x1Ixl  2x2x1  2x2x2  4x2x2 4x4x2 4x4x4 8x4x4 8x8x4
Tpt 6 10 16 24 40 64 96 160 256
27pt 26 50 92 152 272 464 728 1256 2072
Ixlxl  Ix1x2  IxIx4 1xIx8 1xIx16  1x1x32 1xIx64 1x1x128  1x1x256
Tpt 6 10 18 34 66 130 258 514 1026
27pt 26 50 98 194 386 770 1538 3074 6146

TABLE I: Number of messages processed by receiver under
different thread-level decompositions and stencils.

sending threads issue sends. No ‘work’ is done between barriers;
the benchmark focuses solely on communication. To enforce
ordering, each message has a unique tag, and each thread
posts its receives in the same order as the corresponding sends
are issued. The low-cost benchmark supports 5 and 9-point
two-dimensional stencils, and 7 and 27-point three-dimensional
stencils. For all experiments reported in this paper, regardless
of benchmark, thread affinity is OMP_PROC_BIND=spread.

MPI message matching is commonly implemented using
two queues: a Posted Receive Queue (RQ) for unsatisfied
receive requests, and an Unexpected Messages Queue (UQ) for
messages that have not yet been matched to a receive request.
When an application posts a receive request, it is first compared
to all of the messages that are currently waiting in the UQ to
determine whether an existing message will satisfy the request.
If no message in the UQ satisfies the request, then the receive
request is appended to the RQ. Similarly, when an incoming
message arrives, it is compared to all of the receive requests
that are currently in the RQ. If the message satisfies none of the
requests in the RQ, then the message is appended to the UQ.

Recent versions of Open MPI include an option to utilize a
traditional dual-queue matching engine, optimized for SIMD op-
erations (see [8]). To collect data on the number of items searched
and time spent searching, we instrumented this traditional dual-
queue matching engine without enabling these optimizations.
Our instrumented Open MPI reports: (i) the number of items
searched in the RQ before a match is found for each incoming
message; and (ii) the total amount of time spent searching the
RQ. Because all of the receives are pre-posted in this benchmark,
all received messages will have a match in the RQ.

The real-world benchmark performs an actual multithreaded
halo exchange. Specifically, nine processes are used for 2D
stencils, and 27 processes are used for 3D stencils. Each process
is partitioned into x X y or x X y X z threads, again depending
on the dimensionality of the process-level decomposition.
Threads on the perimeter of the decomposition participate in
inter-process message exchanges with those of neighboring
processes, posting receives and issuing sends. Communication
is non-periodic (i.e., non-toroidal). Like the low-cost benchmark,
each MPI process in this benchmark resides on a distinct
node. All receives are pre-posted in the same order as the
corresponding sends, and data is collected from the center
process via the modified Open MPI described above.

Note that an earlier iteration of the real-world benchmark
appears in [4]. However, in that case the benchmark was used

SOpen MPI hash dd74c6252f8947e213e83f470024f3adce78b10b



solely to generate MPI profiling-layer traces for input into a
simulator. Here, we assess the actual MPI message processing
behavior incurred by a multithreaded halo exchange.

To compare the performance of the real-world and low-cost
benchmarks, we ran both benchmarks on a Cray XC40. This
system comprises two compute node partitions. In the first, each
compute node has two sockets, each of which contains an Intel
Xeon ES-2698 v3 (Haswell) processor operating at 2.3GHz.
Each processor has 16 cores with 2 hardware threads per
core, for a total of 64 thread contexts. In the second partition,
each node has a single socket containing a 68-core Intel Xeon
Phi 7250 (Knights Landing) processor operating at 1.4GHz.
Each core has 4 hardware threads, for a total of 272 thread
contexts. The nodes are connected via a Cray Aries network.
All tests were conducted on a single cabinet from one of the
Cray XC40’s partitions. Therefore, the results are for a fully
connected network (not a dragonfly, as would be the case for
communication that spanned multiple cabinets).

There are multiple ways that an application developer can
decompose their problem with multiple threads. We consider
three possible decompositions: two-dimensional ‘square’ (e.g.,
Ix1, 2x1, 2x2, 4%x2, ...), three-dimensional ‘cube’ (e.g.,
Ix1x1, 2x1x1, 2x2x1, 2x2x2, ...), and three-dimensional
‘linear’, which scales only along the z axis (e.g., 1x1x1,
Ix1x2, Ix1x4, ...). Square and cube decompositions
represent typical ways that applications decompose problems.
The linear decomposition represents a less efficient corner case.

The low-cost and real-world benchmarks were executed on
each partition, using one MPI process per node, with each of the
three types of decomposition. Each decomposition was scaled
up until the point oversubscription would occur on the receiver
side. For the low-cost benchmark, this means sender-side
oversubscription is permitted. For the real-world benchmark, this
means that oversubscription is not permitted, since all processes
are both senders and receivers. For the square decomposition,
data was collected for 5 and 9-point stencils; for the cube and
linear decompositions, data was collected for 7 and 27-point
stencils. Because internal nodes in a regular halo exchange have
an equal communication overhead, and assessing this overhead
is the goal of the benchmark, scaling beyond 9 nodes (for 2D
decompositions) or 27 nodes (for 3D decompositions) is not
necessary. For each configuration, the benchmarks were run
50 times, with each run executing two trials, i.e., two halo
exchanges. All reported results are for the second of the two
trials. All messages contained 8-byte payloads.

For the case study — assessing the potential impact of dedicated
offloading message matching hardware — we ran the low-cost
benchmark experiments on an ARM-based testbed with offloaded
matching disabled and then repeated the experiments with
offloaded matching enabled. On this system, each compute
node has two sockets. Each socket contains a 28-core Cavium
ThunderX2 CN9775 processor operating at 2GHz. The ARM
testbed’s network utilizes Mellanox ConnectX-5 interfaces,
which provide dedicated hardware assistance for MPI message
matching [9]. This capability is accessed via OpenUCX [10]. For
the experiments in this paper, we used UCX 1.7.0, configured
with optimizations (-—enable-optimizations) and mul-
tithreaded support (—-—enable-mt) enabled. We used the same

version of MPI as in the previous experiments. However, because
Open MPI’s message matching is bypassed by UCX, our MPI
instrumentation was also bypassed. Therefore, for these results,
we report the time spent processing messages as measured in the
benchmark code. This includes a barrier (to ensure the sender
cannot begin issuing messages before the timer is started) and
acall to MPI_Waitall. In addition to supporting hardware
offloading, UCX also includes message matching optimizations in
software (in the form of binning messages into 1021 bins accord-
ing to tag and source), and these optimizations are reflected in
the reported times. Hardware offloading of message matching is
controlled via the UCX_RC_MLX5_TM_ENABLE environment
variable. The default threshold recommended by Mellanox for
engaging offloading is 1024 bytes. For our experiments, we kept
this default value, meaning that even when offloading is enabled,
it is not used for messages whose size is less than 1KiB.

III. COMPARISON

In this section, we compare results derived from the two bench-
marks, confirming that the low-cost benchmark provides a reason-
able approximation of a genuine multithreaded halo exchange.

A. Resource usage
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Fig. 3: Average core hours for the real-world and low-cost
multithreaded halo exchange benchmark executing a 27-point
3D halo exchange.

Figure 3 compares the average number of core hours (over
30 runs) for the real-world and low-cost benchmarks executing
a multithreaded 27-point, 3D halo exchange. Results were
obtained on 2.3GHz Intel Xeon ES-2698 v3 processors using
Cray MPICH v7.7.6. As the size of the thread decomposition
increases, the low-cost benchmark remains under 0.25 core
hours, while the real-world benchmark approaches 2 core
hours. The reduction in resource usage afforded by the low-cost
benchmark ranges from 9.1x to 16.1x relative to the real-world
benchmark. This reduction in resource usage decreases as the
number of threads increases, because the amount of work each
process in the low-cost benchmark has to do increases faster
than the work done by each of the processes in the real-world
benchmark. However, we expect the low-cost benchmark to
be used at small scale, mostly by MPI researchers and for MPI
performance regression testing. MPI halo exchange performance
is often tested/monitored on supercomputers, which can now
use a lower-cost benchmark to achieve this goal.

B. Items searched

The total number of items searched during a halo exchange
and the search depths for the processing of individual messages
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4: Median total number of items searched under the low-cost and real-world benchmarks, for 2D (5 and 9-point stencils)

and 3D (7 and 27-point stencils) decompositions, on Haswell and KNL architectures.

are useful for understanding the overheads due to the non-
deterministic behavior introduced by multi-threaded communica-
tion [3]. Consequently, we begin by contrasting the total number
of items searched reported by the low-cost and real-world bench-
marks. Figure 4 summarizes this data for square, cube, and linear
decompositions for KNL and Haswell architectures. Data points
represent median search depth (over 50 runs), and error bars
extend to the first and third quartiles. Note that the y-axis is log-
arithmic and the range differs between the plots of data from the
KNL and Haswell architectures. Furthermore, the decomposition
for the KNL architecture has two extra data points over Haswell
due to the greater number of available execution contexts.

Both benchmarks confirm the hypothesis that the
non-deterministic ordering introduced by multithreaded
communication leads to increased search depths [3]. For instance,
under the real-world benchmark on Haswell, a 4x4x4 cube
decomposition with 27-point stencil communication results in a
total number of items searched that, on average, is 170.5 times
larger than the ideal, where each search matches on the first item.

Comparing the two benchmarks, the mean absolute error across
all stencils and decompositions, expressed as a ratio to the median
reported by the real-world benchmark, is 16.4% (o = 11.1). We
observe that disagreement between the low-cost and real-world
benchmarks occurs under larger (9 and 27-point) stencils, and this
typically involves the low-cost benchmark underestimating the
total number of items searched. For instance, the average error of
S5-point stencils versus 9-point stencils for square decompositions,
across both architectures, is 7.6% and 16.6%, respectively.
Likewise, for 7-point stencils versus 27-point stencils and cube
decompositions, these values are 6.3% and 27.7%.

Figure 5 offers a more detailed view of the data for three dif-
ferent cube decompositions on the Haswell architecture, selected
because they clearly manifest this trend. In these histograms, the
z-axis specifies bins of numbers of items searched during the
processing of each incoming message during an exchange, and
the y-axis the number of searches of that depth, averaged across
all 50 trials. In all three cases, there is strong agreement between
low-cost and real-world benchmarks for 7-point stencil communi-

cation. In contrast, for 27-point stencils, the low-cost benchmarks
exhibits greater numbers of shallower searches, and correspond-
ingly fewer deep searches, in comparison to the real-world bench-
mark. Furthermore, the maximum search depths for the real-world
benchmark consistently exceed that of the low-cost benchmark.

C. Matching Overheads

Determining search times can give a user an idea of how
expensive MPI overhead is for multiple decomposition strategies.
Even close agreement between low-cost and real-world bench-
marks with respect to mean or median number of items searched
does not guarantee that the temporal overhead of searching the
match lists is similar because the temporal costs of searching
may not be linear. Consequently, to assess how the low-cost
benchmark relates to the real-world version regarding processing
times, we compare time to process all items in the posted receive
queue (i.e., ‘queue drain times’) for each architecture, stencil, and
decomposition. Results are summarized in Figure 6. As before,
data points represent medians and error bars are first and third
quartiles. The y-axis is logarithmic and differs between architec-
tures and the plots of KNL data have two additional data points.

Previous work has observed that the costs of multi-threaded
communication can be prohibitively expensive, requiring more
time for message processing than currently allocated by current
scientific applications for an entire compute-plus-communication
cycle [3]. The results reported here confirm this observation
across both benchmarks and architectures. For example,
on Haswell, 27-point communication on a 4x4x4 cube
decomposition exceeds 1 millisecond for queue processing.

Comparing the benchmarks, the mean absolute error across
all stencils and decompositions (calculated as in Section III-B)
is 24.9% (0 = 18.6). However, as shown in the subfigures,
discrepancies between benchmarks are more pronounced for
decompositions and stencils with fewer numbers of messages;
as the number of messages increases, disagreement decreases.
For example, whereas the average error across 5-point stencils is
36.0%, the average error decreases to 17.6% for 27-point cube
decompositions, and to 16.7% for 27-point linear decompositions.
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Figure 7 shows results from a square and two cube decomposi-
tions, all executed on Haswell, chosen because they are represen-
tative of the trend towards agreement. As these figures illustrate,
a notable contributor to discrepancies between low-cost and
real-world results are outliers: on all stencils, for lower message
counts, the low-cost benchmark has more extreme slow outliers

two orders of magnitude. For the 4x2x2 cube decomposition, the
maximum real-world 7-point stencil is 909ns while the low-cost
is 7213ns, and for 27-point these are 11051ns and 12941ns.
Finally, for the 4x4x4 cube decomposition, the maximums are
6251ns vs. 7817ns (7-point) and 23080ns vs. 24061ns (27-point),
indicating that by this point, the gaps have closed significantly.

than the real-world benchmark, and this gap closes as the number

of messages increases. For example, for the 4x4 decomposition,

D. Discussion

the maximum real-world search times under 5 and 9-point stencils

are 436ns and 828ns, respectively, while the corresponding low-
cost values are 12686ns and 9367ns, exhibiting gaps of one or

Previous work has studied the impact of multithreading on
message queues and processing times on a KNL system [3]. As
part of the present work, we have reproduced that study. While



our results support the conclusion that multithreaded communica-
tion leads to increased search depths and potentially problematic
message processing times, observed message processing times
trend higher than in that earlier work. This is likely due to the
Spectre/Meltdown exploit, a variant of which affects look-ahead
pointer dereferencing [11]. In contrast to the data presented
here, results gathered for the earlier work were obtained prior to
the exploit being patched. Unfortunately we were unable to test
this hypothesis due to the unavailability of unpatched nodes.

As noted above, the results indicate a user of the low-cost
benchmark should be aware that the benchmark may, under
larger message counts, underestimate the number of items
searched during message processing. This is not unexpected:
whereas in the low-cost benchmark, the non-deterministic order
of message arrivals at the receiver is due entirely to thread-level
competition at the single sender, the real-world benchmark adds
network-induced non-determinism, i.e., variation in message
arrivals because the messages may take different routes through
the network. We hypothesize that as adaptive routing gains
traction in HPC, this divergence between benchmarks will
decrease, assuming processes participating in the low-cost
benchmark are sufficiently far removed in the network topology.

Finally, the user should also keep in mind that the low-cost
benchmark can overestimate message processing time for smaller
message counts in comparison to the real-world benchmark.
Again, this is not unexpected: because there is only a single
sender in the low-cost benchmark, messages arrive at a higher
rate than in the real-world benchmark, where arrival times are
diluted by having multiple senders. This means in the low-cost
benchmark, more memory accesses are occurring in a smaller
window of time, introducing contention and leading to the
outliers noted in Figure 7. As the number of messages increases,
the real-world benchmark trends towards the behavior exhibited
by the low-cost benchmark.

IV. CASE STUDY

In this section, we deploy the low-cost benchmark to establish
initial expectations regarding multithreaded message matching
performance on an ARM system with Mellanox ConnectX-5
network interfaces. Specifically, as shown in Section III, multi-
threaded communication implies increased search depths and time
spent searching. How might the message matching offloading
offered by ConnectX-5 hardware affect these results? This case
study also illustrates the utility of the low-cost benchmark. Our
target system is often under high utilization: acquiring 27 nodes
can take on the order of hours. Given the runtime of the bench-
marks (seconds) and the number of configurations to be explored
(see below), executing the full-cost benchmark is not feasible.

A. The impact of offloading

As described in Section II, we ran experiments with the
low-cost benchmark on a ConnectX-5 system with hardware
matching enabled and then repeated those experiments with
hardware matching disabled. Because this system bypasses
our instrumented MPI, we record the time spent processing
incoming messages, within the benchmark rather than within
MPI. Furthermore, since offloading is only active above a certain
threshold of message size (1024B, the default), we also vary
message sizes to span this transition point (from 8B to 1MiB).

For each set of parameters, the benchmark was executed 50 times,
with 11 emulated halo exchanges per run; the data presented here
discards the first exchange from each run, for a total of 500 trials.

Results for three message sizes — small (512B), medium
(16KiB), and large (1MiB) — are presented in Figure 8. The
left column shows results for square decompositions, and the
right for cube decompositions. Plotted values are medians, and
error bars extend to the first and third quartiles.

As expected, when message sizes are below the threshold for
engaging offloaded matching (<1024B), processing time is not
affected by hardware matching being enabled (Figure 8, row
1). When message sizes are modestly above the threshold (e.g.,
16KiB), hardware matching accelerates processing time across
most square and cube decompositions and stencils (row 2).
Within each type of decomposition, speedup is more pronounced
for larger stencil sizes (larger numbers of messages). For square
decompositions, the average speedup for the 5-point stencil
is 1.13x, and for the 9-point stencil it is 1.23x. Similarly,
for cube decompositions, the average speedup for the 7-point
stencil is 1.21x while that for the 27-point is 1.39x.

However, our benchmark also reveals (Figure 8, row 3) that
when messages become large (e.g., IMiB), hardware-assisted
message matching may actually slow down message processing
relative to software message matching. For 1MiB messages,
the average slowdown is remarkably consistent across types
of decomposition and stencils: 1.85x for 5-point square, 1.87x
for 9-point square, 1.87x for 7-point cube, and 1.88x for
27-point cube. These results suggest that, on this system, there
exists a ‘window of effectiveness’ where hardware offloading
can reduce the overhead of message matching for multithreaded
communication patterns.

To better characterize this window, we plot processing
time across all message sizes for selected square and cube
decompositions in Figure 9 (note the gap between 8B and 512B).
We observe that offloaded matching typically reduces processing
time for message sizes beginning near the default threshold of
1024B, but this benefit disappears between 32KiB and 64KiB,
at which point offloaded matching incurs additional overheads
in comparison to not using offloading. This effect threshold is
observed regardless of the number of messages being processed.

B. Discussion

These results confirm the potential benefits of hardware-
assisted message matching in handling the increased overhead of
multithreaded applications. However, they also suggest that there
are situations where offloading may be detrimental to application
performance (e.g., when message sizes exceed 32KiB).

Previous work by Marts et al. [9] has also considered the
impact of ConnectX-5 message matching offloading. The results
presented in this paper are consistent with this earlier study. Marts
et al. saw similar performance benefits that were limited to a
window of message sizes between 1KiB and 16KiB. For messages
larger than 16KiB, they showed that hardware-assisted message
matching was slower than software message matching. The
same effect is seen in Figure 9. These results are also consistent
with Mellanox’s default threshold which limits hardware-assisted
message matching to messages that are larger than 1024B.

Marts et al. also observed that even for message sizes within
this window, UCX tag binning collisions can decrease the perfor-
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mance of hardware message matching. Therefore, the fact that we
observe a speedup for these medium-sized messages suggests that
our benchmark is balancing its tags across the bins effectively.
Provided that a user sends messages in this ideal size window and
ensures that their tag use is consistent with low binning collisions,
Mellanox’s hardware offloading has the potential to alleviate
some of the aforementioned concerns in MPI matching overhead.

V. RELATED WORK

Levy et al. [4] used a benchmark with similar communication
characteristics to gather MPI traces to simulate a multithreaded
halo exchange. In contrast to the work described in our paper,
a multithreaded halo exchange trace was the desired output;
they did not collect search depth or timing information on
real hardware. In addition, Levy et al. used a full number of
processes for the halo exchange like the comparison benchmark
that we use to assess our low-cost benchmark.

More generally, a number of researchers have considered the
potential overhead of MPI queue searches. For example, Balaji
et al. [12], and Underwood and Brightwell [13] characterized
queue search overheads, illustrating the costs of engaging with
larger queues. Brightwell et al. [14] investigated queue features
such as maximum size and search depth for several applications
and benchmarks. Similarly, Ferreira et al. [15] observed that,
for a variety of scientific applications, search depths tend
to remain relatively shallow. In contrast to these results, the
benchmarks presented here highlight the potential impact of
non-determinism in message ordering implied by multithreaded
communication. Attempts to model such behaviors have been
made as well, see e.g., [16]. Efforts have also been made to
evaluate MPI message matching performance on a variety of
system architectures, see e.g., [17].

Considerable effort has been dedicated to optimizing message
matching. Strategies include dedicating a hardware thread [18],
leveraging cache behavior [19], incorporating hash tables or other
data structures [20]-[22], utilizing GPUs [23] or vector units [8§],
and offloading matching to the NIC [24]-[27]. Most of these
solutions do not consider or are not designed for the sorts of larger
queue search depths exhibited by the multithreaded benchmarks
given here. This is expected to remain the case for emerging
smartNIC designs because recent proposals that utilize hardware
message matching have similar matching list capacities as previ-
ous approaches to message matching, cf. [28], [29]. Previous work
on new matching engines on ConnectX-5 have shown reasonable
performance, see [9], [30], but have not been evaluated with MPI
multithreading. Additionally, Dosanjh et al. [31] recently revisited
the overall benefits of using hardware MPI message matching.

Several works have addressed multithreading support in
MPI by improving implementation internals [32]-[34], and
proposing new interfaces [35]-[37]. In addition to traditional
send/receive multithreading and matching overheads, work
has also examined multithreading in the context of MPI
one-sided communication [38], [39]. Other MPI multi-threaded
benchmarks have been proposed for basic MPI functionality
and performance testing [40]-[42].

VI. CONCLUSION

The potential implications of multithreaded MPI motivated
us to explore benchmarks for assessing the performance impact

of multithreaded communication under communication patterns
common to scientific computing. While ‘low-cost’ and ‘real-
world’ benchmarks have been proposed, reported results have
been limited to a single architecture or derived indirectly
through simulation, and to our knowledge, no attempt has
been made to confirm that a low-cost benchmark accurately
captures features of full (non-emulated) exchanges such as the
number of items searched or time spent searching. In this paper,
we have described the design and implementation of these
benchmarks, and compared data acquired from each across
multiple architectures. We found that the low-cost benchmark
provides an accurate estimate of the number of items searched
and the time spent searching with the real-world benchmark, with
some qualifications. We hypothesize these differences are a conse-
quence of substituting communication between two nodes for the
many-node communication present in the real-world benchmark;
further investigation into this hypothesis is a topic for future work.

We also used the low-cost benchmark to assess the effect of
hardware support for offloaded message matching provided by
state-of-the-art Mellanox ConnectX-5 network interfaces. Using
the low-cost benchmark in this case allowed us to collect data that
we could not feasibly collect with the real-world benchmark be-
cause of the high utilization of the host system. These data show
that offloading can help alleviate the impact of multithreaded
MPI communication for a particular range of message sizes,
although for smaller messages with large message counts (1KiB-
4KiB messages, 4x4x2 decomposition, 27-point stencils), and
for large messages regardless of number of messages (>32KiB
messages), it is preferable to utilize software-based matching,
as offloading may incur additional overheads. Finally, we have
publicly released the source for these two benchmarks as part
of the Sandia MPI Micro-Benchmark Suite benchmark suite.
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