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Abstract. Solving dense systems of linear equations is essential in appli-
cations encountered in physics, mathematics, and engineering. This pa-
per describes our current efforts toward the development of the ADELUS
package for current and next generation distributed, accelerator-based,
high-performance computing platforms. The package solves dense linear
systems using partial pivoting LU factorization on distributed-memory
systems with CPUs/GPUs. The matrix is block-mapped onto distributed
memory on CPUs/GPUs and is solved as if it was torus-wrapped for an
optimal balance of computation and communication. A permutation op-
eration is performed to restore the results so the torus-wrap distribution
is transparent to the user. This package targets performance portabil-
ity by leveraging the abstractions provided in the Kokkos and Kokkos
Kernels libraries. Comparison of the performance gains versus the state-
of-the-art SLATE and DPLASMA GESV functionalities on the Summit
supercomputer are provided. Preliminary performance results from large-
scale electromagnetic simulations using ADELUS are also presented. The
solver achieves 7.7 Petaflops on 7600 GPUs of the Sierra supercomputer
translating to 16.9% efficiency.

Keywords: Dense linear systems of equations - Distributed computing
- GPU acceleration - LU factorization - Performance portability.

1 Introduction

Solving a dense linear equations system is one of the most fundamental prob-
lems in numerous applications in the mathematical sciences and engineering,
such as biology [1], economics [2], electrical network analysis, aircraft design,
radar technology [3], etc. We can find dense linear systems of equations in many
applications involving the solutions of linear partial differential equations for-
mulated as boundary integral equations (a.k.a. boundary element method) in-
cluding acoustics, electrochemistry, fluid mechanics [4], elastodynamics, fracture
mechanics [5], electromagnetics (method of moments) [6]. In these applications,
the boundaries of the objects of interest are discretized and the integral equa-
tions are formulated into the form of A*x=Db where A is a dense, square matrix,
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b is (are) the corresponding right-hand-side (RHS) vector(s), and x is (are) the
unknown solution vector(s).

In order to solve A*x=Db, one typically uses direct solvers with lower-upper
(LU) factorization, which decomposes the matrix A into a lower triangular ma-
trix L and an upper triangular matrix U such that A=L*U, due to its high
accuracy and robustness. However, dense LU factorization has a high computa-
tional complexity of O(N?), and a memory requirement of O(N?) which might
prevent itself from simulations of extremely large problems. To reduce the heavy
computational burden of direct solvers, one can use iterative solvers with their
computational complexities of O(N?\/k) where k is the condition number of
matrix A [7]. Many efforts have also been devoted to further accelerate the
iterative solvers. For instance, in the area of method of moments, many fast
factorization schemes have been proposed in the literature to reduce the cost
of matrix-vector multiplications in iterative solutions using some suitable ex-
pansions of the underlying integral kernel with some sacrifices of accuracy. Two
well-known techniques are the fast multiple method (FMM) [8] and the multi-
level fast multipole algorithm (MLFMA) [9] which can reduce the computational
complexity to O(N*®\/k) and O(Mog(N)\/k), respectively.

Despite its high computational complexity, a direct solver often provides more
robust results in cases where many iterative solvers fail to solve accurately and/or
fail to converge because the system matrices are extremely ill-conditioned. Such
problems, e.g. structures supporting high-quality factor resonances or extremely
large problems compared to the wavelength, are very common in real-world ap-
plications. Therefore, it is essential to have efficient implementations of dense
direct solvers. The dense formulation of the problem is also memory-intensive.
Most problems of interest require several hundreds or thousands of nodes/G-
PUs to be able to fit in memory. Therefore the dense direct solvers have to be
distributed-memory parallel as well. Dense LU factorizations are also compute-
intensive algorithms (O(N?) FLOPS). Hence the distributed-memory, dense LU
factorization has to be able to utilize the hardware accelerators available on sev-
eral of the top supercomputers extremely well. This could mitigate their afore-
mentioned computational cost and allow them to target extremely large-scale
problems while providing robust solutions to applications. Some problems of
interest to us such as the boundary element method applied to electromagnet-
ics in the frequency domain [6] result in matrices A that are dense complex.
Hence we need to support accelerator-focused, distributed, dense LU factoriza-
tions that can handle real and complex matrices. This is a challenging problem
by itself. The challenge is made even harder by the diversity in the accelerator
architectures.

The current second fastest machine on the TOPS500 list is the Summit system
[10] located at the Oak Ridge National Laboratory (ORNL). Each compute
node of the Summit system has two POWER9 CPUs and six NVIDIA V100
GPUs. The peak double-precision floating-point performance of the CPUs and
the GPUs per compute node are 1.08 TFLOPS and 46.8 TFLOPS, respectively.
The third fastest supercomputer is the Sierra system [11] located at the Lawrence
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Livermore National Laboratory (LLNL). Each node of Sierra has two POWER9
CPUs at 1.08 TFLOPS, and four V100 GPUs for 31.2 TFLOPS. We present
performance results on both these systems (Section 6).

We also highlight three architectures that are of interest to us in the near
future. Recently, the U.S. Department of Energy has announced plans for three
exascale-class supercomputers: (1) Aurora system [12], at the Argonne National
Laboratory, will be delivered in 2021 with sustained performance of 1 ExaFLOPS.
Each Aurora node will contain two Intel Xeon scalable processors and six X©
architecture-based GPUs; (2) Frontier system [13] at the ORNL. It will be deliv-
ered in 2021 with 1.5 ExaFLOPS of theoretical peak performance. FEach Frontier
node will contain one AMD EPYC CPU and four purpose-built AMD Radeon
Instinct GPUs; (3) El Capitan system [14] at the LLNL is scheduled for early
2023 with 2 ExaFLOPS of theoretical peak performance. Each El Capitan node
will contain one AMD EPYC CPU and four next-generation AMD Radeon In-
stinct GPUs. These next generation exascale HPC architectures are continuously
evolving to allow for solving larger, more computationally intensive problems.
At the same time, they have introduced new challenges to algorithm designs
and implementations due to significantly different architectures and program-
ming models. Therefore, it is important to develop the dense LU solver based
on algorithms and implementations that are portable to future platforms.

This paper presents ADELUS, a performance-portable dense LU solver for
current and next generation distributed-memory hardware-accelerated HPC plat-
forms. ADELUS computes the LU factorization with partial pivoting and solves
real/complex dense linear systems in distributed-memory using the message
passing interface (MPI). The matrix is block-mapped onto the MPT tasks (ei-
ther stored on CPU memory or GPU memory). In this work, the torus-wrap
mapping scheme [15], which is transparent to the users, was adopted for an op-
timal balance of computation and communication. MPI processes compute the
factorization and solve the portion of the linear system as if the matrix was torus-
wrapped. A permutation operation is performed to restore the results when the
solve completes. In this work, we provide performance portability by leveraging
the abstractions provided in the Kokkos programming model [16] and Kokkos
Kernels library [17].

The main contributions of this paper are the following:

— A parallel, dense, performance-portable, LU factorization algorithm based
on torus-wrap mapping.

— An implementation of the real/complex LU factorization algorithm for tra-
ditional and accelerator-based architectures that can achieve 1.397 PFLOPS
on 900 GPUs on the Summit (the world’s second fastest) supercomputer.
The ADELUS software is available at https://github.com/trilinos/Trilinos.

— Comprehensive analysis of the performance, scalability, and the effect of
using different memory spaces on distributed-memory.

— Integration of the dense LU solver into an electromagnetic application and a
demonstration of application performance on 7600 GPUs with 7.720 PFLOPS
on the Sierra (the world’s third fastest) supercomputer.
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2 Related Work

Dense LU factorization has been studied for several decades. In this section, we
list the most popular software packages which implement LU solvers related to
distributed memory and/or GPU accelerators. These algorithms and implemen-
tations are the most relevant with respect to our work. Distributed-memory LU
factorization implementations are available in:

— ScaLAPACK [18]: ScaLAPACK is the standard library for high-performance
dense linear algebra routines on distributed-memory computers. ScalLA-
PACK leverages BLAS and BLACS (Linear Algebra Communication Sub-
programs) for extending LAPACK routines to distributed-memory comput-
ing. The library is currently written in Fortran;

— Elemental [19]: Elemental is a C++ library for distributed-memory, dense
and sparse-direct linear algebra, using C++ templates for multiple precision
support. It interestingly distributes the matrix by elements, which is sim-
ilar to the torus-wrap mapping scheme used in ADELUS. Since 2016, the
Elemental library was forked by the LLNL team under the name Hydrogen,
to make use of GPU accelerators. But the supported functionality is only
limited to the basic utilities and BLLAS-1,-3 operations;

— DPLASMA [20]: the DPLASMA library relies on the PaRSEC [21] runtime
to schedule tasks from task dependency graphs, allowing for overlapping of
communication and computation. DPLASMA, however, does not support
either GPU acceleration for LU solver or C++ templates.

On the other hand, node-level hardware-accelerated implementations of the
LU solvers are available in:

— CULA [22]: CULA Dense is a GPU-accelerated implementation of dense lin-
ear algebra routines providing a wide set of LAPACK and BLAS capability;

— MAGMA [23]: The MAGMA library aims to provide LAPACK functionali-
ties for heterogeneous/hybrid architectures;

— cuSOLVER |[24]: The cuSOLVER library is a high-level package based on the
cuBLAS and cuSPARSE libraries. It provides useful LAPACK-like features,
such as dense matrix factorization and solve routines such as LU, QR, etc.

The SLATE library [25] is the state-of-the-art library that targets multi-
GPU-accelerated distributed-memory systems. SLATE provides coverage of ex-
isting ScaLAPACK functionalities, both accelerated CPU-GPU based and CPU
based. SLATE uses a modern C++ framework with communication-avoiding
algorithms, lookahead panels to overlap communication and computation, and
task-based scheduling. To the best of our knowledge, ADELUS is the first effort
addressing performance portability for LU solver via Kokkos/Kokkos Kernels
libraries on distributed-memory accelerator-based architectures. We compare
ADELUS’ performance against some of these implementations in Section 6.
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3 Overview of Kokkos and Kokkos Kernels

As the systems with several different accelerators become common, the need
for portable programming model and portable algorithms has become criti-
cal. Portability can be addressed using several different approaches such as a
directive-based approach (using OpenMP [26], OpenACC [27]), a library-based
approach (using Kokkos [16], RAJA [28]) or by writing portable domain-specific
languages (DSLs) if the target domain is small. Each one of these approaches
has their advantages and disadvantages. In this work, we focus on the Kokkos
performance-portable library to develop the dense LU solver. The primary rea-
son we choose the library-based portable approach is due to the ability of this
option to be used immediately with CPUs and GPUs effectively, and the avail-
ability of an ecosystem where options to call BLAS or LAPACK functionality is
available through the Kokkos Kernels library [17].

Kokkos is a templated C++ library that uses meta-programming so users of
the library will write the code once in templated C++. At compile time, these
codes are mapped to an appropriate backend depending on compile time tem-
plate parameters. There are backends available for OpenMP, CUDA for NVIDIA
GPUs, and experimental backends for HIP for AMD GPUs, and SYCL for Intel
GPUs. We use the OpenMP and CUDA backends in this work. Kokkos uses an
execution space to determine where the computation is mapped and a memory
space to determine where data structures live. Both aspects are key to perfor-
mance. A Kokkos View is a data structure to store multidimensional arrays
with reference counting. We utilize the Kokkos Views for storing the matri-
ces and vectors. The matrices and vectors use different layouts depending on
whether the data structures live on the CPUs or GPUs. In Kokkos library this
is called HostSpace and CudaSpace. Furthermore, we also use CudaHost-
PinnedSpace for MPI buffers for better performance. Switching the data struc-
tures from one memory space to another is controlled completely at compile time
with template parameters. The solver code remains the same for all the options.

Once the data structures are in place and an execution space is chosen, the
key requirement for a dense linear solver is the availability of BLAS and LA-
PACK functionality. Kokkos Kernels library [17] provides portable sparse/dense
linear algebra and graph kernels. It is implemented using Kokkos for portability.
Kokkos Kernels also has interfaces to vendor-optimized BLAS/LAPACK when
appropriate. There are custom BLAS/LAPACK kernels implemented for perfor-
mance or functionality reasons as well. We depend on the Kokkos Kernels library
for BLAS and LAPACK functionality on CPUs and GPUs. Kokkos Kernels uses
the dense matrices stored in layouts optimized for CPU/GPU architecture and
provides the BLAS/LAPACK functionality needed by the solver.

4 Application: Method of Moments for Linear
Electromagnetics

An important class of problems that can be solved with the ADELUS solver
are those encountered in the solution of the boundary element method ap-
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plied to electromagnetics in the frequency domain. This class of problems solves
Maxwell’s equations in integral form by using the equivalence principle and em-
ploying divergence conforming basis functions for the currents on the surfaces of
interest [6], [29]. In the electromagnetic’s community, this is termed the method
of moments. The matrix produced by this numerical technique is then solved
by using ADELUS. Depending on how the boundary condition is applied, it can
be categorized into two main approaches: (i) Electric Field Integral Equation
(EFIE) where the boundary condition is applied on the electric field; (ii) Mag-
netic Field Integral Equation (MFIE) where the boundary condition is applied
on the magnetic field. The EFIE can be applied to both open and closed objects
whereas the MFIE applies only to closed objects. Without loss of generality, we
provide a brief of summary of the method of moments for EFIE in this section.

Consider the equation on the surface S: L£(J) = E, where L is the linear
operator derived from the EFIE, J is the unknown induced surface current, and
FE is the corresponding right hand side related to the incident field. £ contains
kernels in the form of Green’s function G(r, ') = e~ %"=l /|r —¢/|, where r and
r’ are an observation point on S and a source point on S, respectively, and k
is the wave number. Let the current on S be approximated in terms of a basis
function f,, defined on the surface as

N
T2 " Tnfo 1)
n=1

Typically, a triangular disretization of the surface is employed and the well-
known Rao-Wilton-Glisson (RWQG) function [29] is used as basis functions in
(1). Applying (1) to the EFIE £(J) = E and using the Galerkin method to test
each side of the equation yield a complex, dense, double-precision linear system

N

D s LEaTn = {fm, B, (2)

n=1

where m = 1,2,..., N. Equation (2) has the form of A * x = b which can be
solved by ADELUS for {I,})_,. Note that the discretization required to solve
problems of interest forces the usage of capability machines that are efficient in
both message passing (MPI) and threading on advanced architectures (GPUs).

To this end, ADELUS has been successfully integrated with the method of
moments code EIGER [30]. This production Fortran code has been used effec-
tively for a large class of problems and on a variety of compute platforms — its
utility has been extended by the ADELUS solver. The next generation version
of EIGER, GEMMA [31], is currently being developed to use the Kokkos library
to increase performance in the filling of the matrix as well.

5 Parallel LU Solver Implementation

In this section, we describe the implementation of ADELUS, including the ma-
trix implementation using Kokkos, the torus-wrap mapping scheme, and the
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parallel LU solver using torus-wrap mapping (factorization, backward solve and
permutation).

5.1 ADELUS Interface and Storage

ADELUS accepts a dense matrix and vectors that are block-mapped to the
MPI processes. The matrix is distributed to the MPI processes such that the
maximum difference in the number of rows (or columns) assigned to each MPI
processes is at most one. The same rule is applied to the right hand side (RHS)
vectors. ADELUS provides a distribution utility function for users to calculate
the workload on each MPT process based on the number of columns (rows) of the
matrix, the number of the RHS vectors and the number of processes assigned to a
matrix row. The function returns the number of rows, columns and RHS vectors
assigned to the process, the row and column addresses of the matrix portion in
the global matrix, and the row and column indices of the matrix portion in the
local block map. Fig. 1a shows an example of mapping the original matrix and
two RHS vectors to six MPI processes with three processes per row. This utility
function is used by our applications to assemble the portions of the matrix and
the RHS vectors in the 2D block format correctly on each MPI process and
provide them as input to ADELUS. ADELUS is then called by MPI processes
taking the portions of matrix packed with RHS vectors as their inputs.

1|2 1|2 1
Block columnid 1 2 3 4 6 4 6 4
Block row id G LB A
1 1 2 3 , y ;
- 1|2 12 1
4 4 4

2 4 5 6
1|2 1(2 1

(a)

Fig.1: ADELUS workload distribution and torus-wrap mapping for 6 MPI pro-
cesses (3 processes in a row), and 2 RHS vectors. The MPI process indices are
shown in the boxes: (a) Workload distribution; (b) Torus-wrap mapping.

Similar to traditional dense linear solver packages, ADELUS stores its data
(matrix and RHS vector portions) in each MPI process contiguously in the
column-major order. For portability, the ADELUS data container is implemented
by the Kokkos View with layout as Kokkos::LayoutLeft. Kokkos::LayoutLeft
essentially forces Kokkos to use column major order. The Kokkos Views are
allocated either in the host memory (HostSpace) or in the device memory
(CudaSpace) depending on the desired execution backend (i.e. CPU, GPU,
etc.). We use Kokkos::complex so the matrices and vectors remain portable on
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CPUs and GPUs. For example, one can allocate a 2D view (matrix) of complex
values in the host memory by:

Kokkos : : View<Kokkos : : complex<double >x*x,
Kokkos :: LayoutLeft ,
Kokkos :: HostSpace>
A(”A” ;my_rows, my_cols );

or in the CUDA device memory by:

Kokkos : : View<Kokkos : : complex<double >xx,
Kokkos :: LayoutLeft ,
Kokkos : : CudaSpace>
A(”A” ;my_rows, my_cols );

Note that the constructor takes a string that is primarily used for debugging
and profiling purposes. The my_rows and my_cols are local number of rows and
columns in each MPI rank. The current ADELUS solver requires the matrix and
RHS vectors are packed together and computed before ADELUS is called since
the forward solve is integrated with the factorization of the matrix with the RHS
appended next to the matrix. This scenario is very common in the computational
electromagnetics where users usually compute the matrix and the RHS vectors
before calling the solvers. In order to comply with other LU solvers, we are going
to provide the GETRF and GETRS functionalities separately in the upcoming
ADELUS versions.

In the current version of ADELUS, the implementation is exclusive to one
architecture, that is, the matrix resides in either host memory (if running on
CPU backend) or device (CUDA) memory (if running on GPU backend). We
plan to target a hybrid implementation where host memory and device memory
are both utilized in the future versions.

5.2 Torus-Wrap Mapping

The torus-wrap mapping scheme [15] is adopted for workload distribution in
ADELUS. The advantages of this mapping are each process has nearly the same
workload and the process idle time is minimized. Assuming the number of MPI
processes P can be factored as P = P, x P., where P, is the number of processes
per column and P, is the number of processes per row, one can construct a block
mapping with the block sizes of M, x N, where M,=N /P, and Ny=N/P.. If N
is not divisible by P, or P, some processes will be assigned one more row and/or
column than others. Internally, ADELUS, which uses the torus-wrap mapping
scheme, assigns columns 1, P.+1, 2P.+1, ... to processes 1, P.+1, 2P.+1, ...;
columns 2, P.+2, 2P.+2, ... to processes 2, P.+2, 2P.+2, ... For rows, ADELUS
assigns rows 1, P41, 2P,+1, ... to processes 1, 2, ..., P.; rows 2, P42, 2P, 42,
... to processes P.+1, P.+2, ... In other words, the column indices assigned
to a MPI process constitute a linear sequence with step size P., and the row
indices are in a sequence separated by P,. It is not necessary to redistribute
the block-mapped matrix among processes for torus-wrapped solver [15]. More
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specifically, a block-mapped system can be solved by a solver assuming a torus-
wrapped system. In ADELUS, the solution vectors are corrected afterwards by
straightforward permutations. The details are transparent to the users. Fig. 1b
shows an example of matrix elements torus-wrap mapped to 6 MPI processes
with 3 processes per row. It should be noted that the performance of ADELUS
depends on the distribution of matrix on MPI processes (i.e. the selection of P,
and P,.). It is common to choose P. > P. for better performance. More detailed
discussion is given in Section 6.3.

5.3 LU Solver

In ADELUS, the LU solver comprises three main steps: LU factorization+forward
solve, backward solve, and permutation. We detail the algorithms for these steps
in this section.

LU Factorization and Forward Solve As the forward solve is similar to
the LU factorization in terms of data use/reuse, we merge the forward solve
with the factorization for performance and coding simplicity. We implement the
right-looking variant of the LU factorization with partial pivoting of a dense
N x N matrix. The algorithm is summarized in Algorithm 1. Each iteration in
Algorithm 1 has 4 steps:

— Step 1 is to find the pivot. An MPI column sub-communicator is formed for
the processes that own column j. Each process finds its own local maximum
entry in the column and then exchanges within the sub-communicator for
the global pivot value.

— Step 2 is to scale the current column j of Z with the pivot value and generate
column update vector from the column j. The pivot row index and the
column update vector are communicated to processes sharing the same row
sets.

— Step 3 is to exchange pivot row and diagonal row. The pivot row is first
updated and then broadcasted within each column sub-communicator. The
row owner processes also send the diagonal row to processors owning the
pivot row.

— Step 4 is to update the current column, and if saving enough columns, to
update Z via the outer product.

Each MPI process handles its own local matrices while using Kokkos Kernels
BLAS interfaces which are implemented in a simple, generic way so that the
resulting code is able to run on a wide range of architectures. The BLAS in-
terfaces enable convenient calls to vendor library BLAS routines well-optimized
for multi-threaded CPU and massively parallel GPU architectures. In this work,
Kokkos Kernels calls IBM’s ESSL. BLAS when called with the CPU backend
and calls cuBLAS when called with the CUDA backend. There are some ex-
ceptions where Kokkos Kernels calls its own implementations but they do not
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get used for our experiments in this work. Depending on where the data re-
sides, Kokkos Kernels calls the right BLAS routines for the targeted backend.
The BLAS operations needed in ADELUS include: (i) KokkosBlas::iamaz for
finding the local pivot entry in a column (Line 5 of Algorithm 1), (ii) Kokkos-
Blas::scal for scaling the column with the inverse of pivot value (Line 10), (iii)
KokkosBlas::copy for copying back and forth between the matrix and tempo-
rary containers (Lines 15, 20, 23, 25, 27, 31, and 33), (iv) KokkosBlas::gemm for
updating the matrix (Lines 22, 38, and 40). Our algorithm requires only simple
communication patterns consisting of point-to-point communication: MPI_Send,
MPI_Recv, MPI_Irecv (Lines 16, 18, 29, 31, and 33 of Algorithm 1) and collec-
tive communication: MPI_Bcast, MPI_Allreduce (Lines 7 and 24). Furthermore,
CUDA-aware MPI is exploited on GPU architectures which allows direct com-
munication among GPUs without the need of buffering GPU data through host
memory. ADELUS also has the option of using host pinned memory to buffer
GPU data before communication which can be used for computer systems not
having a high performance implementation of CUDA-aware MPI.

We employ the delay-updating technique (Line 39 of Algorithm 1) to take
advantage of the better efficiency of level-3 BLAS gemm as compared to level-1
and level-2 BLAS operations. An appropriate block size parameter BLKSZ can
help enhance the solver performance. A typical value of BLKSZ for CPU backend
is 96 while a typical value of BLKSZ for GPU backend is 128. We determine
these using several evaluations for different matrices. These numbers are used in
our performance evaluation in Section 6. The algorithm utilizes an overlapping
technique which performs column updates within a block one column at a time
(Line 38). To minimize the waiting time, the algorithm attempts to do row work
while waiting for a column to arrive (Line 35).

Backward Solve In this phase, the elimination of the RHS is performed by
the process owning the current column using the Kokkos parallel_for (Line
4 through Line 6 of Algorithm 2). The results from the elimination step are
broadcasted to all the processes within the MPI column sub-communicator (Line
7). The KokkosBlas::gemm is then called to update the RHS (Line 8). To prepare
for the next iteration, the newly-computed RHS vectors are sent to the processes
to the left.

Permutation Since the torus-wrap mapping scheme is assumed by the solver
while the input matrix is not torus-wrapped, a permutation of the solution
vectors must be carried out to "unwrap the results”. The algorithm is quite
straightforward. Each process that owns local solution vectors creates a tempo-
rary buffer for global solution vectors. The permutation simply involves Kokkos
parallel_fors to fill the local vectors to the right locations in the global vectors
and an MPI_Allreduce to collectively update the change from other processes.
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Algorithm 1: LU factorization and forward solve on MPI process p

Require: Matrix portion Z (M,x (N,+N;"*))
1 MPI process p owns row set r, and column set ¢,
// number of columns saved for update
2 colent =0
3 for j=1to N do
// Step 1: Find pivot
4 if j € ¢, then
5 s? < KokkosBlas :: iamax(Zier, ;)
6 VP~ Zsp,j
7 Exchange to compute v < maz,y”
8 s < row index containing the entry v
// Step 2: Generate column update vector v from column j of Z

9 if j € ¢, then
10 KokkosBlas :: scal(Zier,,j,1/7)
11 if j € rp, then
12 Zj; = Zj,j *vy// Restore diagonal
13 if s € rp then
14 Zsj = Zs,; xy// Restore diagonal
15 Copy Zr,,j t0 Vrp, colent
16 Send column U, colent and s to processes sharing row set 7,
17 else
18 Receive s

// Step 3: Exchange pivot row and diagonal row, and broadcast
pivot row

19 if j € r, then
20 Copy [Zj,ep> Vj1:c0lent] tO w2
21 if s € rp then
22 KokkosBlas :: gemm(vs 1:colent, Ul:colent,cp Zs,cp)
23 COpy [Zs,c,],vs,lzcolcnt] to w3
24 Broadcast w3 to processes sharing column set c,
25 Copy w3 to us,c,
26 else
27 Receive w3 and copy to Us,c,
28 if j € 7, then
29 Send w2 to pivot owner
30 if s € rp then
31 Receive w2 and copy to [Zs,cp, Vs 1:colent)
32 if j € rp then
33 Copy w3 to [Zj,c,, Vj1:colent)
34 if j ¢ ¢, then
35 Receive Uy, colent
36 Remove j from r, and from c,

37 colent + +
// Step 4: Column update and outer product update
38 KokkosBlas :: gemm(vr,, j, Us,1:colents Zrp,1:colent)
39 if colent = BLKSZ then
40 KokkosBlas :: gemm(vr,, 1:colent, Ul:colent,cps Lrpyep )
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Algorithm 2: Backward Solve on MPI process p
Require: Matrix portion Z (M,x(N,+Ny"*))
1 MPI process p owns row set 7,
2 for j = N downto 1 do
3 if j € rp then
// Do an elimination step on the column and the rhs owned by

process p

4 for k=1 to N;hs do
5 ul(k) <= Zj Nptk/Zj,;
6 Zj’NpJﬁk — ul(k)
7 Broadcast ul in the column communicator
// Update rhs
8 KokkosBlas :: gemm(Zy, ;,ul(:, Nj"*), Z,.pyN;‘hs)
9 Send rhs to the processes on the left
10 Receive rhs from the processes on the right
6 Results

6.1 Experimental Setup

We use the second and the third the fastest supercomputers in the world at the
time of this writing for all our experiments, namely the Summit system at the
Oak Ridge Leadership Computing Facility (OLCF), and the Sierra system at
the Lawrence Livermore National Laboratory.

The Summit system contains 256 racks, each with eighteen IBM POWER9
AC922 nodes, for a total of 4,608 nodes. Each node contains two POWER9
CPUs, twenty two cores each, and six V100 GPUs. Each node has 512GB of
DDR4 memory. Each GPU has 16GB of HBM2 memory. The processors within
a node are connected by NVIDIA’s NVLink 2.0 interconnect. Each link has a
peak bandwidth of 25 GB/s (in each direction). The nodes are connected with a
Mellanox dual-rail enhanced data rate (EDR) InfiniBand network. The software
environment used for the experiments on Summit includes GNU Compiler Col-
lection (GCC) 7.4.0, CUDA 10.1.243, Engineering Scientific Subroutine Library
(ESSL) 6.2.0, Spectrum MPT 10.3.1.

The Sierra system has 240 racks, each with eighteen IBM POWER9 AC922
nodes, for a total of 4,320 nodes. Each node contains two POWER9 CPUs,
twenty two cores each, and four V100 GPUs. Each node has 256GB of DDR4
memory. Each GPU has 16GB of HBM2 memory. The processors within a node
are connected by NVIDIA’s NVLink 2.0 interconnect. The nodes are connected
with a Mellanox dual-rail enhanced data rate (EDR) InfiniBand network. The
software environment used for the experiments on Sierra includes GNU Com-
piler Collection (GCC) 7.2.1, CUDA 10.1.243, Engineering Scientific Subroutine
Library (ESSL) 6.2.0, Spectrum MPI 10.3.0.

In the next two sections, we demonstrate the performance of ADELUS. First,
we investigate the performance of ADELUS solving matrices that are randomly
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generated on the Summit system. This is reasonable as the performance of the
solver is not very different based on the values. The pivoting is the only part that
could get affected. Random matrices always require pivoting, making this a good
test. Second, we integrate ADELUS into a production application code, EIGER,
and demonstrate performance on the linear systems from the electromagnetic
application on the Sierra system.

6.2 Performance Results with Randomly-Generated Matrices

In our performance analysis, we run experiments to solve for a linear equation
system with a single RHS vector and the matrix size is increased as we increase
the hardware resource!. Note that the single right hand side problem is typically
harder than multiple right hand side problem as there is one less dimension to
exploit the parallelism. For the GPU backend, ADELUS runs with one MPI
rank per GPU. For the CPU backend, there are three possible MPI rank con-
figurations on the Summit system: (a) 1 MPI rank per node (42 cores each), 1
MPI rank per sockets (21 cores each), or 6 MPI ranks per node (7 cores each).
It should be noted that the CPU computation time, which heavily depends on
BLAS operations (in which matrix-matrix multiply for the matrix updates is the
most time-consuming), dominates the total CPU execution time, as compared
to the communication time. We observe that the best performance for CPU ex-
ecution is reached by assigning all 42 cores for 1 MPI rank. Consequently, in
our experiments, ADELUS runs with one 42-core CPU node per MPI process
on CPU backend. Since the CPU memory capacity is much larger than the GPU
memory capacity, it is difficult to determine a fair comparison scheme between
the two backends. In this study, we opt to use the memory occupied by a ma-
trix (VN x N) represented in double complex precision in a single GPU as the
baseline. As the number of MPI processes increases, the problem (i.e. matrix)
sizes are increased so that each MPI process holds the same amount of matrix
portion (N x N). The baseline N x N matrix is chosen with N = 27,882 which
takes 77.7% of 16GB GPU memory. The matrix sizes will be N x N, 2N x 2N,
... /PN x /PN, where p is the number processes, in the 1, 4 (2 processes/row),
... p processes (,/p processes/row), respectively. It is noted that ADELUS can
handle non-square matrix portion in MPI processes. In Section 6.3, we will show
the results of different matrix distributions. For the GPU backend, we test MPI
data buffers allocated in GPU memory (CUDA-aware MPI) and host pinned
memory.

Load Balancing Verification We first look at the execution time on all MPI
processes by picking the matrix size of 6 /N x 6N running on 36 GPUs. Fig. 2a and
Fig. 2b show the timing breakdowns for each of the 36 processes (36 GPUs) for
the factorization step in solving the 167,292x 167,292 problem in double complex
precision using CUDA-aware MPI and host pinned memory, respectively. The

! The driver code used for our ADELUS experiments can be found in
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
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timing breakdown includes the time to find the local maximum entries (called
Local pivot), the time for MPI communication (called Msg passing), the time
for internal copying (called Copying), and the time for updating matrix (called
Update). In case of using host pinned memory for MPI, the time for copying back
and forth between the device memory and the host pinned memory is included
(called Host pinned mem copying). It is observed that the workload (computation
and communication) is almost perfectly balanced across all the MPI processes
while the process idle time is kept minimized due to the torus-wrap mapping
scheme. When host pinned memory is used for MPI communication, extra mem-
ory copying is explicitly made which results in the increase in the total time. We
observe that the communication and the update contribute the most to the total
time and the communication time is even higher than the update time (1.47x-
1.6x) with this certain problem size on 36 MPI processes. This ratio is expected
to increase as more nodes are added. More analysis of the communication and
computation is provided in the following sections.
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Fig. 2: Timing breakdowns of the factorization for the 6N x 6 N problem on 36
MPI processes using: (a) Cuda-aware MPI; (b) host pinned memory for MPI.

CPU vs. GPU Performance Comparisons The CPU and GPU (using host
pinned memory for MPI) computation time and communication time where the
problem size varies from N x N on 1 MPI rank to 10N x 10N matrix using 100
MPI ranks are shown in Fig. 3a and Fig. 3b, respectively. The computation time
is defined by subtracting the overhead associated with MPI communication from
the total execution time. We can make several observations. First, when a single
GPU is compared to 42 cores of the CPU we see a speedup of 4.9 (23 seconds vs
113 seconds). Second, the GPU times increase from 23 seconds to 361 seconds
from 1 rank to 100 ranks as the problem size grows one hundred times while
the FLOPS grow O(N?). For the same increase in problem size, the CPU times
increase from 113 to 1368 from 1 rank to 100 ranks. Finally, we can see that the
GPU total execution for the 10N x 10N problem on 100 processes outperforms
the CPU total execution with a speedup factor of 3.8. The ratios between com-
munication and computation are 0.43 (CPU) and 2 (GPU) for the 10N x 10N
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problem. As processing larger problems (by more MPI processes), communica-
tion overhead increases. This communication overhead is mostly contributed by
the cost of broadcasting pivot rows (Line 24 of Algorithm 1-Factorization and
Forward solve) and the cost of exchanging rhs vectors to left and right processes
(Line 9 and 10 of Algorithm 2-Backward solve). It is noted that messages sizes
depend on the size of the matrix portion held by MPI processes and these two
communication happen at each iteration of the algorithms. In spite of that, CPU
computation is still the dominant component in the total CPU time. However, in
GPU computation, due to the fact that the computation cost is reduced by the
increased parallelism on the GPUs, the communication overhead now becomes
the bottleneck.
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Fig.3: ADELUS execution times (double complex precision): (a) CPU execution
times. The total CPU time at 10Nx10N is 1368s; (b) GPU execution times with
host pinned memory. The total GPU time at 10 Nx10N is 361s.
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Performance Comparison with DPLASMA and SLATE ADELUS is
compared against the two state-of-the-art solver packages DPLASMA [20] (CPU
runs) and SLATE [25] (CPU and GPU runs) on the Summit system using the
GESV testing programs accompanied with the packages . It should be high-
lighted that IBM XL C/C++ Compiler 16.1.1 is used to build DPLASMA,
instead of GCC 7.4.0. For building SLATE, we use GCC 6.4.0 and ESSL 6.1.0,
Netlib SCALAPACK 2.0.2. DPLASMA’s and SLATE’s testing programs have
multiple tuning parameters. We identify the values of these parameters that
could give the best performance on CPUs and GPUs. We do not use the default
parameters for these third party libraries. We tune them to obtain the best per-
formance out of them. We also compare against DPLASMA despite it having
the option to do only incremental pivoting while ADELUS does partial pivoting.
More specifically, for DPLASMA with GESV functionality on CPUs, a square
tile with size of 352 is exploited. For SLATE on CPUs, we can achieve the best
performance with nb = 320, ib = 32, panel_threads = 4. For SLATE’s GESV
runs on GPUs, the best performance can be obtained with nb = 640, ib = 32,
panel_threads = 1. Fig. 4a gives GFLOPS performance of the three packages
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solving up to a 10Nx10N matrix with 100 MPI processes on CPUs. The CPU
performance of ADELUS is higher than the CPU performance of SLATE (43
TFLOPS vs. 38 TFLOPS). This can be explained by the fact that SLATE uses
OpenMP threads explicitly for multitasking on individual tiles and uses BLAS
functions in sequential mode while ADELUS uses multi-threaded BLAS rou-
tines. DPLASMA, with its use of the PARSEC runtime to overlap computation
and communication and to dynamically manage and schedule tasks, outper-
forms ADELUS on CPUs (57 TFLOPS vs. 43 TFLOPS). However, it is noted
that DPLASMA does not provide the GESV testing with partial pivoting. We
use the incremental pivoting for DPLASMA runs instead.

The GPU performance comparison is given in Fig. 4b. Due to the job time
limit on Summit, we could not run SLATE further than 144 GPUs solving for
12Nx12N matrix. As we can see, ADELUS delivers superior performance com-
pared to SLATE. Using 144 GPUs, ADELUS can be 4.57x faster than SLATE.
Two possible reasons are the use of batched BLAS calls on batches of tiles in
SLATE and extra complication of layout translation for row swapping operation
in SLATE’s GPU acceleration. Another possible reason for the inferior perfor-
mance of SLATE could be the overhead of simultaneous OpenmP tasks issuing
MPI communications during the panel factorization in the SLATE’s LU imple-
mentation. ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) when running
on 900 GPUs. To the best of our knowledge, this is the first time that a com-
plex, dense LU solver can reach PFLOPS performance. We also emphasize that
ADELUS code is identical for the CPU and GPU evaluations except one tem-
plate parameter and any use of host pinned memory for MPI communication.
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Fig.4: GFLOPS (double complex precision): (a) ADELUS vs. DPLASMA and
SLATE on Power9 CPUs; (b) ADELUS vs. SLATE on V100 GPUs.

Scalability Analysis In order to investigate the scalability of ADELUS, we
compare how the GFLOPS performance improves with more GPUs or more
nodes while we increase the matrix size, as shown in Fig. 5a. Scalability is defined
as the normalized GFLOPS performance of multiple MPI processes in reference
to GFLOPS performance of a single MPI process. In general, the increase of
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communication overhead results in less than ideal scalability in both CPU and
GPU runs. It can be seen that ADELUS running on CPUs scales more closely
to the theoretical ideal scalability than ADELUS running on GPUs. This can
be explained by the increase in the communication costs on GPUs. This also
demonstrates the fact that ADELUS clearly benefits from GPU acceleration.
However, notice that the GPU’s single GPU GFLOPS was already quite high,
so the increase in communication cost shows in the scaling plots.
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Fig.5: ADELUS (a) Scalability (double complex precision, host pinned memory
for MPT is used with GPU backend); (b) CUDA backend execution - using Cuda
Host Pinned Memory vs Cuda Memory for MPI.

MPI Buffers on Different Memory Spaces ADELUS has an option which
allows one to choose whether using host pinned memory as MPI buffers or use
CUDA-aware MPI during the communication. Fig. 5b shows the GFLOPS per-
formance of the GPU execution with respect to the increase of problem size.
Both memory spaces, namely CudaSpace and CudaHostPinnedSpace, can at-
tain performance above 1000 TFLOPs. Using CUDA-aware MPI can improve
the performance by 6% since we do not need to explicitly buffer data on host
memory before or after calling the MPI function.

6.3 Performance Results from Large-Scale EM Simulation

We demonstrate ADELUS performance on a real computational science appli-
cation on 100 GPUs to 7600 GPUs by integrating it with the electromagnetics
simulation code EIGER (written in Fortran). Several numerical simulations were
performed on the Sierra platform available at the LLNL using EIGER coupled
with the ADELUS solver. The performance results are shown in Table 1. The
NVIDIA GPUs were used in the solve and since there are 4 GPUs per node, the
number of MPI processes is four times the number of nodes.

A number of observations can be made from Table 1. First, the performance
of the solver increases with the number of nodes. ADELUS reaches 7.72 Petaflops
when using 7600 GPUs. This translates to 16.9% of theoretical double precision
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Table 1: ADELUS Solver Performance on Large Scale EM Simulations. Nodes
are shown. Number of GPUs are four times the number of nodes.
[Order(N) Nodes Solve Time(s) TFLOPS Procs/Row (P.)]]

226,647 25 240.5 1291. 10
1,065,761 310 1905.1 1694.5 31
1,322,920 500 6443.9 958.1 20
1,322,920 500 2300.2 2684.1 50
1,322,920 500 2063.6 2991.9 100
2,002,566 1200 3544.1 6042.6 100
2,564,487 1900 5825.2 7720.7 80

floating point performance if we only account for computation cost in theory. In
addition, the performance is affected by the distribution of the matrix on the MPI
processes. This is revealed by the 1.3 million unknown problem where assigning
more processes per row yields higher performance. We hypothesize this is due to
the reduction of communication cost of broadcasting pivot rows during partial
pivoting (Line 24 of Algorithm 1). However, the overhead of communicating rhs
vectors to left and right processes (Line 9 and 10 of Algorithm 2) also contributes
to the total performance. As we have more processes per row, this communication
overhead in the backward solve increases. Therefore, we observe the performance
improvement of 1.1x when going from 50 processes/row to 100 processes/row
(as compared to 2.8x going from 20 processes/row to 50 processes/row) in Table
1. The selection of the number of processes per row P, (and the number of
processes per column P,) for best performance is heuristic-based and should
be a compromise to both the aforementioned communication overheads. It is
common to choose P, = P, or P, slightly greater than P, for an acceptably
good performance. Not shown in Table 1 is the per process performance and for
the problems and distributions used has a maximum value of 1.5 Tflops/rank.

7 Conclusions and Future Work

In this paper, we present a parallel, dense, performance-portable, LU solver
based on torus-wrap mapping and LU factorization algorithm. Using the porta-
bility provided by Kokkos, the solver can be portable to CPUs and GPUs. The
performance evaluation of ADELUS is demonstrated on the Summit system,
in which it achieves 1.397 PFLOPS on 900 GPUs. It is shown that, the GPU
execution outperforms the CPU execution (with 42 cores) in terms of speedup
by a factor of 3.8. We also demonstrate the integration of the ADELUS solver
into an electromagnetic application achieving a performance of 7.720 PFLOPS
on 7600 GPUs when solving a problem of 2.5M unknowns on the Sierra system.
ADELUS scalability on the GPU backend could be resolved by exploiting more
computation-communication overlapping techniques. Another issue that remains
to be resolved is the limitation of the GPU memory. Since ADELUS execution is
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exclusive to one memory space, when the problem size exceeds the GPU memory
limit, more GPUs need to be accommodated. One possible solution to overcome
this limitation is a hybrid implementation where both CPU and GPU resources
are fully utilized. Our future investigation would address these issues.
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