This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 11662C

facebook

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

PRESENTED BY
Eric Niebler and David S. Hollman

©@ENERGY ASA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Goals for Async Interfaces

C++ needs an async abstraction:

* That Is composable

 That has low abstraction overhead

» That works with coroutines, fibers, and threads, etc.

» That Is extensible to multiple execution
environments (both concurrent and parallel)

Disclaimer

This talk doesn’t represent the official views of WG21.
It Is merely sketching the ideas behind some recent
proposals.

Disclaimer 2

This talk makes use of C-style casts.

Viewer discretion I1s advised.

I. Background and Introduction

Understanding
Parallelism vs. Concurrency

Spoiler alert: They're not the same thing.

Concurrency vs. Parallelism

Concurrency:

Multiple logical threads of
execution with unknown
Inter-task dependencies.

Concurrency vs. Parallelism

Parallelism:

Multiple logical threads of
execution with no inter-
task dependencies.

Concurrency vs. Parallelism

Parallelism:

ol a ‘thhvhv

W \J

Scheduler has the
freedom to use the
fastest execution
order.

o
vnv’\v b

VI\

a2 W a
‘vvv’\v

Concurrency, by Example

/] variable accessible to both workers:
std::atomic<int>x = {0 };

/[l Worker A:
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;

// Worker B:
x.store(1);

 This program is not guaranteed to ever print Hello unless
Worker A and Worker B are executed on agents with a
concurrent forward progress guarantee.

» Generally speaking, concurrency imposes extra
requirements on the scheduler.

Parallelism, by Example

/] variable accessible to both workers:
int x = 0;

/| Worker A: /[l Worker B:

// (not an atomic operation) // (not an atomic operation)
X +=1; X +=1;

* This program can result in x == 1 or x == 2 if Worker
A and Worker B are executed In parallel.

» Parallelism is a contract that grants extra freedom to
the scheduler (and imposes extra requirements on
the user).

Parallelism and Concurrency are
Opposites

Less freedom for the M - "
scheduler (usually ore intormation

because Of MiS:SiiN Q) -« provided to the

nformation) I I I scheduler (thus

more freedom)
Concurrency Serial Parallelism

Concurrency is a Stronger Scheduling
Guarantee than Serial

std::atomic<int>x ={ 0 };

/[Serial program:
std::atomic<int>x ={0 };
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;
x.store(1);

/[l Worker A:
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;

/[Worker B:
x.store(1);

When you use serial execution for the program with
concurrent requirements, it (obviously) never prints Hello.

Parallelism is a Weaker Scheduling
Requirement than Serial

int x =0;
[/ Worker A:
orret . . /[Serial program;
/I (not an atomic operation) oy = O
X +=1; L
X +=1;
X +=1;
// Worker B:
// (not an atomic operation)
X +=1;

When you use serial execution for the program with
parallel requirements, it (obviously) results in x == 2.

Parallelism i1s "More Universal”

* When you use concurrent features to express
parallelism, you end up with unreasonable
overheads.

» The programming model is not restrictive enough for
the compiler or runtime system to avoid these
overheads.

Why are the parallel algorithms

f§§c!:a%se they let the user communicate to the
scheduler critical information about (the lack of)
cross-task dependencies.

* |n other words, it communicates the full structure of
the algorithm’s fask graph to the scheduler.

II. Senders and Receivers

Why are standard futures slow?

Why are Futures slow?

future<int> async_algo() {
promise<int> p;
auto f = p.get_future();
thread t { [p = move(p)]() mutable {
int answer = // compute!
p.set _value(answer);

1 - -
t.detach(); int main{) {
sturn f auto f = async_algo();
\ auto f2 = f.then([J(int i) {
1 return i + rand();
1);

printf("%d\n", f2.get());
}

Why are Futures slow?

future<int> async_algo() {

promise<int> p;

auto f = p.get_future(); ‘ value

thread t { [p = move(p)]() mutable { ‘ : :
iInt answer = // compute! continuation
p.set value(answer); mutex

1

t.detach(); cond var

\ return t ref count

int main() {
auto f = async_algo();
auto f2 = f.then([](int i) {
return i + rand();
1)
printf("%d\n", f2.get());

}

How successful would the
STL be if iterators all did
allocation, synchronization,
and
type-erasure?

A simple observation...

template <class Cont>
future<int> async_algo(Cont c) {

promise<int> p; IS Calling COde KNOWS

auto f = p.get_future() the continuation at the
thread t { [p = move(p), c]() mutable {

int answer = // compute!
p.set value(c(answer));

33
t.detach();
return f; ?)I%O(
} |
r—rewrrrrrrand();
};

printf("%d\n", f.get());
}

A less simple observation...

» Passing in a continuation avoids (some)
synchronization overnead because it removes the
race on reading and writing the continuation.

* We can achieve the same result by starting async
work suspended and letting the caller add the
continuation before launching the work.

A less simple observation...

Jeter the thread launch -- return a

auto async_algo() {

return [](auto p) { function that takes a promise
thread t { [p = move(p)]() mutable { Insiead.
int answer = // compute! The function returned from
p.set_value(answer); -
1, async_algo is like a lazy future..

t.detach();

1 int main() {
\ auto f = async_algo();
\ . auto f2 = then(f, [J(int i) {
1 return i+ rand();
1)

/...

J

then() Is just an algorithm

auto then(auto task, auto fun) { then() returns a lazy future that applies a

return [=](auto p) { function to the value produced by another

struct _promise { lazy future
decltype(p) p_; .

decltype(fun) fun_;
void set_value(auto ...vs) { p_.set value(fun_(vs...)); }
void set_exception(auto e) { p_.set_exception(e); }
}; . .
task(_promise{p, fun}); int main() {
1 auto f = async_algo();

auto f2 = then(f, []J(int 1) {
return i + rand();

Lazy futures expect promise-like 3,)

things.)

Use then() to compose lazy futures

auto async_algo() { Oops, printf in wrong thread!

return [J(auto p) {
thread t { [p = move(p)]() mutable {
int answer = // compute!

p.set_value(answer);

t detach() auto f = async_algo();
_ auto f2 = then(f, [J(int 1) {

f return i + rand();
- struct sink { =1 1),
void set_value(auto... vs) {} auto 3 = then(f2, [J(int) { // 77?7
void set_exception(auto e) { printf("%d\n", j);
std::terminate(); 1);
} f3(sink{}); // Launch

3]

Blocking Is just an algorithm, too

template<class T >
struct _state {
mutex mtx;
condition_variable cv;
variant<monostate, exception ptr, T> data;

X

template< class T, class Task >
T sync_wait(Task task) {
/[Define some state:
_state<T> state;

// launch the operation:

task(_promise<T>{&state});

template<class T >
struct _promise {
_state<T>" pst;
template <int |>
void _set(auto... xs) {
auto |k = unique_lock{pst->mtx]};
pst->data.template emplace<I>(xs...);
pst->cv.notify _one();
}
void set_value(auto... vs) { _set<2>(vs...); }
void set_exception(auto e) { set<1>(e); }

%

/[wait for it to finish:
{
auto |k = unique lock{state.mtx};
state.cv.wait(lk, [&state{
return state.data.index() != 0; });
}
// throw or return the result:
If (state.data.index() == 1)
rethrow _exception(get<1>(state.data));

return move(get<2>(state.data));

;

Use sync wait() algo to block

auto async_algo() {
return [](auto p) {
thread t { [p = move(p)]() mutable {
int answer = // compute!

p.set_value(answer); L
1 int main() {

t detach() auto f = async_algo();
1 auto f2 = then(f, [J(int 1) {
\ | return i + rand();
1 1);
printf("%d\n", sync_wait<int>(f2));
}
1)
f3(sink{}); // Launch

J

Separation of concerns

VWhy Is thread creation the

auto new_thread() { reSpOnSibi”ty Of

return [](auto p) { Cc 3
thread t { [p = move(p)]() mutable { ST

}}p-set_value(); new_thread() IS an

t.detach(); = il

A A N
};

J

~
S

no()?

int main() {
auto f = async_algo(new_thread());

auto f2 = then(f, []J(int i) {
return i + rand();

auto async_algo(auto task) {
return then(task, [] {
int answer = // compute!

return answer: b
1 printf("%d\n", sync_wait<int>(f2));

) J

Lazy future advantages

» Async tasks can be composed...
* ... without allocation
* ... without synchronization

* ... without type-erasure
» Composition is a generic algorithm

» Blocking Is a generic algorithm

Generic iIs as Generic does

template <class P, class E = exception ptr>
concept HasReceiverSignals =
requires (P& p, E&& e) {
p.set_error((E&&) e);

p.set_done(); Called by a lazy future in
! response to a request for
‘template <class P, class... Vs> cancellation.

concept Recelver =
HasReceiverSignals<P> &&
Invocable<P, Vs...>:

Generic is as Generic does

template <class F>
concept Sender =
IS_sender_v<decay_ t<F>>;

template <class F, class R>
concept SenderTo =
Sender<F> &&
HasReceiverSignals<R> &&
requires (F&& f, R&& r) {
submit(forward<F>(f), forward<R>(r));

5

ITI. Sender/Receiver and Coroutines

Coroutines and callbacks

task<int> async_helper() Everything after a

task<void> async_algorithm() { CO_await Or a
. co_vyield

expression IS
" printf("%d\n", result); ImpIICItIy o)
e —————————— callback.

= iuseresut

If suspended coroutines are callbacks,
and If callbacks are Recelvers, then...
Coroutines are Recelivers

and Awaitables are Senders

(Some) Senders are Awaitable

// In a future version of C++, perhaps?
namespace std { inline namespace awaitable senders {
template <Sender S>
auto operator co_await(S&& s) {
return _awaiter_sndr{(S&&)s};
};
}

(Some) Senders are Awaitable

struct DuMb_SeNdEr : std::sender_of<int> {

void submit(Receiver<int> auto r) { Senders can be
r(42); - :

\ co_awaited in a
} coroutine.

coro_task<int> async algo(Sender auto s) {
int the_answer = co _awalit s;

assert(the_answer == 42); Awaitables (coro_task)
co return the answer;
\ can be treated as
Senders!
int main() {

int res = sync_wait<int>(async_algo(DuMb_SeNdEr{}));
}

(All) Awaitables are Senders

All awaltable
types satisty the

requirements of
the Sender
concept

/I A simple co-awaitable type:
struct _awaitable {

X

friend auto operator co _await(_awaitable) {

return ...;

J

/[A simple receiver:
struct _reveiver {

X

void operator()(auto...);
void set_error(exception_ptr);
void set_done();

iInt main() {

;

/[l OK, can use awaitables as senders:
submit(_awaitable{}, _receiver{});

(All) Awaitables are Senders

/| Make all awaitables senders:

template <Awaitable A, Receiver<awalit result t<A>> R>

void submit(A awaitable, R to) noexcept {
try {
invoke([](A a, R&& r) -> oneway_task {
R rCopy((R&&) r);
try {
rCopy(co_await (A&&) a);
}
catch (...) {
rCopy.set_error(current_exception());

}
}, (A&&) awaitable, (R&&) to);

;
catch (...) {
to.set_error(current_exception());

;
}

struct [[maybe unused]] oneway task {
struct promise_type {
oneway_task get return_object() noexcept { return {}; }
suspend_never initial_suspend() noexcept { return {}; }
suspend_never final_suspend() noexcept { return {}; }
void return_void() noexcept {}
void unhandled_exception() noexcept { std::terminate(); }

IV. Building on Sender/Receiver

Building on Sender/Receiver

 Higher-level functionality can be built efficiently on
top of Sender/Recelver:

» Generic algorithms: sync wait, wait_all, wait_any, etc.
* Promises and Futures
» Channels

* Async Ranges and Reactive streams

Example: Futures

We can build eager futures on top of lazy Senders
with no overhead beyond that which is inherent In
eager execution; i.e., allocation and synchronization.

Futures

template <class T>
struct MyFuture {
private:
shared ptr<_my_state<T>> st =
make_shared< my state<T>>();
public:
template <SenderOf<T> S>
explicit MyFuture(S&& src) {
((S&&)src).submit(
_st->make_receiver());
}
T get() && {
return move(*_st).get();
}
};

Futures

templ template <class T>
struct struct MyFuture {
variz private:
mute shared ptr< _my state<T>> st =
conc make shared< my state<T>>();
auto public:
rett template <SenderOf<T> S>
} explicit MyFuture(S&& src) {
Tge ((S&&)src).submit(
uni _st->make_receiver());
_C\ }
if (T get() && {
re return move(*_st).get();
els }

B

state<T>> {

Futures

template <class T>

S template <class T>
struct _ my recvr{
shared ptr<_my_ state<T>> sf;
template <int |, class U> template <class T>
void _set(U&& u) { struct MyFuture {

lock_guard |k(_st->_m); private:
g iy -~ shared_ptr<_my_state<T>>_st =

_st->_v.template emplace<I>((U&&) u); make shared< my state<T>>();

_st-> cv.notify_one(); public:
} template <SenderOf<T> S>

, explicit MyFuture(S&& src) {
void operator()(T t) { _set<1>(move(t)); } ((S&&)src).submit(
void set_error(exception_ptre) { set<2>(e); } _st->make_receiver());
void set_done }
t<2> k() | tion_pt led{})): 1 900 A8

_se (make_exception_ptr(cancelled{})); return move(* st).get()

))

};}; I3

Futures: Summary

- Eager interfaces can be layered on top of lazy
without additional overhead.

* The converse is not true: we cannot “lazy-ify” an
eager async operation while also removing its
Inherent overhead.

* Therefore, lazy operations are more fundamental.

* The optimal way to “"eager-ify” a lazy operation
depends on manv thinas: there should be manv

But remember:

Concurrency is only half of the story
If we can't also express parallel use cases,

are we really being generic?

FLASHBACK:
Why are the parallel algorithms

fa8dadise they let the user communicate to the
scheduler critical information about (the lack of)
cross-task dependencies.

* |n other words, it communicates the full structure of
the algorithm’s task graph to the scheduler.

Sender/Receiver and Parallelism

* A non-intrusive parallel_fork algorithm, like then,
creates a node Iin a task graph of lazy Senders.

» By composing lazy Senders, we build a
representation of the data flow graph independent of
its execution.

» How that graph gets executed can then be left up to
the scheduler.

VI. Summary

It Is very important that we design a system that
does not only satisfy Facebook's needs, or
Nvidia's, or that satisfies special case argument
combinations for individual use cases, but one
that cleanly generalizes for interoperation
between different libraries, from different vendors
with different goals.

Lee Howes, Facebook on the need to formalize callbacks

Async Abstraction

- Sender/Receiver is a generalization of Future/Promise
that:

» Accommodates both eager and lazy async
» Supports cancellation and error propagation
» Composes with low overhead

* Permits generic algorithms with efficient default
Implementations

» Naturally accommodates “"executors” as a special case of a
Sender.

Additional Resources

» The Ongoing Saga of Executors by David Hollman
https://www.youtube.com/watch?v=iYM{YdOO0_ OU

» A Compromise Executors Design Sketch by <lots>
P1660

» Callbacks and Composition by Kirk Shoop P1678

» Cancellation is not an Error by Kirk Shoop P1677

https://www.youtube.com/watch?v=iYMfYdO0_OU
http://wg21.link/P1660
http://wg21.link/P1678
http://wg21.link/P1677

