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Goals for Async Interfaces

C++ needs an async abstraction:
• That is composable
• That has low abstraction overhead
• That works with coroutines, fibers, and threads, etc.
• That is extensible to multiple execution 

environments (both concurrent and parallel)



Disclaimer

This talk doesn’t represent the official views of WG21. 
It is merely sketching the ideas behind some recent 

proposals.



Disclaimer 2

This talk makes use of C-style casts.
Viewer discretion is advised.



I. Background and Introduction



Spoiler alert: They’re not the same thing.

Understanding
Parallelism vs. Concurrency



Concurrency vs. Parallelism

?
? ?

Concurrency:

Multiple logical threads of 
execution with unknown 
inter-task dependencies.



Concurrency vs. Parallelism

Parallelism:
Multiple logical threads of 
execution with no inter-

task dependencies.



Concurrency vs. Parallelism

Parallelism:

Scheduler has the 
freedom to use the 
fastest execution 
order.

or or



Concurrency, by Example
// variable accessible to both workers:
std::atomic<int> x = { 0 };

// Worker A:
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;

// Worker B:
x.store(1);

• This program is not guaranteed to ever print Hello unless 
Worker A and Worker B are executed on agents with a 
concurrent forward progress guarantee.

• Generally speaking, concurrency imposes extra 
requirements on the scheduler.



Parallelism, by Example
// variable accessible to both workers:
int x = 0;

// Worker A:
// (not an atomic operation)
x += 1;

// Worker B:
// (not an atomic operation)
x += 1;

• This program can result in x == 1 or x == 2 if Worker 
A and Worker B are executed in parallel.

• Parallelism is a contract that grants extra freedom to 
the scheduler (and imposes extra requirements on 
the user).



Parallelism and Concurrency are 
Opposites

Less freedom for the 
scheduler (usually 
because of missing 

information)

More information 
provided to the 
scheduler (thus 
more freedom)

Concurrency ParallelismSerial



Concurrency is a Stronger Scheduling 
Guarantee than Serial

When you use serial execution for the program with 
concurrent requirements, it (obviously) never prints Hello. 

std::atomic<int> x = { 0 };

// Worker A:
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;

// Worker B:
x.store(1);

// Serial program:
std::atomic<int> x = { 0 };
while(x.load() == 0) { /* yield */ }
cout << "Hello" << endl;
x.store(1);



Parallelism is a Weaker Scheduling 
Requirement than Serial

When you use serial execution for the program with 
parallel requirements, it (obviously) results in x == 2. 

// Serial program:
int x = 0;
x += 1;
x += 1;

int x = 0;

// Worker A:
// (not an atomic operation)
x += 1;

// Worker B:
// (not an atomic operation)
x += 1;



Parallelism is "More Universal"
• When you use concurrent features to express 

parallelism, you end up with unreasonable 
overheads.

• The programming model is not restrictive enough for 
the compiler or runtime system to avoid these 
overheads.



Why are the parallel algorithms 
fast?• Because they let the user communicate to the 

scheduler critical information about (the lack of) 
cross-task dependencies.

• In other words, it communicates the full structure of 
the algorithm’s task graph to the scheduler.



II. Senders and Receivers



Why are standard futures slow?



Why are Futures slow?
future<int> async_algo() {
  promise<int> p;
  auto f = p.get_future();
  thread t { [p = move(p)]() mutable {
    int answer = // compute!
    p.set_value(answer);
  }};
  t.detach();
  return f;
}

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  printf("%d\n", f2.get()); 
}



Why are Futures slow?

value
continuation

mutex
cond var

promise future

future<int> async_algo() {
  promise<int> p;
  auto f = p.get_future();
  thread t { [p = move(p)]() mutable {
    int answer = // compute!
    p.set_value(answer);
  }};
  t.detach();
  return f;
}

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  printf("%d\n", f2.get()); 
}

ref count



How successful would the 
STL be if iterators all did 

allocation, synchronization, 
and

type-erasure?



A simple observation…
future<int> async_algo() {
  promise<int> p;
  auto f = p.get_future();
  thread t { [p = move(p)]() mutable {
    int answer = // compute!
    p.set_value(answer);
  }};
  t.detach();
  return f;
}

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  printf("%d\n", f2.get());
}

This calling code knows 
the continuation at the 

point it calls the 
algorithm!

int main() {
  auto f = async_algo(
                   [](int i) {
    return i + rand();
  });
  printf("%d\n", f.get());
}

template <class Cont>
future<int> async_algo(Cont c) {
  promise<int> p;
  auto f = p.get_future();
  thread t { [p = move(p), c]() mutable {
    int answer = // compute!
    p.set_value(c(answer));
  }};
  t.detach();
  return f;
}



A less simple observation...
• Passing in a continuation avoids (some) 

synchronization overhead because it removes the 
race on reading and writing the continuation.

• We can achieve the same result by starting async 
work suspended and letting the caller add the 
continuation before launching the work.



A less simple observation…
future<int> async_algo() {
  promise<int> p;
  auto f = p.get_future();
  thread t { [p = move(p)]() mutable {
    int answer = // compute!
    p.set_value(answer);
  }};
  t.detach();
  return f;
}

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  printf("%d\n", f2.get());
}

auto async_algo() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      int answer = // compute!
      p.set_value(answer);
    }};
    t.detach();
  };
}

Defer the thread launch -- return a 
function that takes a promise 

instead.

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  // ...
}

The function returned from 
async_algo is like a lazy future..

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  // ...
}



auto async_algo() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      int answer = // compute!
      p.set_value(answer);
    }};
    t.detach();
  };
}

then() is just an algorithm

int main() {
  auto f = async_algo();
  auto f2 = f.then([](int i) {
    return i + rand();
  });
  printf("%d\n", f2.get());
}

auto then(auto task, auto fun) {
  return [=](auto p) {

    task(???);
  };
}

auto then(auto task, auto fun) {
  return [=](auto p) {
    struct _promise {

      void set_value(auto ...vs) { ??? }
      void set_exception(auto e) { ??? }
    };
    task(_promise{???});
  };
}

auto then(auto task, auto fun) {
  return [=](auto p) {
    struct _promise {
      decltype(p) p_;
      decltype(fun) fun_;
      void set_value(auto ...vs) { p_.set_value(fun_(vs...)); }
      void set_exception(auto e) { p_.set_exception(e); }
    };
    task(_promise{p, fun});
  };
}

then() returns a lazy future that applies a 
function to the value produced by another 

lazy future.

Lazy futures expect promise-like 
things.

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  // ...
}



Use then() to compose lazy futures
auto async_algo() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      int answer = // compute!
      p.set_value(answer);
    }};
    t.detach();
  };
}

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  // ... what goes here?
}

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  auto f3 = then(f2, [](int j) { // ???
    printf("%d\n", j);
  });
  
}

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  auto f3 = then(f2, [](int j) { // ???
    printf("%d\n", j);
  });
  f3( sink{} ); // Launch
}

struct sink {
  void set_value(auto... vs) {}
  void set_exception(auto e) {
    std::terminate();
  }
};

Oops, printf in wrong thread!
Oops, main no longer 

blocks!



Blocking is just an algorithm, too
template< class T >
struct _state {
  mutex mtx;
  condition_variable cv;
  variant<monostate, exception_ptr, T> data;
};

template< class T >
struct _promise {
  _state<T>* pst;
  template <int I>
  void _set(auto... xs) {
    auto lk = unique_lock{pst->mtx};
    pst->data.template emplace<I>(xs...);
    pst->cv.notify_one();
  }
  void set_value(auto... vs) { _set<2>(vs...); }
  void set_exception(auto e) { _set<1>(e); }
};

template< class T, class Task >
T sync_wait(Task task) {
  // Define some state:
  _state<T> state;

  // launch the operation:
  task(_promise<T>&state});

}

template< class T, class Task >
T sync_wait(Task task) {
  // Define some state:
  _state<T> state;

  // launch the operation:
  task(_promise<T>{&state});

  // wait for it to finish:
  {
    auto lk = unique_lock{state.mtx};
    state.cv.wait(lk, [&state]{
      return state.data.index() != 0; });
  }

}

template< class T, class Task >
T sync_wait(Task task) {
  // Define some state:
  _state<T> state;

  // launch the operation:
  task(_promise<T>{&state});

  // wait for it to finish:
  {
    auto lk = unique_lock{state.mtx};
    state.cv.wait(lk, [&state]{
      return state.data.index() != 0; });
  }
  // throw or return the result:
  if (state.data.index() == 1)
    rethrow_exception( get<1>(state.data) );

  return move(get<2>(state.data));
}



Use sync_wait() algo to block
auto async_algo() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      int answer = // compute!
      p.set_value(answer);
    }};
    t.detach();
  };
}

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  auto f3 = then(f2, [](int j) { // ???
    printf("%d\n", j);
  });
  f3( sink{} ); // Launch
}

int main() {
  auto f = async_algo();
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  printf("%d\n", sync_wait<int>(f2));
}



Separation of concerns
auto async_algo() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      int answer = // compute!
      p.set_value(answer);
    }};
    t.detach();
  };
}

Why is thread creation the 
responsibility of 
async_algo()?

auto new_thread() {
  return [](auto p) {
    thread t { [p = move(p)]() mutable {
      p.set_value();
    }};
    t.detach();
  };
}

auto async_algo(auto task) {
  return then(task, [] {
    int answer = // compute!
    return answer;
  };
}

int main() {
  auto f = async_algo(new_thread());
  auto f2 = then(f, [](int i) {
    return i + rand();
  });
  printf("%d\n", sync_wait<int>(f2));
}

new_thread() is an 
“executor.”



Lazy future advantages
• Async tasks can be composed...
• ... without allocation
• ... without synchronization
• ... without type-erasure

• Composition is a generic algorithm
• Blocking is a generic algorithm



Generic is as Generic does

template <class P, class... Vs>
concept LazyPromise =
  requires (P& p, Vs&&... vs) {
    p.set_value( (Vs&&) vs... );
    p.set_exception( exception_ptr{} );
  };

template <class P, class... Vs>
concept LazyPromise =
  requires (P& p, Vs&&... vs) {
    p( (Vs&&) vs... );
    p.set_exception( exception_ptr{} );
  };

template <class P, class... Vs>
concept LazyPromise =
  requires (P& p, Vs&&... vs) {
    p( (Vs&&) vs... );
    p.set_exception( exception_ptr{} );
    p.set_done();
  };

template <class P, class E, class... Vs>
concept LazyPromise =
  requires (P& p, E&& e, Vs&&... vs) {
    p( (Vs&&) vs... );
    p.set_error( (E&&) e );
    p.set_done();
  };

template <class P, class E, class... Vs>
concept Receiver =
  requires (P& p, E&& e, Vs&&... vs) {
    p( (Vs&&) vs... );
    p.set_error( (E&&) e );
    p.set_done();
  };

template <class P, class E = exception_ptr>
concept HasReceiverSignals =
  requires (P& p, E&& e) {
    p.set_error( (E&&) e );
    p.set_done();
  };

template <class P, class... Vs>
concept Receiver =
  HasReceiverSignals<P> &&
  Invocable<P, Vs...>;

Called by a lazy future in 
response to a request for 

cancellation. 



Generic is as Generic does

template <class F, class R>
concept LazyFuture =
  HasReceiverSignals<R> &&
  requires (F&& f, R&& r) {
    forward<F>(f)( (R&&) r );
  };

template <class F, class R>
concept SenderTo =
  HasReceiverSignals<R> &&
  requires (F&& f, R&& r) {
    submit( forward<F>(f), forward<R>(r) );
  };

template <class F>
concept Sender =
  is_sender_v<decay_t<F>>;

template <class F, class R>
concept SenderTo =
  Sender<F> &&
  HasReceiverSignals<R> &&
  requires (F&& f, R&& r) {
    submit( forward<F>(f), forward<R>(r) );
  };



III. Sender/Receiver and Coroutines 



Coroutines and callbacks 

task<int> async_helper();

task<void> async_algorithm() {
  // ...
  int result = co_await async_helper();
  // use result
  printf("%d\n", result);
}

Everything after a 
co_await or a 

co_yield 
expression is 

implicitly a 
callback. 



If suspended coroutines are callbacks,
and if callbacks are Receivers, then...

Coroutines are Receivers
and Awaitables are Senders



(Some) Senders are Awaitable

// In a future version of C++, perhaps?
namespace std { inline namespace awaitable_senders {
  template <Sender S>
  auto operator co_await(S&& s) {
    return _awaiter_sndr{(S&&)s};
  };
} Must be find-able by 

ADL



(Some) Senders are Awaitable
struct DuMb_SeNdEr : std::sender_of<int> {
  void submit( Receiver<int> auto r ) {
    r(42);
  }
};

coro_task<int> async_algo( Sender auto s ) {
  int the_answer = co_await s;
  assert( the_answer == 42 );
  co_return the_answer;
}

int main() {
  int res = sync_wait<int>( async_algo( DuMb_SeNdEr{} ) );
}
 

Senders can be 
co_awaited in a 

coroutine.

Awaitables (coro_task) 
can be treated as 

Senders!



(All) Awaitables are Senders
// A simple co-awaitable type:
struct _awaitable {
  friend auto operator co_await(_awaitable) {
    return ...;
  }
};

// A simple receiver:
struct _reveiver {
  void operator()(auto...);
  void set_error(exception_ptr);
  void set_done();
};

int main() {
  // OK, can use awaitables as senders:
  submit( _awaitable{}, _receiver{} );
}

All awaitable 
types satisfy the 
requirements of 

the Sender 
concept



(All) Awaitables are Senders
// Make all awaitables senders:
template <Awaitable A, Receiver<await_result_t<A>> R>
void submit(A awaitable, R to) noexcept {
  try {
    invoke([](A a, R&& r) -> oneway_task {
      R rCopy((R&&) r);
      try {
        rCopy(co_await (A&&) a);
      }
      catch (...) {
        rCopy.set_error(current_exception());
      }
    }, (A&&) awaitable, (R&&) to);
  }
  catch (...) {
    to.set_error(current_exception());
  }
}

struct [[maybe_unused]] oneway_task {
  struct promise_type {
    oneway_task get_return_object() noexcept { return {}; }
    suspend_never initial_suspend() noexcept { return {}; }
    suspend_never final_suspend() noexcept { return {}; }
    void return_void() noexcept {}
    void unhandled_exception() noexcept { std::terminate(); }
  };
};



IV. Building on Sender/Receiver 



Building on Sender/Receiver
• Higher-level functionality can be built efficiently on 

top of Sender/Receiver:
• Generic algorithms: sync_wait, wait_all, wait_any, etc.
• Promises and Futures
• Channels
• Async Ranges and Reactive streams



Example: Futures

We can build eager futures on top of lazy Senders 
with no overhead beyond that which is inherent in 

eager execution; i.e., allocation and synchronization.



Futures
template <class T>
struct MyFuture {
private:
  shared_ptr<_my_state<T>> _st =
    make_shared<_my_state<T>>();
public:
  template <SenderOf<T> S>
  explicit MyFuture(S&& src) {
    ((S&&)src).submit(
      _st->make_receiver());
  }
  T get() && {
   return move(*_st).get();
  }
};



template <class T>
struct _my_state : enable_shared_from_this<_my_state<T>> {
  variant<monostate, T, exception_ptr> _v;
  mutex _m;
  condition_variable _cv;
  auto make_receiver() {
    return _my_recvr{shared_from_this()};
  }
  T get() && {
    unique_lock lk{_m};
    _cv.wait(lk, [this]{ return _v.index() != 0; });
    if (_v.index() == 1)
      return get<1>(move(_v));
    else rethrow_exception(get<2>(_v));
  }
};

Futures
template <class T>
struct MyFuture {
private:
  shared_ptr<_my_state<T>> _st =
    make_shared<_my_state<T>>();
public:
  template <SenderOf<T> S>
  explicit MyFuture(S&& src) {
    ((S&&)src).submit(
      _st->make_receiver());
  }
  T get() && {
   return move(*_st).get();
  }
};



template <class T>
struct _my_state : enable_shared_from_this<_my_state<T>> {
  variant<monostate, T, exception_ptr> _v;
  mutex _m;
  condition_variable _cv;
  auto make_receiver() {
    return _my_recvr{shared_from_this()};
  }
  T get() && {
    unique_lock lk{_m};
    _cv.wait(lk, [this]{ return _v.index() != 0; });
    if (_v.index() == 1)
      return get<1>(move(_v));
    else rethrow_exception(get<2>(_v));
  }
};

Futures

template <class T>
struct MyFuture {
private:
  shared_ptr<_my_state<T>> _st =
    make_shared<_my_state<T>>();
public:
  template <SenderOf<T> S>
  explicit MyFuture(S&& src) {
    ((S&&)src).submit(
      _st->make_receiver());
  }

T get() && {
   return move(*_st).get();
  }
};

template <class T>
struct _my_recvr {
  shared_ptr<_my_state<T>> _st;
  template <int I, class U>
  void _set(U&& u) {
    lock_guard lk(_st->_m);
    _st->_v.template emplace<I>((U&&) u);
    _st->_cv.notify_one();
  }
  void operator()(T t) { _set<1>(move(t)); }
  void set_error(exception_ptr e) { _set<2>(e); }
  void set_done() {
    _set<2>(make_exception_ptr(cancelled{}));
  }
};



Futures: Summary
• Eager interfaces can be layered on top of lazy 

without additional overhead.
• The converse is not true: we cannot “lazy-ify” an 

eager async operation while also removing its 
inherent overhead.

• Therefore, lazy operations are more fundamental.

• The optimal way to “eager-ify” a lazy operation 
depends on many things; there should be many 
such algorithms.



But remember:

Concurrency is only half of the story

If we can’t also express parallel use cases, 

are we really being generic?



FLASHBACK:
Why are the parallel algorithms 
fast?• Because they let the user communicate to the 

scheduler critical information about (the lack of) 
cross-task dependencies.

• In other words, it communicates the full structure of 
the algorithm’s task graph to the scheduler.



Sender/Receiver and Parallelism
• A non-intrusive parallel_fork algorithm, like then, 

creates a node in a task graph of lazy Senders.
• By composing lazy Senders, we build a 

representation of the data flow graph independent of 
its execution.

• How that graph gets executed can then be left up to 
the scheduler.



VI. Summary



Lee Howes, Facebook on the need to formalize callbacks

It is very important that we design a system that 
does not only satisfy Facebook's needs, or 

Nvidia's, or that satisfies special case argument 
combinations for individual use cases, but one 

that cleanly generalizes for interoperation 
between different libraries, from different vendors 

with different goals.

“



Async Abstraction
• Sender/Receiver is a generalization of Future/Promise 

that:
• Accommodates both eager and lazy async
• Supports cancellation and error propagation
• Composes with low overhead
• Permits generic algorithms with efficient default 

implementations
• Naturally accommodates “executors” as a special case of a 

Sender.
• Generalizes over concurrency and parallelism *

* Admittedly not sufficiently demonstrated in this talk.



Additional Resources
• The Ongoing Saga of Executors by David Hollman

https://www.youtube.com/watch?v=iYMfYdO0_OU

• A Compromise Executors Design Sketch by <lots> 
P1660

• Callbacks and Composition by Kirk Shoop P1678
• Cancellation is not an Error by Kirk Shoop P1677

https://www.youtube.com/watch?v=iYMfYdO0_OU
http://wg21.link/P1660
http://wg21.link/P1678
http://wg21.link/P1677

