EEEEEEEEE
NNNNNNNN

LLNL-CONF-821258

| A Holistic View of Memory

Utilization on HPC
Systems:Current and Future
Trends

l. B. Peng, I|. Karlin, M. B. Gokhale, K. Shoga, M.
Legendre, T. Gamblin

April 8, 2021

The International Symposium on Memory Systems
(MemSys'21)

Virtual, DC, United States

October 1, 2021 through October 1, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Holistic View of Memory Utilization on HPC Systems:
Current and Future Trends

Ivy B. Peng’ Ian Karlin Maya B. Gokhale
pengd@llnl.gov karlinl@llnl.gov gokhale2@lInl.gov
Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory Laboratory
USA USA USA
Kathleen Shoga Matthew Legendre Todd Gamblin
Shogal@llnl.gov legendrel@lInl.gov gamblin2@lInl.gov
Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory Laboratory
USA USA USA
ABSTRACT CPU-only to GPU-accelerated architecture. This work provides a

Memory subsystem is one crucial component of a computing sys-
tem. Co-designing memory subsystems becomes increasingly chal-
lenging as workloads continue evolving on HPC facilities and new
architectural options emerge. This work provides the first large-
scale study of memory utilization with system-level, job-level, tem-
poral and spatial patterns on a CPU-only and a GPU-accelerated
leadership supercomputer. From system-level monitoring data that
spans three years, we identify a continuous increase in memory
intensity in workloads over recent years. Our job-level characteriza-
tion reveals different hotspots in memory usage on the two systems.
Furthermore, we introduce two metrics, ’spatial imbalance’ and
‘temporal imbalance’, to quantify the imbalanced memory usage
across compute nodes and throughout time in jobs. We identify rep-
resentative temporal and spatial patterns from real jobs, providing
quantitative guidance for research on efficient resource configu-
rations and novel architectural options. Finally, we showcase the
impact of our study in informing system configurations through
an upcoming NNSA CTS procurement.

CCS CONCEPTS

+ General and reference — Metrics; Measurement; Performance;
« Computer systems organization — Grid computing.

KEYWORDS

HPC, system-wide characterization, memory systems, memory
characterization, large-scale characterization

1 INTRODUCTION

System co-design of future HPC facilities is increasingly challeng-
ing because workloads evolve fast while new architectural options
emerge. Therefore, insights derived from realistic system-level data
significantly impact system designs and procurement decisions [11].
Previous studies have characterized system-wide I/O, power, mem-
ory, and noise on leadership facilities [12, 15, 17, 27]. However, a
holistic view of memory utilization is still missing on large-scale
HPC systems. Today, many leadership facilities have moved from

“This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

timely and updated view of the current state of memory utilization
on HPC systems and its implications for future research opportuni-
ties.

Memory subsystem directly impacts the performance and cost of
an HPC system. It could account for more than 20% of the total sys-
tem cost and influences job configurations and efficiency. Further
scaling up memory capacity per compute node could be limited by
in area, power and cost [21]. Meanwhile, new memory technolo-
gies [8, 16, 18-20, 23] continue emerging, expanding the design
space. Strategically, we believe that understanding the spectrum
of workloads on a system can lead to more efficient architectural
choices. Previous works used job logs to understand the jobs’ peak
and average usage but lack the details of spatial and temporal mem-
ory imbalance inside individual jobs. Other works perform detailed
profiling of selected applications but lack the quantification of their
impact on overall system throughput [25, 31]. For more disruptive
architectural changes on future systems, such as disaggregated ar-
chitecture and dynamic resource configuration, both system-level
impact and intra-job memory usage characteristics are crucial for
guiding design space exploration.

Today, many leadership facilities have deployed high-resolution
system monitoring and tracking infrastructures [13, 14, 17]. Node-
level monitoring provides fine-grained information that comple-
ments job-level logs. However, there are two main challenges in
leveraging the monitoring data. First, the infrastructures provide
overwhelming details about a system, and thus, standard metrics
are needed to distill information into a normalized high-level basis
for comparison across systems. Second, findings on a system reflect
the current state, and thus, there requires a systematic way that
bridges the current state and future systems. One possible solu-
tion is to form an abstraction of utilization patterns from detailed
monitoring data and adapt the weight of each pattern to reflect the
projection of their composition on a future system.

In this work, we focus on understanding the current state of
memory utilization on HPC systems. Therefore, we choose the
Lassen supercomputer to represent GPU-accelerated systems and

MemSys’21, October, 2021, Virtual

the Quartz supercomputer to represent CPU-based systems. We de-
ploy a system monitoring infrastructure called Sonar to collect high-
resolution utilization data on the systems. Our system-level charac-
terization indicates that memory intensity in workloads steadily
increases in the past three years. We further classify jobs based on
their memory intensity (i.e., peak memory usage) and decompose
the total system load into different patterns of memory intensity. Al-
though only 10% jobs have moderate to intensive memory intensity,
they can account for 30 - 35% of the total system load.

Our characterization of the job-level utilization shows that jobs
on Lassen have a hotspot in their memory usage, at 60 GB, which is
close to the GPU memory capacity on a node with four GPUs. This
finding indicates a massive underutilization of the host memory,
which is 256 GB on this GPU-based system. We also compare the
correlation between job characteristics and memory utilization on
the two systems. While peak memory usage is positively correlated
with job sizes (i.e., the number of allocated nodes and time) on
Quartz, the correlation is much weaker or even negative on Lassen.

To the best of our knowledge, we provide the first quantitative
study of spatial and temporal memory imbalance in jobs on pro-
duction HPC systems. We propose two metrics, spatial imbalance
and temporal imbalance, to quantify the imbalanced memory usage
across compute nodes and time in a job. We identify four temporal
patterns — constant, phased, dynamic and sporadic, from real jobs.
The decomposition of system load into these temporal patterns
shows that most jobs have a low temporal imbalance, but their peak
usage could be only 10% of the provisioned memory capacity. We
also identify three spatial patterns — batched, grouped, and central-
ized — and show that imbalanced usage on a few nodes in a job
cause severe underutilization of resources allocated to that job due
to homogeneously configured nodes (i.e., all nodes are configured
with the same resources) on current HPC systems.

We demonstrate the impact of our study in informing system
configurations in an upcoming NNSA CTS procurement of a new
system. The results of our analysis are used in procurement deci-
sions considering cost, capacity, and system throughput. We also
demonstrate the implication of usage patterns discovered in real
jobs for driving emerging system architecture. For instance, work-
loads with a sporadic temporal pattern may have insignificant per-
formance loss if they leverage disaggregated memory for temporary
memory expansion. Also, heterogeneous subclusters of nodes that
are configured with different resources may address high spatial
imbalance in jobs. Our contributions in this work are summarized
as follows:

o the first holistic view of memory utilization at system-level, job-
level, temporal and spatial characteristics on CPU-based and
GPU-accelerated leadership HPC systems.

e a new metric for quantifying temporal memory imbalance in
jobs. We identify four representative temporal patterns on pro-
duction systems — constant, phased, dynamic and sporadic pat-
terns.

e anew metric for quantifying memory imbalance across compute
nodes inside jobs. We identify batched, grouped, and centralized
as the three representative spatial patterns in real jobs.

o Identify the difference in correlation between memory usage
and job characteristics on a CPU-based and a GPU-accelerated

Peng, et al.

Cluster A Cluster B
[clclclclclclclclc]c] e c &fc c cfe c Sfe < ¢
[cJclclclclclclcl-T-IR: - ¢S Cfc c)¢ < ¢
[c]ccfclclclclclc]c] & c cf¢ &f¢ c EJ¢ < &
y DA [ML | Opt

File System Sonar Cluster

i [

Figure 1: An overview of Sonar monitoring infrastructure.
Red boxes indicate the main components.

IS5

system. Temporal and spatial imbalances are negatively cor-
related with job size on the GPU-based system, but positively
correlated on the CPU-based system.

e We demonstrate the impact of our study in informing future
procurement decisions and emerging system architectural op-
tions.

2 METHODOLOGY
2.1 Data Acquisition

We used the Sonar monitoring infrastructure for collecting fine-
grained monitoring data from production clusters. Sonar is a central
system-monitoring infrastructure deployed at Livermore Comput-
ing (LC). Its main components include sample monitoring, data
ingestion, staging, archive, and analytics. These components are
located at different tiers of the computing infrastructure, as indi-
cated in red boxes in Figure 1. Depending on the architecture of
the monitored cluster, different modules are configured at the fron-
tend for sampling. For instance, the lightweight distributed metric
service (LDMS) [2] is used to collect system-wide metrics, such as
memory usage, I/O read and write sizes, power consumption, and
network traffic. On GPU-accelerated clusters, Sonar uses NVIDIA
Data Center GPU Manager (DCGM) and Performance Co-Pilot
(PCP) to gather GPU-side information, such as GPU utilization and
NVlink traffic. Sonar collects job metadata from the respective job
scheduling systems on the cluster.

Sonar uses in-house data ingestors to stage samples from the
frontend components into the global storage. The raw data is then
pre-processed and transformed through Kafka data connectors
from the global storage to the Sonar backend. The data staging
and ingestion jobs run daily in the background. The Sonar backend
consists of a cluster of four compute nodes, each with massive
node-local storage. A Cassandra database is deployed over these
nodes to provide a central data repository. The massive information
captured in the Sonar infrastructure can provide a complete picture
of the complex behaviors of various production supercomputers
at the system, job, and application levels. On top of the central
data repository, multiple data analytics, system monitoring, and
optimization efforts can be developed to leveraging the insights
from realistic system behaviors. In this work, we leverage the fine-
grained monitoring data to understand memory utilization on large-
scale HPC systems with temporal and spatial details of each job,
which was unachievable in previous works.

A Holistic View of Memory Utilization on HPC Systems

2.2 Production HPC Systems in Study

In this study, we focus on two production systems that represent
state-of-the-art GPU-accelerated and CPU-only supercomputers.

The Lassen supercomputer is a GPU-accelerated IBM Power
system deployed at Lawrence Livermore National Laboratory in
2018 [4]. The system was ranked top 10th in 2019 and is currently
ranked 17th in the top 500 list [24]. It is a scale-down open-access
version of the pre-exascale Sierra system under the CORAL ini-
tiative. Thus, the Lassen system has identical system architecture
with the Sierra supercomputer [26]. Lassen has a total of 795 com-
pute nodes interconnected with 2:1 tapered fat-tree network. Each
node features two IBM Power9 CPUs (44 cores) and four Nvidia
Volta GPUs. In total, the system delivers a peak computing power
of 23,047,200 GFlop/s from the 34,848 CPU cores and 3,168 GPUs.
The memory subsystem includes 16 GB HBM2 memory per GPU
and 256 GB DRAM main memory per node. In total, each node
has 320 GB of memory that is globally addressable with hardware-
supported coherence from NVLink. Jobs on Lassen are scheduled
by the IBM LSM system.

The Quartz supercomputer is a CPU-only system [5]. It was
deployed at the Lawrence Livermore National Laboratory in 2016.
Each compute node features two Intel Intel Xeon E5-2695 v4 proces-
sors and 36 CPU cores. In total, the system consists of 3,018 compute
nodes and uses the Cornelis networks Omni-Path interconnect. The
system delivers a peak performance of 3,251 TFLOPS from a total
of 108,648 CPU cores. Each node has a memory capacity of 128
GB and a peak memory bandwidth of 77 GB/s. In total, the system
provides 344,064 GB of memory. The system uses SLURM for job
scheduling. Quartz represents CPU-based HPC systems that are
popular with workloads not matched to GPU computation.

2.3 Data Processing and Analysis

Sonar infrastructure collects system monitoring data from the com-
pute nodes of Lassen and Quartz every second. We use the total
memory and free memory samples to deduce the memory usage
on a node at a time point. About 172 million and 60 million daily
samples are collected from Quartz and Lassen, respectively. Lassen
and Quartz execute 1k to 10k jobs on average every day. For each
job, we collect the job name, user group, job partition, job start and
end time, and the list of compute nodes assigned to the job. We used
the dataset from 2019 to 2021 for the Quartz system and from 2020
to 2021 for the Lassen system. We find that system characteristics
evolve over the years, and for a fair comparison across the two sys-
tems, we use the same three-month period in 2021. We also present
a summary of system-level changes over the years in Section 3.
We correlate node-level samples with job information by the list
of assigned nodes and time period to reconstruct each job’s fine-
grained temporal and spatial behaviors. These monitoring samples
may contain corrupted or redundant data points, e.g., system down
periods. We performed data quality checks in each period and
compared them with the system architecture to ensure that the data
used in the analysis are valid. As we are interested in production
workloads on the systems, we excluded samples from nodes in the
debug partition and jobs that run shorter than one minute. Although
job logs could also report peak and average memory usage per job,
we use the peak and average usage reconstructed from temporal

MemSys’21, October, 2021, Virtual

and spatial behaviors of each job for a fair comparison across the
system level and job level.

The monitoring infrastructure generates massive datasets be-
cause a single job could generate tens of thousands of data points.
Analyzing these datasets to distill high-level insights is a challeng-
ing task. Therefore, we devise an interval-peak extraction process
to coarsen the granularity into user-defined intervals while main-
taining the critical information in time and space. In particular, all
data points on a node during a job are binned into intervals of a
fixed duration. The data points in each bin are then extracted to the
maximum value. We repeat this process on all nodes in a job. We
chose to use peak value instead of the average or median value for
extraction because resource provision has to satisfy the peak usage.
We chose the interval of one minute because jobs on the systems
have a maximum 24 hours runtime and one-minute intervals retain
sufficient temporal details while limiting data points to reasonable
sizes.

2.4 Statistical Methods

We employ several statistical methods to derive meaningful insights
from the monitoring data. In addition to common metrics such as
mean and standard deviation, we also used probability density
function (PDF), cumulative density function (CDF), and correlation
coefficients in this work. PDF represents the probability of a random
variable X to take value x, while CDF represents the probability of
random variable X to have a value equal to or less than x. In this
study, we use PDF to identify hotspots in memory usage. We use
CDF to quantify the composition of different job groups on the two
systems, e.g., jobs classified as low memory intensity compose Y%
of the total system load.

We use the Pearson correlation coefficient to identify potential
relationships between two variables, such as memory usage and
job sizes, including the number of allocated nodes and job duration.
We compare the correlation coefficient on the two HPC systems to
uncover their difference in system characteristics. The correlation
coeflicient (Pearson’s r value) quantifies the likelihood of a linear
relationship between two random variables. The calculation of the
correlation coefficient of two random variables, X and Y, is defined
in Equation 1:

SN (i = By —)
VEN G - 2P(i - 9)?
where N is the number of samples, and x and § represent the mean
value of X and Y, respectively. The Pearson’s r value is bound to [-1,
1]. A positive value indicates a positive correlation, i.e., the value
of the i-th sample in Y always increases when the value of the i-th
sample in X increases. A negative r value indicates that the value

of the i-th sample of Y always decreases when the value of the i-th
sample in X increases. A zero r value indicates no correlation.

r(XY) = (1

3 SYSTEM-LEVEL CHARACTERIZATION

This section provides an overview of the system-level utilization
that quantifies memory usage on all nodes during a period. The
memory usage includes both user-space and OS memory usage
on a node. This analysis aims to understand how the spectrum of
workloads on current production systems utilize memory resources

MemSys’21, October, 2021, Virtual

0.8

0.6

CDF

0.4
0.2

0.0
20 a0 60 80
Memory Utilization (GB)

(a) The Quartz system in 2019.

g
G0 0% bow
i
1

osf I

|

1

06

CDF

0.4

0.2

0.0
20 a0 60 80 100 120
Memory Utilization (GB)

(b) The Quartz system in 2020.

Memory Utilization (GB)

10 1 1 i
foe lo% Joo%

'

|

=1y
H
1
os H

o6

oF

oa

02

00
20 a0 &0 80
Node Memory Utiization (i)

(c) The Quartz system in 2021.

Memory Utilization (GB)

o]

10 1
ls0% ls0%
! T

o8 3

os

oF

04

02

004
so 100 150 200
Node Memory Utilization (GB)

(d) The Lassen system in 2021.

Figure 2: The CDF of memory usage on nodes on Quartz and
Lassen. The red dotted lines indicate the 40th, mean, 80th,
and 90th percentile. Lassen has 320 GB and Quartz has 128
GB memory per node.

and what characteristic differences the GPU-based and CPU-based
systems exhibit at the system level.

Figure 2 summarizes the distribution of memory usage on Lassen
and Quartz supercomputers. We present the trend of memory usage
on Quartz from 2019, 2020, to 2021. In the rest of the paper, we use
the monitoring data in 2021 Q1 for analysis to provide the most
update-to-date view.

To understand the trend in memory usage over the years, we
compare the memory usage on Quartz from 2019 to 2021 (Fig-
ure 2a, 2b, 2c). In these years, the 90th percentile of memory usage
steadily increases from 30 GB, 41 GB to 110 GB. The 80th percentile
of memory usage also increases, from 15 GB, 20 GB to 78 GB. The
continuous increase in memory usage is consistent with the obser-
vation that more data-intensive workloads are emerging on HPC
systems. Changes on the same machine over the years indicate
that the state of a system could evolve rapidly, which needs to be
factored in system designs.

Both Lassen and Quartz have their 80th percentile in memory
usage at about 80GB (Figure 2d and 2c), indicating that for 80% of

Peng, et al.

Memory Load over Nodes

320 — o e e e ———

U S -

Max Mem. (GB)
8
E

%) e P
& %Y ah L & 5 s f 3
T N e RN T S

Mean Mem. (GB)

0 200 400 600 800
Node 1D

(a) The Lassen system.

Memory Load over Nodes

124 KRR ARCTI A C wee .

16

0 500 1000 1500 2000 2500 3000
Node 1D

(b) The Quartz system.

Figure 3: The mean and max memory usage on all compute
nodes ordered by node ID.

the time, nodes use less than 80GB memory. Because Lassen has
320 GB memory per node, while Quartz nodes only have 128 GB,
their utilization rates differ significantly. In particular, Lassen has
a 25% utilization rate, and Quartz has a 61% utilization rate. Both
systems experience heavy memory usage for about 10% of time
when Lassen nodes use more than 150 GB memory, and Quartz
nodes use more than 110 GB memory.

The two systems significantly differ at their 40th percentile in
memory usage, where Lassen nodes use a minimum of 30-50 GB
memory while Quartz nodes use merely 5-10 GB memory. Quartz
nodes have a much wider range of memory usage than Lassen nodes.
At the 50th percentile, Lassen nodes use 30 - 80 GB memory, while
the usage on Quartz nodes could span from 8 to 100 GB. The broader
range of memory usage on Quartz indicates more diverse workloads
than those on Lassen. Both systems experience extremely intensive
memory usage that nearly exhausts their memory capacity, but
such usage accounts for about 2% of the total time.

Figure 3 reports the peak and average memory usage on each
node. Overall, the memory usage is balanced over nodes such that
all nodes have similar peak and average values. Note that nodes
with small node IDs show much lower usage than others because
they are in the debug partition. We observe that most nodes have
average usage in 60-80 GB on Lassen, while the average usage on
Quartz spans from 20 GB to 60 GB. The peak memory usage on
Lassen concentrates at 275, 300, and 320 GB, while on Quartz nodes,
it spans from 105 to 128GB. This distribution again confirms that
workloads on Quartz have more diverse memory usage.

A Holistic View of Memory Utilization on HPC Systems

Takeaway: More memory-intensive workloads continue emerging on
Quartz in the past three years. Compute nodes on Lassen and Quartz
utilize less than 80 GB for 80% of the time. Workloads on the Quartz
(CPU-only system) show more diverse memory usage than workloads
on Lassen (GPU-based system).

4 JOB-LEVEL CHARACTERIZATION

In this section, we classify jobs by their memory intensity and decom-
pose the overall utilization into three memory intensity patterns.
We quantify the composition of the total system load by each group
of jobs. We characterize the memory usage by each group of jobs to
evaluate the actual memory needs of workloads on the production
systems.

We classify jobs based on a memory intensity metric, i.e., the peak
usage sampled on all nodes throughout a job. We separate jobs into
three groups based on their memory intensity. On a system, if the
peak usage of a job is below 25% memory capacity, it is categorized
as low intensity. Similarly, jobs that use 25%-50% memory capacity
are moderate, and those above 50% are memory-intensive. Accord-
ingly, on the Lassen system, jobs with memory usage below 80 GB
are categorized as low intensity, and those using more than 160 GB
are memory-intensive. On the Quartz system, the threshold for the
three memory intensity groups is 32GB and 64GB.

Most jobs on the two systems have low memory intensity. In
particular, 75% of the jobs on Lassen use less than 80 GB, and 85%
of the jobs on Quartz use less than 32 GB. About 10% of the jobs
on Lassen use a moderate amount of memory between 80 GB and
160 GB. Only 5% of the jobs on Quartz use between 32 GB and
64 GB memory. Memory-intensive jobs take up about 15% of the
total jobs on Lassen, and they use more than 160GB of memory. On
Quartz, about 10% of the total jobs are memory intensive and use
more than 64GB of memory.

Composition of the system load. Figure 5 presents the break-
down of the overall system load into the three groups of jobs. Al-
though memory-intensive jobs only take up 10% of the total jobs,
they consume about 35% node-hours on the Quartz system. This
substantial composition in system load indicates that memory-
intensive jobs on Quartz likely use more nodes or run longer time
than jobs with low or moderate memory intensity. On Lassen, jobs
with moderate memory intensity only take 10% of the total jobs but
compose 30% of the total system load. On the two systems, jobs of
low memory usage compose 50%-60% total system load. From the
utilization decomposition, most jobs can be accommodated with
reduced node capacity. If the saved cost from memory can be used
to facilitate more nodes, the overall system throughput could be
increased.

Hot-spots exist in memory usage on both systems. Figure 6
presents the distribution of peak memory usage in jobs, separated
into the three groups of memory intensity. A few memory usages
occur much more frequently than others, as shown in the spiked
bars in Figure 6. For instance, on the Quartz system, jobs with
low memory intensity likely use 6 GB memory. Memory-intensive
jobs likely use 122 GB memory, nearly exhausting the memory
capacity. These jobs are likely constraint by memory capacity. One
interesting finding is that the most likely memory usage on Lassen
is 60 GB. As each node features four GPUs with a total of 64 GB

MemSys’21, October, 2021, Virtual

50 100 150 200
Job Memory Utilization (GB)

Job Memory Utilization (GB)

(a) The Lassen system. (b) The Quartz system.

Figure 4: CDF of memory usage in jobs. The red lines sepa-
rate jobs into three groups of low, moderate, intensive usage.

node_time

. ow - mid s high

count

0 20 40 60 80 100

(a) The Lassen system.

node_time

. ow = mid B high

0 20 40 60 0 100
(b) The Quartz system.

Figure 5: Decomposition of the total system load (in node-
hours and the number of jobs) by the three job categories.

memory, such a hotspot is likely created by the fact that most jobs
are configured to fit into the GPU memory for best performance.

Correlation between memory usage and job size. Figure 7
presents the correlation matrix between memory usage and a job’s
elapsed time and size of allocated nodes. We focus on comparing
the characteristic differences between Lassen and Quartz systems.
Quartz has a positive correlation between memory usage and job
size. The more nodes assigned to a job or longer time elapsed in
a job, the job is likely to use more memory. These positive corre-
lations have r-values of 0.33 and 0.2. In contrast, the correlation
on Lassen is much weaker, with an r-value of 0.05 and 0.1 only.
One reason for the weak correlation on Lassen could be its mas-
sive memory capacity, i.e., jobs are likely not constrained by node
memory. Another reason could be the high computing power per
compute node on Lassen, which can support jobs in a shorter time
and with fewer nodes than Quartz.

Takeaway: Most jobs use less than 25% memory capacity on both
systems. The two systems have different hotspots in memory usage —
Lassen has a hotspot at 60GB (approximate the total GPU memory)
and Quartz has a hotspot at 6GB. Although only 10% jobs are memory-
intensive, they compose 35% system load on Quartz. Job’s memory
usage is positively correlated with job’s size, but the correlation is
much weaker on Lassen than Quartz.

MemSys’21, October, 2021, Virtual

17.5%
15.0% -

low moderate| intensive

PDF (%

7.5% 4
5.0%

12.5% - i 1
10.0% + I 1 1

2.5% 4 I

0.0% _Illll.l...II,I.II.IL [I I n o
40 60 80 80 101 120 140 160 200 250 300
lob Memorv (GB)

1N

(a) The Lassen system.

10.0% A i
8.0% 1 I
6.0% 1 iil
||
2.0% 4
0.0% JII“"I“II“I[ILL
40 50
lob Memory (GB)

(b) The Quartz system.

Figure 6: The PDF of memory usage in the three groups of
jobs with low, moderate, and intensive memory usage.

moderate intensive

PDF (%)

H.ii.lill ul .-.I
N ol

60 80 100 120

elapsed mem

elapsed mem
time usage i

#nodes #nodes

#nodes

elapsed
time

mem
usage

(a) The Lassen system. (b) The Quartz system.
Figure 7: The correlation matrix between job size (the num-
ber of nodes and elapsed time) and job’s peak memory usage.

5 TEMPORAL CHARACTERISTICS

In this section, we characterize the temporal memory imbalance
in jobs on the production systems. Each job can be viewed as two-
dimensional, i.e., the time dimension spans over the job’s duration,
and the space dimension spans over all assigned nodes. The memory
utilization on a node changes in time and causes temporal memory
imbalance. Currently, the allocation of memory resources is static
on HPC systems, i.e., the resource is requested based on the peak
usage of a job, and resource configuration remains unchanged once
allocated to a job. Therefore, temporal imbalance results in temporal
under-utilization. We propose a new metric called RU;epmporar in
Equation 2 to quantify the temporal imbalance. Jobs are categorized
into four temporal patterns based on RU;emporals and we recon-
structed real job traces from the Sonar infrastructure in Figure 8
to demonstrate these representative patterns. The distribution of
these temporal groups is shown in Figure 9. We analyze the actual
memory usage by jobs in each temporal pattern in Figure 10.
Equation 2 calculates RUjemporqi for Node nin a job i that runs
for T; time. Sy ; represents the actual memory usage sampled at
time t on Node n. RU;¢mporal is bounded to the range of [0,1]. Ideal
temporal utilization would have RU;emporai close to zero and a
large value indicates that memory resource is underutilized most

Peng, et al.

of the time.

T;
. Ztlzo Sn,t
RUtemporal(l’ n)=1- T 2)
2ylomaxo<s <1y Sn,t

We use RUsemporql to summarize temporal characteristics in
jobs. Depending on the maximum RUyemporar value on all nodes
in a job, a job can be categorized into constant, phased, dynamic,
and sporadic patterns. The constant pattern has minimal changes in
memory utilization throughout a job. Jobs with RU;emporar values
lower than 0.2 are categorized in this pattern. We reconstruct a
real job in the constant pattern from system monitoring data and
present it in Figure 8a. All samples from one node are depicted in
the same color. For instance, green points show the usage on a node
at different times, and red points show the usage on another node.
Figure 8a shows that throughout the job’s time, the changes in
memory usage are low. The phased pattern has RU;emporar value
in 0.2-0.4. Representative jobs in this pattern have their executions
divided into multiple phases. Memory usage in each phase could
be different. Figure 8b presents one real job composed of four long
phases. The dynamic pattern has more temporal imbalance than
the previous two and is classified with RUyemporar values in 0.4-
0.6. This pattern often has frequent and substantial changes in
memory usage over time. We show one real job in the dynamic
pattern in Figure 8c, where memory usage changes from 25 to 200
GB repeatedly during the job. The sporadic pattern may cause the
most severe underutilization and is classified by RU;¢mporar value
larger than 0.6. Most jobs in this pattern exhibit spiked memory
usage for short periods. For example, the job in Figure 8d has a
stable usage at 30 GB but uses up to 100 GB at several time points.

We present the distribution of temporal imbalance in jobs in
Figure 9. A job is categorized by the maximum RU;epmporar value
on all nodes in a job. In other words, a job’s temporal characteris-
tic is determined by the node with the highest temporal memory
imbalance (the difference between nodes will be analyzed in Sec-
tion 6). Overall, most jobs on the two systems have good temporal
balance, i.e., RU;emporal values below 0.2. However, the temporal
underutilization can reach as high as 0.9 and 0.95 on Lassen and
Quartz systems, respectively. About 70% jobs on the GPU-based
systems have the constant temporal pattern, while 80% jobs on the
CPU-based system are in this category. For the phased pattern, i.e.,
RUtemporail values between 0.2 and 0.4, the GPU-based system has
20% jobs in this category while the CPU-based only has about 10%
jobs. Both systems have only about 10% jobs with significantly high
temporal underutilization, i.e., dynamic and sporadic patterns with
RUtemporal above 0.4. The CPU-based system has about 5% jobs
in the sporadic pattern, slightly more than the 2.5% jobs on the
GPU-based system.

Memory imbalance over time causes a job to require each
of its nodes to be configured with memory capacity equal to the
peak temporal usage on that node. This constraint is because the
memory resource is fixed once a job is scheduled on current HPC
systems. Our categorization of jobs in Figure 13 shows the ratio
of temporal imbalance in jobs. However, a high RU; ¢ pnporal value
unnecessarily indicates a high potential for improvement if its peak
memory usage is low. We try to understand the actual node memory

A Holistic View of Memory Utilization on HPC Systems

MemSys’21, October, 2021, Virtual

200 * 100
w 'L X} § r § -
175 o
55
. . i ©
° e s
-] * % 125 ",
o o rommle 0 mommemeew EX
»
35 i -
40 *
k) 507 *.3, "
5 - . - - . 5L . - . - —— * - - . - -
0 50 100 150 200 50 300 450 500 550 600 650 100 200 300 400 500 600 650 700 750 800 850
(a) Constant pattern (b) Phased pattern (c) Dynamic pattern (d) Sporadic pattern

Figure 8: Four temporal patterns are identified from system monitoring data. Each scatter plot represents time (in minutes)

in the x-axis and memory usage (in GB) in the y-axis. Points in the same color represent samples on the same node.

i R A § HE
0.0 !

0.0 02 0.4 0.6 08
Temporal Underutilized Ratio

(a) The Lassen system.

10

0.0

| |
0.0 02 04 0.6 0.8

Temporal Underutilized Ratio

(b) The Quartz system.

Figure 9: The distribution of temporal under-utilization in
jobs on the two HPC systems. The red dashed lines separate
jobs into constant, phased, dynamic, and sporadic patterns.

1
223

250

1.

ol
constant

Job Memory (GB)
Job Memory (GB)

o0l
constant

phased dynamic sporadic phased dynamic sporadic

(a) The Lassen system. (b) The Quartz system.
Figure 10: The memory usage in jobs in the four tempo-
ral patterns. The box plot summarizes the minimum, lower
quartile, median, upper quartile, and maximum of usage.

usage in jobs in Figure 10, which presents the node memory usage
in jobs in each temporal category.

On both systems, jobs in the constant group have nearly identical
distribution in memory usage on nodes. 75% jobs in this category
on Lassen use less than 160 GB memory while 75% jobs on Quartz
use less than 20 GB memory. As 70%-80% total jobs on these two
systems are in this group, memory resource is overprovisioned by
about 160 and 88 GB for more than 50% total jobs on Lassen and
Quartz systems, respectively. In fact, on the Quartz system, this
group of jobs uses no more than 40 GB.

elapsed temporal
time variance

#nodes

#nodes

elapsed | g g4

time
temporal|
variance

0.09 -0.13

(a) The Lassen system.

elapsed temporal
time variance

#nodes

#nodes

elapsed
time

temporal|
variance

(b) The Quartz system.

0.13 0.19
0.10
0.10

Figure 11: The correlation matrix of temporal variance in
memory usage with job size and elapsed time on two sys-
tems.

One main difference between the two systems is memory usage
changes in constant, phased to dynamic groups. For 75% jobs, once
sufficient memory is provided on the GPU-based system for the
constant group (i.e., 160 GB), jobs in phased and dynamic groups
are also supported. However, the required memory on the CPU-
based system increases from 20, 60 to 90 GB in these three groups.
To support 75% jobs in the sporadic group, at least 200 and 105 GB
memory capacity is needed on the Lassen and Quartz system, re-
spectively. The difference in node usage in these jobs is about 50
GB on both systems.

Correlation with job characteristics. We quantify the corre-
lation of temporal variance in memory usage with the job size and
duration. Figure 11 visualizes the correlation matrix of the three
variables. A drastic change in the correlation is between the tempo-
ral variance and job elapsed time from the CPU-based system to
the GPU-based system. The temporal variance on Lassen is nega-
tively correlated to the job duration (elapsed time), indicating that
jobs that run longer on the GPU-based machine are likely to ex-
hibit lower temporal variance in memory usage. In contrast, on the
CPU-based machine, jobs that run longer are likely to show more
temporal imbalance. One possible reason for the negative correla-
tion on Lassen is that longer jobs on the GPU-accelerated system
likely need to use more memory to supply data for computation
and thus likely constantly have higher memory usage throughout
the job.

Takeaway: Temporal imbalance in memory usage is low in 70%-80%
Jjobs on the two systems. However, temporal underutilization could
reach beyond 90% on both systems because 50% jobs on Lassen and
Quartz are over-provisioned with 160 and 88 GB memory, respectively.

MemSys’21, October, 2021, Virtual

Temporal imbalance is negatively correlated with the job’s time on
Lassen but positively correlated on Quartz.

6 SPATIAL CHARACTERISTICS

The spatial memory imbalance in a job comes from the different
memory usage on nodes. In this section, we define a new metric
called RUpqtiq1 to classify jobs based on their spatial imbalance.
We follow the utilization decomposition analysis to categorize jobs
into different spatial utilization patterns. Three real job traces are
reconstructed from monitoring data in Figure 12 to show their
signature usage behaviors. The composition of these job groups
on the systems is then presented in Figure 13. We characterize the
actual memory usage in each spatial group and report in Figure 14.

Eq. 3 computes the RUsp 4141 value for a job i, where J (i) in
Eq. 4 computes the peak usage among all nodes in the job and N
(n) computes the peak usage from samples (S) throughout the job’s
lifespan (ts;—te;) on Node n (Eq. 5). RUpq;i4) integrates underuti-
lized memory resources on all nodes in a job (Z;). It serves as an
indicator of memory imbalance among nodes in a job. The value of
RUspatiar is bounded to [0,1]. A RUspqtiqr value of zero indicates
perfectly balanced memory usage among all nodes. A large value
indicates that only few nodes can reach the job’s peak memory,
representing large improvement potential on the job’s spatial usage.

N N
RUspariat(®) =) (J() = Nitsi, te,)/ Y JGi) — (3)
1 1

J(i) = max{N(tsj, tej,n) : n € Z;} (4)
N(to, t1,n) = max, Sn.t ®)

We compute RUspqyiq) for each job on the two systems and
categorize jobs into three groups-batched, grouped, centralized. The
batched pattern has RU;44;4; values lower than 0.2. Jobs in the
batched pattern have similar peak memory usage on all nodes.
Figure 12a shows a real job trace captured by the Sonar system.
This job is allocated with eight compute nodes, and all the nodes
use similar memory throughout the job. Note that this job actually
has low temporal utilization as characterized by RU;emporai in the
previous section and has a dynamic temporal pattern.

The grouped pattern has RUg,4;14; values in 0.2-0.6. Jobs in this
group have lower spatial utilization because some nodes cannot
reach the peak memory usage as other nodes. Figure 12b shows
one representative job, where nodes in the jobs are separated into
three groups. These groups have a different peak usage of 25 GB,
60 GB, 70 GB, respectively.

The centralized pattern has RUsp,;i4; values higher than 0.6.
Jobs in this pattern have very different peak memory usage among
nodes and likely have the highest optimization potentials. Figure 12¢
presents one real job on the Quartz system that exhibits the cen-
tralized spatial pattern. Dots in the same color represent samples
collected from the same node. In this example, all nodes except the
one in blue dots use lower than 10 GB memory throughput the
job while one node uses about 70 GB memory. We also evaluate
other jobs with such behavior. We find that the first node in the
list of assigned nodes is often the one that uses significantly more
memory than the others. One explanation could be that the first

Peng, et al.

node is often mapped to be MPI rank 0, which is known to handle
extra works, such as I/O and coordination.

We present the distribution of spatial imbalance in jobs in Fig-
ure 13. Overall, jobs on the Lassen system are more memory bal-
anced over nodes than those on the Quartz system. About 95%
jobs on Lassen have RUpqtiq1 values lower than 20% (Figure 13a).
The maximum spatial imbalance on Lassen is 88% while it could
reach 92% on Quartz. Only a small portion of jobs have grouped or
centralized patterns on both systems. However, for a full picture
of memory utilization in jobs, we need to combine temporal and
spatial metrics because, as shown in the example in Figure 12a, jobs
with low RU 4141 could have high temporal underutilization. The
spatial imbalance in jobs on the Quartz system is more diverse than
Lassen. About 10% jobs have RUspq;iq1 higher than 20%, and 5%
jobs have more than 60% spatial imbalance.

Memory imbalance across nodes in a job could reduce re-
source utilization significantly because most HPC systems today
are composed of nodes configured with the same resources. Based
on spatial utilization categorization, we evaluate the actual memory
usage in jobs in each category. Figure 14 presents the distribution
of memory imbalance among nodes in a job, i.e., the difference
between the highest node usage and the lowest node usage in a job
(denoted as diff), and the highest and lowest node usage (denoted
as max and min), respectively.

Jobs in the batched group have the lowest memory imbalance, i.e.,
the green bar in the first group is approximately zero in Figure 14a
and 14b. 75% jobs in this group use less than 80 GB memory on
Lassen and less than 20 GB on Quartz. As more than 90% of total
jobs on the two systems fall in this category, they indicate that most
jobs are over-provisioned with 240 GB and 108 GB memory on the
Lassen and Quartz system, respectively.

Jobs in the grouped pattern behave differently on the two sys-
tems. On Lassen, the distribution of memory imbalance is centered
at 30 GB (i.e., the green bar in Figure 14a). These jobs on Lassen
are over-provisioned with at least 245 GB memory because their
maximum node usage is only 75 GB (the blue bar in Figure 14a).
However, on Quartz, the memory imbalance could spread from
10 GB to 40 GB at 25th and 75th percentile. Therefore, memory
imbalance in jobs of the grouped pattern is more diverse on Quartz
than Lassen.

The centralized group presents the highest memory imbalance.
The average memory imbalance on Lassen is about 160 GB in these
jobs and approximately 58 GB on Quartz. The minimum node usage
is centered at 25GB on Lassen and 10 GB on Quartz. Note that jobs
in this group mostly have only one or very few nodes that use
the maximum usage, and thus, we exclude them to estimate the
overprovision to be at least 270 GB on Lassen and 88 GB on Quartz.

Correlation with job characteristics We quantify the corre-
lation of memory imbalance (spatial variance) in a job with the job
size (the number of nodes) and the elapsed time. Figure 15 visual-
izes the correlation matrix of the three variables. On both systems,
spatial variance is positively correlated with the number of nodes
in a job, which is expected. The most significant difference between
the two systems is the correlation between spatial variance and job
elapsed time. Spatial variance is positively correlated with job time
on Quartz (Figure 15b with an r-value of 0.24, indicating that in-
creased job length is likely to be accompanied by increased memory

A Holistic View of Memory Utilization on HPC Systems

MemSys’21, October, 2021, Virtual

seasssnsal
1sgesct

2

£

& 28 2

Ea.t-tg ’

o] b= ,‘ 'L 253555! ma @0 .t

W PR R

1000 1200 1400 1600 1800 2000 2200 2400 800 1000

(a) Batched pattern.

1200

(b) Grouped pattern.

1400 1000 1200 1400 1600 1800 2000 2200

(c) Centralized pattern.

Figure 12: Three spatial patterns are identified from system monitoring data. Each scatter plot represents time (in minutes) in
the x-axis and memory usage (in GB) in the y-axis. Points in the same color represent samples on the same node.

i i | i I i
00 1 ‘ y Y
0

20 40 60 80 40 60 80 100
Spatial Underutilization (%)

Spatial Underutilization (%)

(a) The Lassen system. (b) The Quartz system.
Figure 13: The distribution of spatial imbalance (RUs,qt1q1)
in jobs. The red dashed lines separate jobs into batched,
grouped, and centralized patterns.

= max _—max
= min
- it - iff

250 100

) i ' g

= —
batched batched

Job Memory (GB)
Job Memory (GB)

==

centralized

grouped centralized grouped

(a) The Lassen system. (b) The Quartz system.
Figure 14: The peak node memory usage in jobs in the three
spatial patterns. The box plots the minimum, lower quartile,
median, upper quartile, and maximum of usage.

imbalance on Quartz. However, the correlation becomes negative
on Lassen, indicating that longer jobs are likely to have reduced
spatial memory imbalance. One explanation could be large jobs
intend to fit in the fast GPU memory capacity for best performance.

Takeaway: Spatial imbalance in nodes could result in severe underuti-
lization in jobs exhibiting centralized and grouped patterns. Emerging
workloads like workflows deploying diverse tasks onto nodes could
exhibit such patterns. Job’s spatial imbalance is positively correlated
with job time on Quartz but negatively correlated on Lassen.

elapsed spatial
time variance

elapsed spatial
time variance

#nodes #nodes

#nodes

elapsed
time

elapsed
time

spatial
variance

050 spatial
-0.08 075 variance

0.19

(a) The Lassen system. (b) The Quartz system.
Figure 15: Correlation of spatial variance across nodes in a
job with the job size (i.e., the number of assigned nodes and
the elapsed time).

7 IMPLICATIONS FOR FUTURE SYSTEMS

In this section, we discuss considerations in applying our study
and findings. We share a recent procurement decision to show the
impact of our study. We also outline promising new architectural
designs motivated by the utilization patterns in real jobs.

Our method is generally applicable to HPC facilities with moni-
toring infrastructure deployed to provide required system samples.
A facility may discover different utilization characteristics when ap-
plying our analysis approach to their monitoring data. The findings
presented in this work reflect the current state of the two leader-
ship supercomputers. We believe that the characteristic differences
between Lassen and Quartz are more a result of workloads than
architecture, i.e., the main incentive for an application to choose a
GPU-based system is likely for speedup by the accelerators, not for
memory capacity. Therefore, jobs on Lassen are likely configured
to fit in GPU for best performance. Our findings of the average
and hotspot memory usage on Lassen support this assumption.
When deriving insights for future systems, one needs to project the
changes in the workloads.

7.1 Procurement Decisions

System-level data is impactful in making procurement decisions [11].
Memory is one of the most expensive components of a system, mak-
ing up more than 20% overall cost. Therefore, memory subsystem
configuration is critical from the system design perspective.

The data from Sonar is used to inform the machine configuration
through an upcoming NNSA Commodity Technologies System
(CTS) procurement. Data from Sonar was augmented with data
collected in logs from a classified system called Jade, which has

MemSys’21, October, 2021, Virtual

the same architecture as Quartz. The findings showed that the
Jade system’s workloads are more memory-intensive than Quartz’s
workloads. While over 80% of jobs on Quartz have low memory
intensity, only about 40% of the jobs on Jade are in this category. The
same finding holds true for the high memory intensity category,
where only 10% of Quartz jobs but 25% of Jade jobs are in this
category. These differences impact the design of a new system.
While most of the Quartz workloads use less than 1 GB of memory
per core, most Jade workloads used at least 1 GB. Still, on both
systems, most of the memory resources are not utilized, and there
is space to optimize the system design.

For future CTS systems, the data presented in this paper made
a strong case to push memory capacity down to 2 GB per core if
possible on all systems. Solutions in the 2-3 GB per core range are
about 20% cheaper per node than those with double the memory. In
the new system designs, some jobs would need to use more nodes,
but most jobs would not notice. Also, the extra compute that we
could get would make up for the lost memory capacity.

To reduce memory capacity meant to give up Chipkill mem-
ory [6] used for reliability in current systems, and/or moving to
single rank DIMMs, impacting memory bandwidth. Both have per-
formance impacts, but modeling showed that single-rank DIMMs
would cost only 4-5% average application performance. Also, the
additional check-pointing needed by removing Chipkill would cost
less than the impact of removing a rank from the DIMMs. Therefore,
by reducing memory capacity, a procurement decision is made for
a machine that is about 5% less capable per node, but about 20%
more nodes are configured.

In addition, the data shows that further memory capacity reduc-
tions down to 1-1.5GB per core would suffice for most jobs. This
opens up the option of HBM [10] only based CPUs, such as the new
A64FX used in the Fugaku supercomputer [1]. HBM could enable
many bandwidth-bound HPC applications to improve performance
significantly. Over 80% of Quartz jobs and 40% of Jade jobs would
fit in 1GB of memory per core. Likely for cost reasons and because
data staging tends not to be used much in practice on CPU+GPU
machines, these machines would be HBM only. Whether an HBM-
only machine could serve all workloads or a machine with a hybrid
of DDR nodes and HBM nodes is an open question that requires
further investigation.

While the GPU data collected here has not been used in procure-
ments yet, it provides useful insight into how the machine is being
used and confirms some anecdotal stories from users. For example,
Figure 6a shows a significant number of jobs using memory close
to the capacity of the GPUs, which is 64GB. These jobs are likely
trying to fit within GPU memory either because this is the most
efficient operation point or they have not implemented an efficient
data migration strategy. These GPU-memory-capacity limited jobs
match user stories. Many code teams shared that they get their best
throughput and machine efficiency when they use all GPU mem-
ory. Many of them tried staging data between host and device and
found they did not have enough data reuse to take advantage of the
extended memory. Coupling this anecdotal evidence with the data
provided by Sonar justifies increasing GPU memory capacity when
possible and shows more incentive than increasing CPU memory.

Peng, et al.

7.2 Emerging System Architecture

Temporal utilization patterns identified in real jobs present op-
portunities in exploring dynamic resource configurations and dis-
aggregated memory [17, 22] on future systems. The overhead of re-
source re-configuration depends on the frequency of usage changes
in a job. The constant temporal pattern exhibits little changes in
memory usage throughout a job, and it composes most system
loads. Also, the phased pattern only has a few disruptive usage
changes throughout a job. Therefore, both patterns could be candi-
dates for dynamic resource configuration because the overhead of
re-configuration would be low. The sporadic pattern has a few short
usage spikes throughout a job, which could leverage disaggregated
memory for temporary memory expansion. Since remote memory
is only used in short periods, the performance impact would be
limited.

Spatial utilization patterns reveal the imbalanced memory
usage across nodes in one job. Today, most supercomputers are
composed of uniformly configured nodes, i.e., each node provides
the same amount of resources. In this work, we identified the
centralized pattern in jobs, where only one node in a job needs
high memory capacity. Codes with the centralized pattern could
be forced to adapt to new environments rather than being accom-
modated. Understanding the tradeoff between the cost of the code
changes and the cost of accommodation needs to be address in
future designs. As more complex workflows emerge on HPC sys-
tems, nodes performing different workflow stages may have very
different resource requirements. These spatially imbalanced jobs
could be more efficiently supported on systems composed of hetero-
geneous subclusters [3], where nodes are configured with different
resources.

8 RELATED WORK

Previous works used system-level characterization of I/O, power,
and memory for performance optimizations [14, 15, 17, 29]. Xie
et.al [29] build a prediction model for I/O performance on Titan
supercomputer. Patel et.al [15] investigate the I/O behaviors of a
parallel file system on NERSC supercomputer and correlate tem-
poral and spatial I/O activities with hardware utilization. Panwar
et.al [14] quantified node-level memory usage and proposes to
leverage unused memory for boosting system performance. Peng
et.al [17] also characterize system-level memory usage and propose
to use disaggregated memory to improve utilization. Our work is
the first large-scale study of job’s temporal and spatial memory
usage on production HPC systems.

Several works use job logs to correlate with subsystem logs
for analyzing job-level behaviors on HPC systems [7, 12, 27, 30].
Madireddy et.al [12] correlate job logs with storage-system logs to
analyze job- and system-level I/O activities. Wang et.al [27] use five
years’ job logs to characterize the utilization of CPU, GPU, mem-
ory, and I/O on Titan supercomputer. Zheng et.al [30] correlate
job logs with RAS logs to uncover the characteristics of system
failures and job interruptions. LogAider [7] provides a tool for iden-
tifying correlations in job logs and RAS logs. Our work correlates
high-resolution monitoring samples with job metadata to accu-
rately depict the current state and provide quantitative guidance
for system designs.

A Holistic View of Memory Utilization on HPC Systems

Prior works often use selected applications to represent work-
loads on HPC systems. Turner et.al [25] study the memory usage of
selected applications at different job sizes. Zivanovic et.al [31] use
HPCG and HPL benchmarks to assess the suitability of 3D-stacked
memory for HPC systems. Weinberg et.al [28] quantify the spatial
and temporal memory locality in a set of selected applications on
different architectures. Ji et.al [9] characterize the memory access
patterns of 38 applications. Our work monitors all applications
running on a system, reflecting their impact on the current system
but needs abstraction and projection for future systems.

9 CONCLUSION

Co-designing memory subsystems has become increasingly chal-
lenging for HPC facilities because workloads continue evolving and
new architectural options continue emerging. We introduce our
strategy at a leadership facility that leverages system monitoring
data to inform future system designs and procurement decisions. To
the best of the authors’ knowledge, this is the first large-scale study
of memory utilization with spatial and temporal characterizations
on production HPC systems. Our study identifies the changes in
memory utilization from a CPU-only system to GPU-accelerated
supercomputers. We discover representative spatial and temporal
utilization patterns in real jobs. The findings in this study provide
quantitative guidelines for emerging architectural designs. Finally,
we showcase the impact of our study in an upcoming NNSA CTS
procurement.

ACKNOWLEDGMENTS

This research was partially supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. LLNL-CONF-
821258.

REFERENCES
[1] 2021. the Fugaku supercomputer. https://www.fujitsu.com/global/about/
innovation/fugaku/.
[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,

Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,
et al. 2014. The lightweight distributed metric service: a scalable infrastructure
for continuous monitoring of large scale computing systems and applications. In
SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154-165.

[3] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijaykumar.
2012. Tarazu: optimizing mapreduce on heterogeneous clusters. ACM SIGARCH
Computer Architecture News 40, 1 (2012), 61-74.

[4] Livermore Computing. 2021. the Lassen supercomputer. https://hpc.llnl.gov/
hardware/platforms/lassen.

[5] Livermore Computing. 2021. the Quartz supercomputer. https://hpc.lnl.gov/
hardware/platforms/Quartz.

[6] Timothy J Dell. 1997. A white paper on the benefits of chipkill-correct ECC for
PC server main memory. IBM Microelectronics division 11 (1997), 1-23.

[7] Sheng Di, Rinku Gupta, Marc Snir, Eric Pershey, and Franck Cappello. 2017.
Logaider: A tool for mining potential correlations of hpc log events. In 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 442-451.

[8] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.

2019. Basic performance measurements of the intel optane DC persistent memory

module. arXiv preprint arXiv:1903.05714 (2019).

Xu Ji, Chao Wang, Nosayba El-Sayed, Xiaosong Ma, Youngjae Kim, Sudharshan S

Vazhkudai, Wei Xue, and Daniel Sanchez. 2017. Understanding object-level

memory access patterns across the spectrum. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis.

1-12.

[9

=

MemSys’21, October, 2021, Virtual

[10] Joonyoung Kim and Younsu Kim. 2014. HBM: Memory solution for bandwidth-
hungry processors. In 2014 IEEE Hot Chips 26 Symposium (HCS). IEEE, 1-24.

[11] Edgar A. Leodn, Ian Karlin, Abhinav Bhatele, Steven H. Langer, Chris Chambreau,

Louis H. Howell, Trent D’Hooge, and Matthew L. Leininger. [n.d.]. Characterizing

Parallel Scientific Applications on Commodity Clusters: An Empirical Study of

a Tapered Fat-Tree. In SC’16: the International Conference for High Performance

Computing, Networking, Storage and Analysis.

Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert Latham, Robert

Ross, Shane Snyder, and Stefan M Wild. 2017. Analysis and correlation of ap-

plication I/O performance and system-wide I/O activity. In 2017 International

Conference on Networking, Architecture, and Storage (NAS). IEEE, 1-10.

Alessio Netti, Daniele Tafani, Michael Ott, and Martin Schulz. 2021. Correlation-

wise Smoothing: Lightweight Knowledge Extraction for HPC Monitoring Data.

In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

IEEE, 2-12.

Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan DeBardeleben,

Binoy Ravindran, and Xun Jian. 2019. Quantifying memory underutilization in

HPC systems and using it to improve performance via architecture support. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-

chitecture. 821-835.

Tirthak Patel, Suren Byna, Glenn K Lockwood, and Devesh Tiwari. 2019. Revisit-

ing I/O behavior in large-scale storage systems: The expected and the unexpected.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. 1-13.

[16] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips
23 Symposium (HCS). IEEE, 1-24.

[17] Ivy Peng, Roger Pearce, and Maya Gokhale. 2020. On the Memory Underuti-

lization: Exploring Disaggregated Memory on HPC Systems. In 2020 IEEE 32nd

International Symposium on Computer Architecture and High Performance Com-

puting (SBAC-PAD). IEEE, 183-190.

Ivy B Peng, Roberto Gioiosa, Gokcen Kestor, Jeffrey S Vetter, Pietro Cicotti, Erwin

Laure, and Stefano Markidis. 2018. Characterizing the performance benefit of

hybrid memory system for HPC applications. Parallel Comput. 76 (2018), 57-69.

Ivy B Peng, Maya B Gokhale, and Eric W Green. 2019. System evaluation of the

intel optane byte-addressable nvm. In Proceedings of the International Symposium

on Memory Systems. 304-315.

Ivy B Peng and Jeffrey S Vetter. 2018. Siena: Exploring the design space of hetero-

geneous memory systems. In SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 427-440.

Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R de Supinski, Sally A

McKee, Petar Radojkovi¢, and Eduard Ayguadé. 2015. Another trip to the wall:

How much will stacked dram benefit hpc?. In Proceedings of the 2015 International

Symposium on Memory Systems. 31-36.

[22] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,
Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A network
architecture for disaggregated racks. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 255-270.

[23] JEDEC Standard. 2013. High bandwidth memory (hbm) dram. Jesd235 (2013).

24] top500.org. 2021. Top 500 list. https://www.top500.org/lists/top500/list/2020/11/.

[25] Andy Turner and Simon McIntosh-Smith. 2017. A survey of application memory
usage on a national supercomputer: an analysis of memory requirements on
ARCHER. In International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems. Springer, 250—-260.

[26] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland, Al Geist, James

Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley, Sarp Oral, Don E Maxwell,

et al. 2018. The design, deployment, and evaluation of the CORAL pre-exascale

systems. In SC18: International Conference for High Performance Computing, Net-

working, Storage and Analysis. IEEE, 661-672.

Feiyi Wang, Sarp Oral, Satyabrata Sen, and Neena Imam. 2019. Learning from

Five-year Resource-Utilization Data of Titan System. In 2019 IEEE International

Conference on Cluster Computing (CLUSTER). IEEE, 1-6.

[28] Jonathan Weinberg, Michael O McCracken, Erich Strohmaier, and Allan Snavely.

2005. Quantifying locality in the memory access patterns of HPC applications.

In SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. IEEE,

50-50.

Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl Choi, Scott Klasky, Jay

Lofstead, and Sarp Oral. 2017. Predicting output performance of a petascale

supercomputer. In Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing. 181-192.

Ziming Zheng, Li Yu, Wei Tang, Zhiling Lan, Rinku Gupta, Narayan Desai, Susan

Coghlan, and Daniel Buettner. 2011. Co-analysis of RAS log and job log on Blue

Gene/P. In 2011 IEEE International Parallel & Distributed Processing Symposium.

IEEE, 840-851.

[31] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jongpil Son,
Sally A Mckee, Paul M Carpenter, Petar Radojkovi¢, and Eduard Ayguadé. 2017.
Main memory in HPC: Do we need more or could we live with less? ACM
Transactions on Architecture and Code Optimization (TACO) 14, 1 (2017), 1-26.

[12

=
&

[14

[15

[18

[19

[20

[21

[27

[29

@
=

https://www.fujitsu.com/global/about/innovation/fugaku/
https://www.fujitsu.com/global/about/innovation/fugaku/
https://hpc.llnl.gov/hardware/platforms/lassen
https://hpc.llnl.gov/hardware/platforms/lassen
https://hpc.llnl.gov/hardware/platforms/Quartz
https://hpc.llnl.gov/hardware/platforms/Quartz

