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ABSTRACT

The life of a multi-physics code user is complicated. Simu-
lation crashes, efficient resource utilization, and simulation
parameter choices are time consuming workflow issues that in-
crease a user’s iteration time. Simulations often don’t provide
general tools to support automatically adapting workflows
to the diverse set of problems that multi-physics codes are
capable of simulating. In situ visualization and analysis in-
frastructures are designed to be general. They are repositories
of shared capability that support multiple simulation codes.
Normally, the connection between simulation and in situ
analysis is unidirectional (e.g., render an image or querying
the mesh). In this work, we close the loop between an in situ
infrastructure and a simulation, and we explore opportuni-
ties to leverage in situ triggers for automatic computational
steering at runtime. We demonstrate using Ascent’s in situ
trigger interface as a capable yes-no machine for controlling
simulation choices.
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1 INTRODUCTION

Multi-physics codes can simulate a diverse set of problems,
but with these broad capabilities, users of multi-physics codes
face a complex set of workflow problems. Both compute
and human resources are often constrained, and maximizing
both is paramount to conducting effective research in the
simulation sciences.

As implied by the name, multi-physics codes can use multi-
ple types of physics models (e.g., hydrodynamics, turbulence,
and heat transfer) that affect the evolution of a problem. Each
model has an associated computational cost that can vary
by orders of magnitude. However, not all physics is needed
all the time, and turning on physics only when needed can
significantly reduce the overall time-to-solution. If the exact
moment where the switch needs to occur is not known a pri-
ori, then the switch of the physics requires human interaction,
which further constrains human resources.

Additional workflow problems arise when simulations stop
converging or crash. Simulations can slow to a crawl when
the time steps become tiny or even crash when cells in the
mesh become inverted. Recovering from such occurrences
almost always requires a human to identify the cause of the
issue and provide a solution (e.g., trying a new problem or
addressing issues with the computational mesh).

Simulation users address these scenarios with code-specific
timers, code-specific heuristics, and human-in-the-loop inter-
ventions, often in the form of saving files for inspection with
post-hoc visualization tools. Simplifying user workflows, by
developing automatic solutions that help simulations adapt
during runtime, can save both compute and human resources.
Computational steering research focuses on solutions that
adapt simulations at runtime, but prior research has focused
largely on systems for interactive and even collaborative
decision making. Interactive (human-in-the-loop) decision
making will always be a key component of scientific modeling
workflows. However, there are cases where interactive solu-
tions cause tension between human resources and compute
resources. Examples include: an allocation on a large super-
computer waiting idle for a user decision, or ensembles of
thousands of simulations that users cannot reasonably direct
interactively. Developing automatic solutions for a wider set
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of scenarios would simplify workflows, saving both compute
and human time.

In many ways, challenges with automatically adapting
multi-physics code workflows directly parallel those for in
situ visualization and data analysis. Multi-physics codes can
run a diverse set of problems, which is why complicated
workflows exist, and similarly, in situ visualization and data
analysis tools support a diverse set of simulations and analysis
needs. To address these challenges, the visualization commu-
nity has explored triggers to automate adaptive visualization
tasks. A trigger is a statement that expresses the conditional:
if X occurs then do Y. Previous trigger research has focused
on both X and Y being some visualization or data analysis
task (e.g., render an image or create an isosurface). In this
work, we explore use cases where X is performed by the in
situ visualization infrastructure and Y controls simulation
parameters. By leveraging in situ triggers as part of a sim-
ulation’s decision making process (for physics or algorithm
choices), we can expand the scenarios where automation im-
proves workflows. Even when human judgment is still needed,
we can improve the workflow by using in situ tools to auto-
matically capture relevant data and present useful context
to the user for decision making.

In this paper, we show how in situ tools can be used for
automatic computational steering. Our contribution is an
approach for automating computational steering workflows
by leveraging the general capabilities of Ascent, an in situ
visualization tool. As part of this work, we enhanced As-
cent’s expressions language, used for triggers, and connect
the language to a simulation, creating a yes-no interface that
extends the simulation’s ability to adapt at runtime, with-
out human intervention. We demonstrate the effectiveness
of our approach by examining use cases where automated
decision-making can streamline simulation workflows.

2 RELATED WORK

2.1 Computational Steering

In recent years, a large number of research efforts have concen-
trated on creating an infrastructure to enable HPC scientists
to dynamically steer their applications, a process typically
referred to as “computational steering” [3, 5–10, 15, 18, 21–
29, 31–33]. A good overview of these efforts can be found
in [19, 20]. This work is largely focused on allowing scientists
to interactively steer their applications through online visual-
ization and computational steering controls [26]. This process
is referred to more generally as putting the “human-in-the-
loop” for HPC applications [19]. Computational steering has
a number of use cases including allowing users to: explore
different “what-if” scenarios [30, 33] or cause and effect rela-
tionships [20, 23]; visually identify complex patterns that are
difficult to identify programmatically [19]; change a simula-
tion’s timestep [28] to help capture transient events or provide
more accurate solutions during critical moments in the sim-
ulation; trigger remeshing or adjust boundary conditions
via a GUI [5, 21]; explore intermediate simulation states to
gain a better understanding of model behavior [20, 30]; stop

an application that is no longer producing useful results or
has experienced some sort of degeneration [30]; and improve
performance through techniques such as load balancing [20].
Our work focuses on automating steering decisions, instead
of providing infrastructure supporting “human-in-the-loop”
decisions.

2.2 Triggers

Automating in situ visualization and analysis actions is a
key in situ challenge and an active research area. A priori
in situ visualization workflows must compete with post-hoc
workflows that provide much more flexibility. One approach to
close this gap is to use triggers, which allow users to describe
conditions under which to dynamically adapt visualization
actions (if X occurs then do Y). Triggers can be domain-
specific or a general capability provided by in situ tools. [4]
is a notable example of a domain-specific trigger used to
execute expensive analysis only when needed in a combustion
simulation. The Ascent [16] library provides a general trigger
capability. [17] describes Ascent’s trigger system and other
foundational related work on triggers. Other recent work
includes [34], which outlines an in situ workflow system based
on a reactive domain-specific language. Triggers are also
enabling other approaches to mitigate a priori constraints
by using I/O more efficiently to save important subsets of
data for post hoc exploration [14]. In this work, we extend
Ascent’s infrastructure, connecting its expression language to
its trigger system. We also connect Ascent in a feedback loop
with a simulation code. The trigger conditions are expressed
using Ascent’s actions API and are read by the simulation
code as a yes/no result. This allows us to explore cases where
the human can be taken out of the loop through use of in
situ triggers.

3 OVERVIEW

This work uses Ascent [16] coupled with the MARBL [1] multi-
physics code to demonstrate automatic steering of example
simulation workflows. Ascent is a many-core capable flyweight
in situ visualization and analysis infrastructure. In addition to
scalable rendering and mesh transformations, Ascent provides
an expression language and trigger system that allows users
to describe conditions under which to adapt visualization
actions. In this work, we close the loop between Ascent
and the simulation in order to provide the simulation with
direct access to the general analysis inside Ascent, and we
demonstrate that, with this link, we can enhance a simulation
codes ability to automatically adapt.

3.1 Trigger Expressions

The trigger system in Ascent has evolved over time. When
first conceived, triggers were a series of filters with hard-coded
functionality [17], which lacked composability. To address this
limitation, we created a domain-specific language (DSL) [12]
in Ascent that supports data aggregation and summariza-
tion methods (e.g., histograms, scalar reductions, and math
expressions). The DSL allows users to compose functions
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to create complex expressions, and triggers are naturally
supported as a comparison operator that results in true or
false.

The expression language can either consume the mesh
given by the simulation, or it can consume the results of
transformations applied by Ascent pipelines. For example, a
user could calculate an isosurface, find a per cell surface area,
and use a sum aggregation to find the total surface area of the
isosurface. Further, the expression results are cached as the
simulation executes, which can be accessed through functions
in the DSL. As part of this work, we added the capability to
calculate history gradients of any sub-expression and select
ranges of values from the expression cache. Building on the
previous example, a user could monitor an isosurface’s rate of
expansion over time, using one of the built-in history gradient
functions. Finally, Ascent provides access to the expression
cache which enables an integrated simulation to take action
based on what is calculated by Ascent.

3.2 Integration

MARBL is an arbitrary Lagrangian-Eulerian (ALE) multi-
physics code. MARBL has an existing set of simple timers
that allow users to trigger actions (e.g., checkpoints, visualiza-
tion, or changes in physics) specified inside the simulation’s
Lua input interface. Timers can fire at a specific time (or cy-
cle) or can fire at points uniformly spaced in time (or cycles).
Ascent is integrated into the input specification allowing users
to call a curated set of functions, including returning the
results of a Boolean expression. Through this interface users
can leverage Ascent to develop criteria to modify simulation
parameters.

3.3 Use Cases

MARBL users face several workflow problems, and our use
cases fall into two categories:

∙ Resource Maximization: both human and compute
resources

∙ ALE Challenges: controlling and debugging ALE simu-
lations

3.3.1 Resource Maximization. MARBL is a multi-physics
code, and there are a number of types of physics that can
be turned on or off depending on the problem. Since some
of the physics can be much faster (by an order of magni-
tude), it is important to only turn on what is needed to
minimize compute resources, thus maximizing the number of
simulations a user can run. In some cases, expensive physics
is needed in only a part of the problem and having costly
physics on the entire run is prohibitively expensive. If the
exact time of switch is known prior to the run, then a simple
timer can be used to switch the physics. However, it is often
the case that only some derived characteristic is known (e.g.,
turn on the expensive physics when the temperature exceeds
some threshold). In these cases, a human must monitor the
simulation and intervene, which creates a tension between
human resources and compute resources.

3.3.2 ALE Challenges. Arbitrary Lagrangian-Eulerian (ALE)
simulations [2, 11] use coupled Lagrangian and Eulerian
remap/remesh phases to evolve hydrodynamic states. In
the Lagrangian phase, the mesh moves with the material
flow, and as the simulation progresses, the mesh can become
distorted, even inverting computational cells. If the mesh
becomes inverted, then the simulation results become numer-
ically invalid. To prevent this from happening, an occasional
Eulerian phase is used to remap or remesh the solution to
a less distorted mesh. Exactly when to remap can be an art
rather than a science, and in MARBL, remap is controlled
using simple timers, and even with remap, a simulation is not
guaranteed to finish. Users must monitor a simulation to ei-
ther find better times to trigger the remap or use checkpoints
to debug the source of the problematic mesh cells.

Since this process is typically an iterative human-in-the-
loop workflow, again creating a tension between human re-
sources and compute resources, automating ALE choices is
a recent area of research. [13] demonstrated using neutral
networks to connect mesh quality metrics to ALE decisions
made by expert modelers. They then used those neural net-
works to automate ALE decisions testing several scenarios.
Triggers can be used to describe conditions that signal a
simulation is degrading. When such a trigger occurs, we can
automatically collect relevant context (including mesh quality
metrics) to present to users or we can automatically adjust
the simulation by calling a remap operation. Our goal in
this work is not to demonstrate a new state of the art ALE
metric, but to show that ALE choices can leverage Ascent’s
trigger infrastructure, and thus future solutions can use the
extended capabilities Ascent offers, or new methods could be
deployed in Ascent for use in multiple simulation codes.

4 DEMONSTRATIONS

In this section, we demonstrate how Ascent’s expressions can
an provide users with a way to characterize conditions in
which we want to adapt two example simulations, in ways
that maximize resources and address ALE challenges. The
demonstrations are:

∙ Controlling Physics Models
∙ Debugging ALE Crashes
∙ Controlling ALE Remaps

4.1 Controlling Physics Models

The Sedov blast problem is a standard hydrodynamics prob-
lem with an analytical solution. The problem deposits a region
of high energy at the center of the mesh, and a shockwave
propagates outward. MARBL includes a version of the Sedov
blast problem that adds a magnetohydrodynamics model
(MHD), and the additional implicit solve adds additional
cost on top of the explicit solve used for pure hydrodynam-
ics. Normally, the shockwave propagates symmetrically, but
the addition of the MHD forces push back and breaks the
symmetry.

To demonstrate Ascent’s ability to feed information back to
the simulation and automatically change physics, we created
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an expression that monitors the progress of the shockwave.
The simulation starts with all physics turned on, allowing the
wave to develop asymmetries. When the shockwave reaches
a specific distance, we turn off the MHD, saving the cost of
the implicit solve, then we let the asymmetric shock evolve
using pure hydrodynamics.

We compared the runtime of a small problem using 72
MPI ranks on two nodes. The runtime of the problem with
MHD on for the full run was 575 seconds. Using the trigger
to turn off MHD approximately 40% of the way through the
problem, resulted in a runtime of 455 seconds. Switching
physics enabled a savings of over 20% of total runtime. If we
ran many simulations as part of an ensemble, then we could
run 5 simulations using triggers in the same time it would take
to run 4 without them. Further, there are physics models that
are far more expensive than MHD, which suggests there is
significant opportunity for savings in other types of problems.
In this case, Ascent’s DSL gave us an expressive means to
describe a complex feature (the outgoing shock) and make
a decision based on the location of that feature, which is
something a static timer cannot achieve.

4.2 Debugging ALE Crashes

The triple point problem is another standard shock test
problem that uses two materials with three distinct states.
The three regions interact and form a vortex that twists
the computational mesh, testing a simulation’s ability to
handle mesh motion. If the mesh twists too much without a
re-meshing, then the simulation will crash or slow to a halt
(if the time steps become too small).

Debugging mesh tangling is an important part of an ALE
user’s workflow. Typically, a user will use visualization soft-
ware to examine checkpoints before the simulation crashes
to debug the cause of the crash (e.g., degenerate cells or
large differences in cell volumes). Debugging can be a tedious
manual process that consumes human resources, as it is an
iterative process (debug-test-crash) until the simulation com-
pletes. Using expressions and triggers can be a valuable tool
to assist users in the debugging process.

Ascent expressions can summarize features of the compu-
tational mesh as the simulation executes. Figure 1 shows a
plot of the ratio of minimum and maximum cell areas during
2D run. The plot clearly indicates that the mesh quality
is degrading over time, and without action, the simulation
might not complete. Ascent also captures the spatial location
of minimum and maximum values which can be used for iden-
tifying problematic areas of the mesh. Additionally, Ascent
can calculate histograms of values and spatial distributions.
Feeding this information back into the simulation provides a
rich toolbox for users to create automated workflows that are
tailored to specific simulations (e.g., dumping out checkpoints
when the ratio dips below some threshold and correcting ALE
issues by triggering remaps).
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Figure 1: A plot of the ratio of the minimum cell
area versus the maximum cell area over time during
a 2D run.

4.3 Controlling ALE Remaps

In this demonstration, we show that we can use Ascent’s
expression system to trigger a remap of the mesh, using use
the same triple problem as in Section 4.2. We previously used
mesh quality metrics as an indicator that the simulation state
was degrading over time. Instead of mesh quality metrics,
we examined 𝑑𝑡 through time (i.e., how far in simulation
time the simulation advances per cycle). This is also a strong
indicator that the simulation state is degrading.

The expression we used to trigger the remap used several
quantities. First, we derived the average 𝑑𝑡 between calls to
Ascent, which was every 1000 cycles. Second, we calculated
the initial average 𝑑𝑡 during the first two time units of the
simulation run and the sliding average of the 𝑑𝑡 during the
previous 5000 cycles, using Ascent’s history function (which
allows us access to the time history of an expression). Next,
we looked at the gradient of the 𝑙𝑜𝑔(𝑑𝑡) to identify when 𝑑𝑡
was drastically dropping. Finally, the trigger fired, causing the
simulation to remap, when the sliding average dropped below
a threshold relative to the initial average and the gradient
was negative. Listing 3 shows the full set of expressions used.

Figure 2 shows the results of two runs, with and without the
trigger. Both runs complete 10 units of simulation time, but
drastically differ in cycle count. The run without the trigger
completed in 302,702 cycles, and the run with the trigger
completed in 131,950 cycles, a greater than 50% decrease in
the total cycles used. Using simple uniform timers is an option,
but remapping can be an expensive global operation, and
this demonstration shows that we can craft expressions that
are far more expressive than the triggers that are currently
used by the code.
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Figure 2: A plot of two simulations runs: one with
no intervention (orange) and one with a trigger that
causes the simulation to remap the mesh (blue). The
x-axis is simulation time over 10 time units, and the
y-axis is the number of simulation cycles. A steeper
slop indicates that each cycle progresses the simula-
tion more slowly to the target of 10 time units. The
vertical red dotted line indicates when the trigger
fired causing the remap.

5 CONCLUSION

There are a diverse set of complex issues running and man-
aging simulation workflows. Our investments in situ visu-
alization and analysis tools can help. These tools provide
general capabilities across simulation codes that can help
automatically address a variety of workflow issues. In this
paper we demonstrated how we can leverage general in situ vi-
sualization and analysis to extend the steering capabilities of
a multi-physics code. Using Ascent’s expressions language we
described a number of situations relevant to a multi-physics
code user’s workflow. By connecting this back to the simu-
lation, we automatically steered the simulation’s evolution
and assisted in debugging ALE issues. In terms of future
work, we want to explore more simulation use cases, develop
additional constructs like Ascent’s history gradient that help
with these use cases, and connect Ascent in a similar way to
more simulation codes.
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A ARTIFACT DESCRIPTION

In this section, we list the software that was used and the
expressions that were used in the demonstrations.

A.1 Software

We use the Ascent in situ visualization library which is an
open source project located on github:

∙ https://github.com/Alpine-DAV/ascent.

While MARBL is not open source, Ascent include proxy
applications that can run similar problems, although the
proxy applications are not mulit-physics codes. Ascent’s proxy
application documentation can be found here:

∙ https://ascent.readthedocs.io/en/latest/ExampleIntegrations.html

Links to specific problems can be found here:

∙ Lulesh: Sedov Problem.
∙ Laghos: Triple Point.

A.2 Expressions

In this section, we list the full Ascent actions used in Section 4
for reproducibility.

Listing 1: The Ascent actions used in Section 4.1.
−

act ion : ” add quer i e s ”

que r i e s :

q1 :

params :

expre s s i on : ”max( f i e l d ( ’ dens ity ’ ) ) ”

name : ”max den”

q11 :

params :

expre s s i on : ”max den . po s i t i on ”

name : ”pos”

q12 :

params :

expre s s i on : ” vector ( pos . x , pos . y , pos . z )”

name : ”pvec”

q13 :

params :

expre s s i on : ”magnitude ( pvec )”

name : ” d i s t ”

q14 :

params :

expre s s i on : ”max den . value > 2 .0”

name : ”max v”

q2 :

params :

expre s s i on : ”max v and ( d i s t > 0 .28)”

name : ” t r i g g e r ”

Listing 2: The Ascent actions used in Section 4.2
−

act ion : ” add p ip e l i n e s ”

p i p e l i n e s :

p l1 :

f1 :

type : ”mesh qual i ty ”

params :

metr ic : area

topology : main

−
act ion : ” add quer i e s ”

que r i e s :

time :

params :

expre s s i on : ” time ()”

name : time

max area :

p i p e l i n e : pl1

params :

expre s s i on : ”max( f i e l d ( ’ area ’ ) ) ”

name : max area

min area :

p i p e l i n e : pl1

params :

expre s s i on : ”min ( f i e l d ( ’ area ’ ) ) ”

name : min area

a r e a r a t i o :

p i p e l i n e : pl1

params :

expre s s i on : ”min area . value /max area . value ”

name : a r e a r a t i o
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Listing 3: The Ascent actions used in Section 4.3.
−

act ion : ” add quer i e s ”

que r i e s :

time :

params :

expre s s i on : ” time ()”

name : time

cyc l e :

params :

expre s s i on : ” cyc l e ( )”

name : cyc l e

dt :

params :

expre s s i on : ”( time − h i s t o ry ( time , r e l a t i v e i n d e x =1)) /( cyc l e − h i s t o ry ( cyc le , r e l a t i v e i n d e x =1))”

name : dt

l o g d t :

params :

expre s s i on : ” log ( dt )”

name : l o g d t

s t a r t av e :

params :

expre s s i on : ”avg ( r ep l a c e ( h i s t o ry r ange ( dt , f i r s t a b s o l u t e t im e =0.0 , l a s t a b s o l u t e t ime =2.5) , nan ( ) , 0 . 0 008 ) ) ”

name : s t a r t av e

now ave :

params :

expre s s i on : ”avg ( r ep l a c e ( h i s t o ry r ange ( dt , f i r s t a b s o l u t e t im e=time −0.5 , l a s t a b s o l u t e t ime=time ) , nan ( ) , 0 . 0008) )”

name : now ave

grad :

params :

expre s s i on : ” g rad i en t range ( log dt , f i r s t r e l a t i v e i n d e x =1, l a s t r e l a t i v e i n d e x =5)”

name : grad

grad ave :

params :

expre s s i on : ”avg ( grad )”

name : grad ave

t r i g g e r :

params :

expre s s i on : ”( avg ( grad ) < −1.0) and ( s t a r t av e * 0 .09 > now ave )”


