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Abstract. We present Phoenix, a scalable hypergraph analytics frame-
work for data analytics and knowledge discovery that was implemented
on the leadership class computing platforms at Oak Ridge National Lab-
oratory (ORNL). Our software framework comprises a distributed im-
plementation of a streaming server architecture which acts as a gateway
for various hypergraph generators/external sources to connect. Phoenix
has the capability to utilize diverse hypergraph generators, including
HyGen, a very large-scale hypergraph generator developed by ORNL.
Phoenix incorporates specific algorithms for efficient data representation
by exploiting hidden structures of the hypergraphs. Our experimental
results demonstrate Phoenix’s scalable and stable performance on mas-
sively parallel computing platforms. Phoenix’s superior performance is
due to the merging of high performance computing with data analytic.

Keywords: Hypergraph, scalable, streaming, high performance com-
puting, graph clustering.

1 Introduction

Over the last few years, we have witnessed the explosive growth of data due to
the technological advancements in the fields of social networking, e-commerce,
smart mobile devices, etc. This necessitates the development of novel data min-
ing/analysis approaches to address the various analytical challenges posed by the
massive growth in data. Some examples of data analytics include live tracking in
the transportation sector, fraud management in insurance, product recommenda-
tions in the retail industry, and predictive analysis in health care. These analyses
study the relations, dynamics, and behavior at an individual-level (entity-level)
as well as at the group-level. The graph representation, G = (V| E), in which
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Fig. 1: Example hypergraph showing social media users (rows) and three social
media posts (columns). Each post P; is represented as an hyperedge and those
users who interacted with that post are the hypergraph vertices incident on that
hyperedge.

entities are represented by vertices (V = {v1,va,..,v,}) and relations among en-
tities are represented by edges (E = {e1, €2, ..., em}), is a natural way to model
such relational information. For instance, in an e-commerce system, customers
and products are modeled as vertices and customer-product relations are repre-
sented by edges.

The graph representation of the information is able to capture the dyadic
relations, i.e. relations between two entities but fails to model the group-level
interactions. Due to the fact that the individual’s behavior is mainly influenced
by the group-level interactions, modeling group-level dynamics is important.
Hypergraphs—the generalization of graphs; provides an excellent way to model
the group-level interactions [5) |9, 28|. A hypergraph HG = (V, H) is an ordered
pair of ‘n’ vertices, i.e. V.= {v1,v9, v3, ..., 05}, and H is a set of ‘m’ hyperedges,
i.e. H={H;, Hy, Hs, ..., Hy, }. Each hyperedge H; is a vector of incident vertices
such that V = hy U hg U hg U ... U hy,. Figure [I] shows an example hypergraph
which includes four social network users, A, B, C, D and three social media posts
P1, P>, P;. Each post P; represents a hyperedge and its incident vertices are the
users who interacted with the content, say, shared, liked, or commented on the
post (represented by ‘X’). From this example, it is evident that such hypergraph-
based representation is useful to understand the information propagation among
entities and the categorization of groups according to specific interests over the
social network.

Although, the efficacy of hypergraphs for modeling group dynamics is well
documented [1], efficient hypergraph analytics must overcome challenges associ-
ated with accurate hypergraph representation and scalable computation models
that can deal with very high data ingestion rates without creating bottlenecks.
While several large-scale graph processing software are available such as |18|
6, 26, 7], only a limited number of options are available for hypergraph analy-
sis frameworks [28]. Very large scale hypergraph analysis requires scalable and
distributed computing systems which present novel challenges as well as oppor-
tunities. The situation becomes more challenging when streaming data need to
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be incorporated in the framework. Some challenges posed by the streaming sce-
nario include, variability in the streaming rates from various external hypergraph
sources, heterogeneity in representing the hypergraph, and efficient hypergraph
representation at a system-level to sustain the streaming scenario.

Little research has been done for methodical performance evaluation of large-
scale hypergraph analysis frameworks in a streaming scenario. The leadership
class high performance computing facilities, such as hosted at Oak Ridge Na-
tional Laboratory, provide petascale to exascale computing powers, large amounts
of per node memory, efficient storage, and high-speed interconnects. Such leader-
ship class computing facilities can meet the computational requirements of large-
scale streaming hypergraph analysis. As such, researchers at Oak Ridge National
Laboratory developed Phoeniz, a high performance, hybrid system enabling con-
current utilization of online and offline analysis worlds. Phoenix architecture is
distributed for scalability of problem size and performance. In addition, Phoenix
is designed for fast and scalable ingest of streaming data sources. Phoenix also in-
corporates fast online (CRUD) operations and has dynamic (and fixed) schema.
Using Phoenix, researchers are able to perform fast decoupled offline global ana-
lytics with in-memory snapshots and commit logs. Phoenix was deployed on Oak
Ridge National Lab’s Titan (ranked number one on t0p50qz| list in 2012) and
showed good performance. Originally designed for simple graph analytics, we
recently enhanced Phoenix to handle hypergraphs. The performance of Phoenix
for streaming data sets is the subject of this paper.

In the following sections, we present our approach to scalable streaming hy-
pergraph analysis as implemented in Phoenix. Section [2] presents an overview
of the various hypergraph analysis tools. Section [3| presents the Phoenix frame-
work for streaming hypergraph analysis and describes various technical aspects
of Phoenix. Section [4] presents results of the numerical experiments we performed
to evaluate metrics such as streaming performance, ingestion performance, and
hypergraph clustering efficiency. Section [f] summarizes our observations and dis-
cusses few future extensions of this work.

2 Related Work

Many hypergraph analysis tools are available. However, none of these tools
presents the scalability and flexibility associated with Phoenix. In addition,
Phoenix incorporates scalable hypergraph generators. Most other hypergraph
analytics software tools do not have this attribute. In the following paragraphs,
we present an overview of the various hypergraph analysis tools and the advan-
tages and disadvantages of each.

HyperNetX is a Python library that supports hypergraph creation, hypergraph-
connected component computation, sub-hypergraph construction, hypergraph
statistics computation (e.g., node degree distribution, edge size distribution,
toplex size computation for hypergraphs), and hypergraph visualization (e.g.,

! https://www.top500.org/system /177975
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draw hypergraphs, color nodes, and edges). HyperNetX was released in 2018
under the Battelle Memorial Institute license [21]. HyperNetX library does not
support high performance computing (HPC) based parallel processing. Also,
HyperNetX library documentation does not provide any scalability information.

Chapel HyperGraph Library (CHGL) was developed in the Chapel program-
ming language by the Pacific Northwest National Laboratory. In the CHGL,
users can use both shared and distributed memory systems for the storage of
hypergraphs. The CHGL is not well documented and requires knowledge of
the Chapel programming language, which is Partitioned Global Address Space
(PGAS) language. PGAS languages are not as widely used as the C or C++ pro-
gramming language. However, CHGL does offer valuable functionality within the
context of parallel computations [4, |2].

HyperX offers a scalable framework for hypergraph processing and learning
algorithms, which is developed on top of Apache Spark. It replicates the design
model that is utilized within GraphX. HyperX directly processes the hypergraph
rather than converting the hypergraph to a bipartite graph and employs GraphX
to do the processing |15} [2]. Apache Spark programming paradigm cannot match
the scalability offered by a leadership class computing platform.

HyperGraphLib package was developed in the C+4 programming language,
which supports k-uniform, k-regular, simple, linear, path search, and isomor-
phism algorithms. HyperGraphLib employs both OpenMP and Boost libraries.
HyperGraphLib can not represent a hypergraph as a bipartite graph or a 2-section
graph. Moreover, HyperGraphLib is not integrated with any graph libraries for
advanced analytics (14} [2].

Halp is a Python library that provides both directed and undirected hyper-
graph implementations as well as a range of algorithms. These include a variety
of hypergraph algorithmsfor instance, k-shortest hyperpaths as well as random
walk and directed paths [13, |2]. However, Halp does not provide parallel imple-
mentation of the algorithms.

SAGE hypergraph generator was developed in the Python language and sup-
ports the creation of complete random, uniform, and binomial random uniform
hypergraphs. Nevertheless, large scale hypergraph generation is not possible in
SAGE. Besides, SAGE does not support parallel hypergraph generation.

Karlsruhe Hypergraph Partitioning (KaHyPar) was developed in C++ and
is a multilevel hypergraph partitioning framework. It supports hypergraph par-
titioning with variable block weights and fixed vertices. Although KaHyPar is a
useful tool, it does not support the hypergraph generation facility. |16, 24].

The Julia programming language was used to develop the SimpleHyper-
graphs.jl hypergraph analysis framework. It is an efficient hypergraph analy-
sis tool that supports distributed computing. However, SimpleHypergraphs.jl is
heavily dependent on the HyperNetX library, specifically for hypergraph visual-
ization. Moreover, SimpleHypergraphs.jl tool provides limited hypergraph anal-
ysis functionalities and is not highly scalable [2].

networkR was developed in the R programming language, which supports
hypergraphs projection into graphs. networkR also supports degree distribution,
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diameter, centrality, and network density computation. One of the limitations
of the networkR is that it needs to project hypergraph into graph structure
for analysis. Moreover, vertices and hyperedge related meta-information is not
available in networkR |20, [2].

Gspbox provides hypergraph modeling capability. Although in Gspbox, one
can manipulate the hypergraph by transforming a model into a regular graph,
it does not provide specific solutions or optimizations for hypergraphs [8, 2.

BalancedGo software was developed in the Go programming language. Bal-
ancedGo supports generalized hypertree decompositions via balanced separators.
BalancedGo supports a limited number of algorithms mainly focused on hyper-
tree decompositions. Moreover, BalancedGo supports only HyperBench format
or PACE Challenge 2019 format [3] as input.

Pygraph was released under the MIT license and is a Python library that
can be used to process graphs. It includes hypergraph support along with stan-
dard graph functionalities. However, Pygraph does not offer any hypergraph
optimization feature |22} |2].

Yadati et al. developed HyperGCN, a new graph convolutional network (GCN)
training approach for semi-supervised learning (SSL) on hypergraphs [30]. The
Python implementation of the tool is available in [12]. The quality of the hy-
pergraph approximation heavily depends on weight initialization, which is a
limitation of HyperGCN [30].

Multihypergraph is a Python package that provides support for multi-edges,
hyperedges, and looped edges. The main focus of the Multihypergraph package is
the mathematical understanding of graph than algorithmic efficiency. Moreover,
the Multihypergraph package is limited with graph model memory definition and
isomorphism functionalities and does not provide any other functionalities for
hypergraphs [19} [2].

d3-hypergraph is a hypergraph visualization tool developed on top of the
D3 JavaScript library. Another example of the hypergraph visualization tool is
visualsc, which is similar to the open-source graph visualization tool Graphviz.
d3-hypergraph and visualsc tools are solely used for hypergraph visualization.

3 Framework for Analyzing Streaming Hypergraphs

This section describes the overall Phoenix framework and its various compo-
nents which enable the analysis of the streaming hypergraph. Figure [2] shows
Phoenix’s end-to-end framework which is composed of various essential modules
for analyzing the streaming hypergraphs in a distributed and scalable fashion.

3.1 Hypergraph Sources and Generation

Phoenix is capable of utilizing a diverse set of graph generators as inputs to the
framework. One of the candidates is a distributed hypergraph generator called
HyGen, which is capable of generating synthetic hypergraphs. HyGen is another
high performance graph analytics project at Oak Ridge National Laboratory
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Fig. 2: Phoenix’s end-to-end framework for scalable and distributed Hypergraph
Analysis. Streaming server acts as a gateway where various hypergraph gen-
erators/external sources can connect. Next the streaming server streams the
hypergraph in the form of hyperedge or incidences to the Graph Service Nodes
(GSNs). GSNs handles the communication with the streaming server and con-
sumes the hypergraph and sends it to the Graph Data Nodes (GDNs) where
GDNs store the ingested hypergraph as its in-memory representation.

and was incorporated in the Phoenix architecture. HyGen takes input parame-
ters such as number of clusters, number of vertices, and number of hyperedges
to generate the corresponding hypergraph. For instance, if we have a rough un-
derstanding about the number of the clusters in the real-world hypergraph (e.g.
communities), HyGen will enable the rapid production of the different sizes of
hypergraphs which can be further consumed (by HSNs) and stored in-memory
(by HDNs) in a distributed fashion. Refer Fig. |2 and sec. for more infor-
mation on HSNs and HDNs. Further, various online and offline analysis can
be performed on this generated hypergraph. Similarly, the external hypergraph
sources can also connect to the streaming server. More detailed discussions on
graph generators can be found in references [32} |17, |27].

3.2 Hypergraph Streaming and Consumption

A streaming server is developed to facilitate the streaming of hypergraphs gen-
erated by hypergraph generators and from external sources to the internal core
component called DiSciPHER (refer sec. which is responsible for hypergraph
consumption and in-memory storage. The three advantages of having this layer
of streaming server are as follows:

1. Decoupling: Streaming server acts as a gateway and prevents hypergraph
generators and external sources from directly accessing the DiSciPHER
which is a core internal module of Phoenix. This provides the flexibility to
make changes in the DiSciPHER module without impacting the accessibility
of the hypergraph sources. Moreover, syntactic changes made by hypergraph
sources do not have any impact on the DiSciPHER’s representation.
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2. Standardization: Streaming servers can acquire data either as a bipar-
tite representation or as a hyperedge representation. It is unlikely that all
external sources comply with a unified syntax even though the data follow
the semantics of bipartite or hyperedge representation. The streaming server
can implement various methods for data translation to address this syntactic
heterogeneity problem.

3. Intermediate caching: The rate of streaming from different external sources
of hypergraphs can be different. At the system level, the heterogeneity in the
streaming rates could cause data loss in case of extremely high data stream-
ing and longer wait time for HSN processes in case of slow data streaming.
We believe that the intermediate layer of the streaming server can stabi-
lize the rate of streaming hypergraph from various external sources to HSN.
The streaming server can provide a temporary storage capability to store
the acquired hypergraph data before sending it to the HSNs of DiSciPHER
module. This way streaming servers can stabilize the streaming rate.

Streaming Server (SS) HSN
1 1
E AUR i Phoenix is ready to consume
Received a request to stream data - f Asks SS id it is ready to stream data
If ready, SS responds to Phoenix ; IMR |
: —*{Phoenix received that SS is ready
Received a request for total number of H NNZ/HYE :Request total NNZ or total hyperedges in the
incidences or hyperedges in the hypergraph — :gencl‘ated hypergraph
i i
Responds NNZ or number of hyperedges——<>2ond With total number of NNz/ hyperedges> i
R i\qReceived total NNZ or total hyperedges
1 1
: INCHYG — Request to stream incid or hyperedges
—

Batch streaming
- Received the batch size

1
i
request and <send next bate’s size> i
respond phase H
i
1

‘§ Allocate memory for the next batch of

1
- 1 NEB [ incidences or hyperedges
| H | “.., Send request to stream the next batch
F : | of incidences or hyperedges
! INC/HYG —
Initial handshakes i H
Handshakes while i H
streaming batches i NEB =
— |
! BYE 1 If no more data, send BYE
| 1
¥ 1

Fig. 3: Sequences of messages and data exchanges take place between the stream-
ing server and hypergraph service node (HSN) process. The green portion depicts
the message and data exchanges during the initial handshake. The blue portion
depicts messages and data exchanges take place during streaming the batches of
incidences (or hyperedges).

The streaming server can acquire hypergraphs in one of two ways: 1) Bipartite
representation: a list of incidences and 2) Hyperedge representation: a list of hy-
peredges. Each incidence in a bipartite representation is a two dimensional vector
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(4,7), such that v; € Hj, i.e. vertex v; incident upon hyperedge H;. On the other
hand, the hyperedge representation constitutes a set of hyperedges (H) in which
each hyperedge is a vector of incident vertices, i.e. Hy = (Uk1, U2, k3, - s Vkp)
and ‘p’ is the total number of incident vertices on hyperedge k.

The streaming server opens multiple communication ports where several Hy-
pergraph Service Node (HSN) processes of DiSciPHER module, which is re-
sponsible for the consumption of the hypergraph, can connect and consume the
hypergraph. In the case of bipartite representation, the streaming server per-
forms streaming of incidences in a batched fashion. The batch size represents
the maximum number of hypergraph incidences that can be packed in a batch.
The batch size in case of hyperedge representation is the maximum number of
hypergraphs per batch. Due to the variable size of hyperedges in a batch, the
batch creation is not as straight-forward as in the bipartite representation. Here,
each hyperedge is re-formatted as (h;q, p, v1, v2,v3, ..., vp, —1) by appending hy-
peredge identifier h;q4, its length in the beginning p, followed by a list of incident
vertices, i.e. v; and ‘-1 at the end to indicate the termination of the hyperedge.
In this way, the hypergraphs are packed to form a batch such that each element
in the batch represents either hypergraph identifier, length of hypergraph, vertex
identifier, or ‘-1’.

As mentioned in the paragraph above, the hypergraph service node processes
(HSNs) connect to the communication ports of the streaming server and consume
a hypergraph either as a batched incidences or as hyperedges. We implemented
a handshaking and communication protocol to enable the streaming and con-
sumption of the hypergraphs. Figure 3| shows a sequence of commands and data
exchanges occurring while streaming the hypergraph. Initial handshake includes
HSN process sending a message “AUR” asking if the streaming server is ready to
stream the hypergraph. HSN waits until it receives “IMR” from the streaming
server which indicates that the server is ready to stream the hypergraph. Next,
depending on the format in which HSN wants to consume the hypergraph, it
either sends “NNZ” to ask for the number of incidences (non-zeros) in case of
bipartite representation or sends “HYG” to ask for the number of hyperedges
in the hypergraph. In response to this message, streaming server sends total
number of incidences (non-zeros) or total number of hyperedges to HSN.

After this initial handshake (as depicted in the green portion of Fig. [3)),
the streaming server sends “INC” (for bipartite) or “HYG” (for hyperedge)
message to the streaming server. After receiving this message, the streaming
server prepares the batch of incidences (or hyperedges) and sends the batch size
to the HSN so that HSN can reserve sufficient memory to consume the upcoming
batch of incidences (or hyperedges). Further, HSN sends a“NEB” message to the
streaming server to indicate that it is ready to consume the batch of incidences
(or hyperedges). Upon receiving “NEB”, the streaming server sends the prepared
batch of incidences (or hyperedges) to HSN. This communication between HSN
and the streaming server (as depicted by the blue portion in Figure[3]) continues
until the entire hypergraph is consumed by HSN.
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3.3 Distributed and Scalable in-memory rePresentation of
HyERgraph (DiSciPHER)

Phoenix’s DiSciPHER module is responsible for the efficient in-memory rep-
resentation of the consumed hypergraph such that it enables both offline and
online analysis on the streaming hypergraphs. Here, we describe, 1) how the
DiSciPHER module represents hypergraphs and 2) two essential components
of DiSciPHER which enable the efficient in-memory representation, i.e. Hyper-
graph Service Node (HSN) processes and Hypergraph Data Node (HDN) pro-
cesses.

In-Memory Representation of Hypergraph In this subsection, we describe
the in-memory representation of hypergraphs at a system level which enables
the online and offline analysis of hypergraphs in a streaming scenario inside
Phoenix framework. In a streaming scenario, it is highly likely that only the
part of hyperedge is available which is being streamed at any given time. In
other words, the complete knowledge of the incident vertices of an hyperedge is
not available at the time when that hyperedge is being streamed. The remaining
(partial) hyperedge can arrive later. This characteristic of the streaming scenario,
along with the variable sized nature of the hyperedge, increases overhead of the
hypergraph ingestion process. For instance, every time the partial hyperedge
arrives, the hyperedge insertion involves updating and re-distributing the vertices
(or hypergraphs) among the compute nodes (i.e. HDNs in Phoenix).

Users
(Vertices)

Posts
(Hyperedges)

Fig. 4: Bipartite representation used in Phoenix to represent hypergraph. Ex-
ample hypergraph is represented in the Fig. [} Each social media post is an
hyperedge and users who share, like or comment on a common post, are the
vertices incident upon that hyperedge. In bipartite representation, both vertices
and hyperedges are represented by nodes and additional edges are added from
incident vertices to their hyperedge to preserves the semantics of the hyperedge.

To alleviate the hyperedge ingestion overhead problem in a streaming sce-
nario, we adopted a bipartite representation to represent the hypergraph at
a system level. Figure [4] shows the bipartite representation of the hypergraph
shown in the Fig. [} In this representation (refer Fig. , users are vertices rep-
resented as green circles on the top and each social media post is a hyperedge
shown as a blue circle at the bottom. The additional edges (F,;) are inserted
from the nodes on the top side (vertices) to the hyperedge nodes on the bottom
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side to represent the incident vertices of the hyperedge. This approach translates
to hyperedge insertions with multiple edges. Such a representation in streaming
scenarios can accommodate hyperedge with partial information, where the com-
plete vertex set is still unknown. However, this approach increases the number
of edge insertions for a given hyperedge. So there is a trade-off between update
operations to accommodate the partial hyperedge issue and increased number
of edge insertions in case of bipartite representation. In our opinion, the scal-
able and distributed nature of Phoenix can handle the increased number of edge
insertions without impacting the streaming performance.

Hypergraph Service Nodes (HSNs) and Hypergraph Data Nodes (HDNs)
DiSciPHER is an essential component of the Phoenix’s ecosystem consisting of
hypergraph service nodes (HSNs) and back-end data storage and processing
nodes (HDNs). The responsibilities of HSNs include communicating with the
streaming server, consuming the hypergraph, redirecting the consumed hyper-
graph to the HDNs in a load-balanced fashion, and keeping track of the progress

of the system by broadcasting messages to HSNs and HDNs. HDN’s main task

is to process and store the consumed hypergraph in a distributed in-memory
fashion.

DiSciPHER’s implementation is rather memory intensive (i.e. best suited
for large clusters and supercomputers with very large memory). DiSciPHER’s
deployment typically contains a number of HSNs (service nodes) that could be
load balanced, and a larger number of HDNs (data nodes)—depending on the
size of the graph to be processed. A balanced shared distributed memory — multi-
processing and multi-threading design approaches are used to achieve the best
concurrent performance.

Server
HSNs @ e
xternal

Internal Main thread
@ network
I:‘ I:I |:| EI Pool of workers/IO threads

OO0 355333333338 I
\:, I:I EI \:’ % HI::)N's key-value ;tores i sgfr;‘err;and:
OO0 | ,

Fig. 6: Programmer’s view of Hypergraph

Node id
Fig.5: Cluster view of HSNs Service and Data Nodes.
(blue boxes) and HDNs (green
boxes).

HDNs
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Figure p| shows the cluster view of the HSNs and HDNs inside DiSciPHER.
The number of HSNs and HDNs to be used (or deployed) depends on the size
of the hypergraph and the availability of the compute resources, i.e. size of the
cluster and memory per compute node. The DiSciPHER module makes sure
that the HSNs and HDNs are deployed before initiating the communication.
The process begins by allocating the sufficient numbers of compute nodes. Once
the sufficient nodes are allocated, they are divided into two groups. One set of
nodes are grouped as HSNs and remaining as HDNs. We designed this cluster
as a multi-processing and multi-threaded architecture in which each node has a
main process and several worker and I1/O threads.

Figure [6] shows the programmers view of the main components of HSNs
and HDNs. The master process of HSN-‘0’ collects the network addresses of all
the nodes in the cluster and groups them as HSNs and HDNs. Each node has
dedicated queues for input and output messages. The input message queue is
connected to the input socket which is setup to receive the incoming messages
from all other nodes. Similarly, multiple output sockets are set up, each is ded-
icated to one node in the cluster. The output message queue is connected with
these output sockets. The message (incoming or outgoing) contains command:
indicates task to be performed, Buffer: contains data to operate on and Node
id: identifier of the destination HSN or HDN node. The messaging scheme sup-
ports peer-to-peer and broadcasting of the messages. The HDNs have additional
in-memory distributed local key-value storage to store the local vertices (or hy-
pergraph node) and edges (connecting vertex and hypergraph node), and their
mapping with the corresponding global identifiers.

The input and output message queues are thread-safe and accessed by both
workers and I/O threads within the node. The I/O threads are responsible for
dispatching the outgoing messages, queued in the output message queue, to the
appropriate socket based on the destination node. The I/O threads are also re-
sponsible for receiving the incoming messages from the input socket and putting
them in the input message queue. The worker threads, depending on the require-
ments, form messages and put them in the output message queue and retrieve
messages from input message queue and further perform the required task.

Once the cluster of HSNs and HDNs is deployed and ready to consume the
hypergraph, HSN connects to the streaming server and requests for a batch of ei-
ther incidences or hyperedges. Since, at the system level, DiSciPHER represents
hypergraph in a bipartite form, the HSN creates message for inserting edge, i.e.
E, (representing incidences connecting hypergraph’s vertex v and hyperedge,
h and directs it to the appropriate HDN based on the source vertex identifier.
The HSN balances the load among HDNs by distributing the E,; to HDNs in a
round-robin fashion based on the identifier of the source vertex v.

The message for inserting E,; includes command: inserting edge (E,p),
buffer: containing source id representing hypergraph vertex identifier, destina-
tion id representing hyperedge identifier, and edge id an identifier representing
FEyn, and node id representing the identifier of destination HDN. The worker
threads of HSN are responsible for creating these messages and putting them
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in the output message queues. The I/O threads periodically take these mes-
sages out of the output message queue and send them to the appropriate HDNs
through their dedicated communication sockets. The I/O threads of HDNs re-
ceive the input massages from the receiver socket and put them in the input
message queue. The worker threads of HDNs further remove the messages from
input queue and perform the required tasks, in this case storing the vertex (v)
and the edge connecting them, i.e. E,p,.

If the destination vertex representing the hyperedge identifier belongs to the
different HDN then the worker thread of the current HDN forwards the edge
insertion message to the appropriate HDN based on the hyperedge identifier. In
this case, both the HDNs store the edge F,, such that, the destination field of
the edge in the first HDN’s points to the second HDN’s identifier and the source
field of the edge in the second HDN points to the identifier of the first HDN. The
current implementation of Phoenix requires hypergraph generators (and external
sources of hypergraph) to differentiate the vertex and hyperedge identifiers, in
order to avoid potential conflicts between the vertex and hyperedge.

3.4 Hypergraph Clustering

The graph clustering problem involves partitioning the vertices, such that the
similarity of vertices within a cluster is higher than the inter-cluster similarity.
While most approaches on graph clustering assume edges as pairwise relation-
ships between vertices, many real world applications participate in multi-way
relations represented as hyperedges in hypergraphs. Analogous to the graph
clustering task, hypergraph clustering seeks to find partitions among vertices
using hyperedges|25].

Within the ML community, the seminal work of Zhou, Huang, and Schélkopf
looked at learning on hypergraphs. They sought to support Spectral Clus-
tering methods on hypergraphs and defined a suitable hypergraph Laplacian.
This effort, like many other existing methods for hypergraph learning, makes
use of a reduction of the hypergraph to a graph . We apply similar techniques
on this paper.

Formally, in this paper, given a hypergraph HG = (V, H), we determine k

partitions on V, my = w1, 7o, -+ , T, where m; C V., Uym; = V and N;m; = 0.
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Let us consider, there are |V| = m vertices in the hypergraph and |E| = n
hyperedges of the hypergraph is represented as a P € R™*"™. We can perform
the spectral cut on P as follows.

Say, D, € R™™ and D, € R " be diagonal matrices of row and col-
umn sums of H. ]?etermining the top-k eigenvectors of laplacian matrix S =
D, *HD;'HT D, ? will provide the soft clustering on V. Obtaining the high-
est cluster membership of each v; will provide us k clusters of the hypergraph
clustering my .

In our case S is a sparse symmetric case and we are determining k leading
eigen vector as value decomposition S = UDU”, where U € R™*¥. Algorithm
presents the listing of the high performance spectral clustering for hypergraphs.

Algorithm 1: Hypergraph Clustering

Input: H € R™*", k clusters
Output: Vertex cluster my
1 Compute D, = row_sum(H) ;
2 Compute D, = column_sum(H) ;
1

_1 1
3 Compute S = D, 2HDE_1HTD1, 2,
/* eigsh is eigen value decomposition for symmetric square matrix. */

;
5 Compute eigen vectors U = eigsh(S, k) ;
6 Compute my = argmax U

In this paper, we used Scalable Library for Eigenvalue Problem Computations
(SLEPC) |10] for computing the eigen value decomposition problem in Step
of the above algorithm for scaling to very large hypergraphs in distributed MPI
environment.

The output of the above algorithm for a generated hypergraph HG is shown
in Figure [7] We generated a ground truth graph as shown in Figure [7a] and
permuted the rows and columns as in Figure [Tb] We took this sparse random
hypergraph HG and determined five clusters. The output is shown in Figure

4 Performance

In this section, we describe the performance evaluation of the various compo-
nents of the Phoenix framework. We first discuss the dataset, computation en-
vironment, software environment, performance metrics considered for this per-
formance evaluation process and further present the performance results.

4.1 Approach for Evaluating the Performance

As a proof-of-concept, we evaluated the performance of various components of
the Phoenix framework for streaming hypergraphs. Here, we specifically focused
on the hypergraph ingestion performance. We evaluated the streaming perfor-
mance with varying batch sizes. We also investigated ingestion performance with
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varying numbers of HSNs and HDNs. Finally, we evaluated the performance of
the distributed hypergraph clustering approach.

Dataset We used the synthetic hypergraphs generated by our distributed hy-
pergraph generator, i.e. HyGen, by varying the parameters such as #clusters,
#vertices and #hyperedges. Table 2] and [3] show various synthetic hypergraphs
(generated using HyGen) used for this performance evaluation.

Computational Environment We used Oak Ridge Leadership Computing
Facility (OLCF) called Rhea-cluster. It is a 521-node commodity-type Linux®
cluster. Each node of Rhea contains two 8-core 2.0 GHz Intel Xeon processors
with Intel’s Hyper-Threading (HT) Technology and 128GB of main memory.
Rhea also has nine GPU nodes and each node is equipped with 1TB of main
memory and two NVIDIA K80 GPUs with two 14-core 2.30 GHz Intel Xeon
processors with HT Technology. Rhea is connected to the OLCF’s high perfor-
mance Lustre® filesystem, Atlas, through a high-speed interconnect 4X FDR
Infiniband with maximum data transfer rate of 56GB/s. More information on
the specification of Rhea can be found at [23].

Software Environment The codebase of Phoenix is developed in C++ (specif-
ically C++11 standards). Inter-node communication is implemented using bi-
nary message structures over a message-oriented middleware. Currently Ze-
roMQ over Transmission Control Protocol (TCP) is implemented [11], and MPI
is planned for the future developments. ZeroMQ is a high-performance asyn-
chronous messaging library that supports common messaging patterns (pub/sub,
request/reply, client/server and others) over a variety of transports (TCP, in-
process, inter-process, multicast, WebSocket and more). Intel®’s Thread build-
ing blocks, version 4.3+ is used to develop a scalable implementation of the
concurrent queues. Further, we used the Scalable Library for Eigenvalue Prob-
lem Computations (SLEPC) [10] for computing the eigenvalue decomposition.

Performance Metrics We mainly measured the performance in terms of
streaming rate in a batched streaming scenario, ingestion rate with different set-
tings, and scaling performance of the developed hypergraph clustering method.

4.2 Results

First, we present the time performance of the streaming hypergraph from stream-
ing server to HSN of DiSciPHER. Although the additional layer of a streaming
server provides few architectural benefits (refer Section , this experiment is
necessary to understand its overall overhead. Once the hypergraph data is ac-
quired at streaming server from hypergraph generators and external sources, the
streaming server further streams the data in the batches of incidences (or hyper-
edges) instead of streaming only one incidence at a time (refer Section for
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streaming strategies). The overhead includes batch preparation time followed by
the time to stream those batches. Table [I] presents the total batch preparation
and streaming timings for different sizes of batches. One more motivation behind
this experiment was to understand the ideal batch size for streaming hypergraph
data. From the timings shown in the Table[T] it is clear that, although the batch
size is varying, the overall batch preparation and streaming timings are roughly
same for all the scenarios, i.e. 8.2 sec. and =2.1 sec. for batch preparation and
streaming respectively.

As mentioned in the Section the external sources of hypergraph can
stream data in varying rates and formats. At the system level, such heterogeneity
in the streaming rates could cause the loss of data in case of extremely high data
streaming rates and longer wait times for HSN processes in case of slow data
streaming rates. Based on the results of the batched streaming experiments in
the Table [I] we argue that the intermediate layer of the streaming server can
stabilize the rate of streaming hypergraph from various external sources to HSN.

Next, we describe the time performance of the scaling experiments in two
different scenarios: 1) weak-scaling, i.e. increasing the number of incidences (in-
creasing hypergraph size) with number of HDNs and 2) strong-scaling, i.e. adding
more HDNs for a fixed number of incidences (i.e. fixed sized hypergraph). We
want to mention that, in both settings one compute node was used as HSN;
each HSN has 12 worker threads and two I/O threads. Each HDN has eight
worker threads and two I/O threads. As described earlier, HDNs are responsi-
ble for storing hypergraphs in memory and perform necessary computations for
its consumption. We carried out both weak and strong scaling experiments in
two different settings. In the first setting, various hypergraphs were generated
in which #vertices<#hyperedges and in the second setting various hypergraphs
were generated in which #vertices>#hyperedges. The motivation behind these
experiments was to analyze the ingestion performance for the streaming data on
a leadership class computing platform.

In the weak-scaling experiment, one compute node was used as HSN and
the number of compute nodes used for HDNs were increased along with the hy-
pergraph size. Table [2] shows two different settings which were used to generate
hypergraphs for weak-scaling experiments. #Incidences indicate the size of the
hypergraph. Ideally, a constant ingestion time is expected in this weak-scaling
experiment as the workload of hypergraph consumption per HDN roughly re-

Table 1: Timing for batched streaming of hypergraph data from streaming server
to HSN. ~2.5M hyperedges and ~208M incidences (NNZ) used.

Streaming batch size Total batch preparation Total Streaming time (sec.,
(#nbatches) overhead (sec.) excluding batch
preparation)
300M (1 batch) 8.265 2.108
200M (2 batches) 8.268 2.08
100M (3 batches) 8.265 2.097
50M (5 batches) 8.255 2.086
10M (21 batches) 8.271 2.126
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mains the same with the growing size of hypergraph and number of HDNs. In
our case, one HSN is used and the total ingestion time includes the time that
HSN takes to prepare messages and send it to the respective HDNs. For the same
reason, as the hypergraph size increases, we expect some linear growth in the
HSN’s contribution to the total ingestion time, however, in an ideal scenario,
the HDNs consumption timing should be constant. Along with the ingestion
time, we also measured the ingestion rate, i.e. number of incidences ingested per
second. In an ideal scenario, the ingestion rate should grow as we increase the
hypergraph size and number of HDNs.

Except the first column in the Table [2] the other columns represent different
scenarios. The main goal of this experiment is to understand the variations in
the ingestion times and ingestion rates while increasing the hypergraph size and
number of HDNs. We measured total ingestion time and derived the ingestion
rates. Table [2| shows that the total ingestion time is increasing with increasing
hypergraph size and HDNs. Figure [8| shows the variations in the ingestion tim-
ings for different scenarios for both settings. It can be seen that the ingestion
rate increased for the first three scenarios and after that it remained stable,
i.e. 3.3M ingestion per second. The potential reasons for the increase in the
ingestion time and the ingestion rate are use of single HSN and background
network traffic created by other jobs executing on Rhea cluster. However, we
would like to emphasize the fact that we observed the stable ingestion perfor-
mance in both the settings, i.e. one with #vertices<#hyperedges and other with
#vertices>#hyperedges which represent to different hypergraph structures.

In the strong-scaling experiment, we kept the hypergraph size the same and
increased the number of HDNs used for consumption. The intent behind this
experiment is to understand the workload sharing ability of the HDNs when the

Table 2: Setting for weak-scaling and ingestion timings.
Weak scalingl (# Vertices <#Hyperedges)
#Clusters 1000 3000 6000 12,000 24,000
# Vertices 60,000 200,000 400,000 800,000/ 1,600,000
#Hyperedges| 200,000] 600,000| 1,200,000 2,400,000| 4,800,000
#Incidences [2,388,362(16,042,887(56,189,594|208,488,077|786,869,455

#HDN 1 2 4 16 64
Ingestion - -

Time (Sec.) 3.5 6.6 17.1 63.1 248.0
Ingestion

rate ~682K ~2.4M ~3.3M ~3.3M ~3.2M

(#ing/sec.)

‘Weak scaling2 (# Vertices >#Hyperedges)
#Clusters 300 1000 2000 4000 8000
#Vertices 200,000] 600,000] 1,200,000 2,400,000] 4,800,000
#Hyperedges|  60000] 200,000] 400,000] 800,000 1,600,000
#Incidences |5,437,372(23,855,054(71,276,112(239,667,974|859,300,720

#HDN 1 2 4 16 64
Ingestion
Time (Sec.) 4.7 8.7 21.7 72.2 269.9
Ingestion
rate ~1.1M ~2.7TM ~3.3M ~3.3M ~3.2M

(#ing/sec.)
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Fig. 8: Ingestion time for different scenarios for both the weak-scaling settings
with varying numbers of HDNs. The ingestion time/rate and overall scaling of
the hypergraph ingestion in a streaming scenario is largely determined by the
number HSNs.

hypergraph is fixed and we add more HDNs. We measured the total ingestion
time for these scenarios and derived the ingestion rate (refer Table [3|). Table
shows the ingestion timings and rates for two strong-scaling settings, each
with different number of NNZ (incidences) with increasing number of HDNs and
Figure [] shows the ingestion timings for two strong-scaling scenarios. Ideally,
we expect a decreasing trend in the ingestion time as workload of hypergraph
consumption per HDN decreases with the increase in the number of HDNs. From
and Figure [9] we can observe that the total ingestion time for the strong-
scaling settings decreased when two HDNs were used, however, the ingestion
time remained roughly constant for all of the subsequent scenarios. Similarly, in
ideal cases, the ingestion rate in a strong-scaling setting should increase with the
addition of more HDNs due to the decrease in the ingestion time for the constant
workload. The ingestion rate showed some increase for the first two scenarios
but remained nearly constant for other settings where the number of HDNs are
increasing. We emphasize that the role of the HSN is to formulate messages
and distribute the hypergraph data to the HDNs. The HDNs are responsible
for the necessary computation and communications with other HDNs to store
the consumed hypergraph in memory. The potential reasons for the deviation
from the ideal strong-scaling behavior could be attributed to the use of a single
HSN resulting and the increased message communication among HDNs with the
increase in the number of HDNs.

As mentioned above, in the strong-scaling scenario, one can expect an in-
creased ingestion rate with increase in the number of HDNs when the hyper-
graph size is kept constant, however, the results show some deviation from this
ideal behavior. It should be noted that both strong and weak scaling experi-
ments were performed with one HSN only which could be a potential reason
for this performance deviation. Therefore, to understand the impact of varying
number of HSNs, we fixed the number of HDNs to 512 and varied the numbers
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Fig.9: Ingestion time for different scenarios for both the strong-scaling settings
with fixed hypergraph size and varying number of HDNs. The ingestion time/rate
and overall scaling of the hypergraph ingestion in a streaming scenario is largely
determined by the number HSNs.

Table 3: Settings for strong-scaling experiment and ingestion timing.

Ingestion Ingestion
#HDN]|, ;"8 rate
Time (Sec.) (#ing. /sec.)
Strong scalingl g -
1 151.3 1.3M
#-clusters:12,000;
. 2 58.6 3.56M
#vertices:800,000;
3 58.1 3.56M
#hyperedges:2,400,000 v} 537 TEM
NNZ=208,486,247 G ES 4 IEM
8 58.6 3.5M
16 63.1 3.3M
1 786.7 1.1M
Strong scaling2 2 373.2 2.3M
#-clusters:8,000; 3 251.6 3.4M
F#vertices:4,800,000; 4 252.8 3.4M
#hyperedges:1,600,000 6 250.6 3.4M
NNZ=859,300,720 8 248.6 3.5M
16 263.9 3.3M

of HSNs from 1 to 8. Figure [I0] shows the variation in the ingestion timing with
the increasing number of HSNs. The results are favorable and it can be clearly
observed that the ingestion time decreases with increase in the number of HSNs
for a fixed problem size. Therefore we expect to see improved weak and scaling
experiments by increasing the number of HSNs. Further analysis to understand
the optimal number of HSNs is one of the objectives of our future research. In
future, we intend to perform similar scaling experiments on even larger scale sys-
tems such as Oak Ridge National Laboratory’s Summit supercomputer, which
currently holds the number 1 spot on the t0p50q2| list [29).

Figure[II]shows the strong-scaling performance of the distributed hypergraph
clustering algorithm (refer Section. In an ideal setting for strong-scaling, the
total execution timing of hypergraph clustering and an average MPI message
length should be decreased with the increasing number of MPI processes. We

% https://www.top500.org/system /179397
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Fig.10: Ingestion time variation with increase in HSNs with fixed 512 HDNs.
The hypergraph ingestion rate increases significantly by increasing HSNs.

observed that, both, the job execution time and message length decreased expo-
nentially with the increase in the MPI processes. The results showed an ~ 38x
speedup when 64 MPI processes were used for hypergraph clustering.

Hypergraph cluster strong-scaling
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Fig.11: Strong-scaling performance of the distributed hypergraph clustering
analysis algorithm. Observed 38speedup when 64 MPI processes were used.

4.3 Observations

From the experiments performed to analyze the performance of the Phoenix
framework we draw following key observations which should inform future re-
search and development in hypergraph analysis:

— The additional layer of the streaming server is important in the streaming
hypergraph scenario to stabilize the streaming process.

— The ingestion time/rate and overall scaling of the hypergraph ingestion in a
streaming scenario is largely determined by the number HSNs.
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— The hypergraph ingestion rate increases significantly with the increasing
number of HSNs. However, further and performance analysis is required to
obtain the optimal number of HSNs for a given size of the hypergraph.

— The distributed hypergraph clustering algorithm showed ~ 38x speedup
when 64 MPI processes were used. More experiments are needed with larger
hypergraphs to further validate the usefulness of the algorithm.

5 Conclusion

Graphs are becoming ubiquitous and growing in volume. From social networks to
language modeling, the growing scale and importance of graph data have driven
the development of numerous graph analytic systems. While graph analytic sys-
tems have many applications, they are not able to model group-level interactions
with high fidelity. In this paper, we present our approach to hypergraph analysis
to better capture the nuances of complex multilateral relations in group interac-
tions. Although other hypergraphh analytic tools exist, they are not well suited
to tasks such as generating the hypergraphs, modifying hypergraph structures,
or expressing computation that spans multiple graphs and compute nodes.

In this paper, we present Phoenix, a scalable hypergraph analytics framework
that was implemented on the leadership class computing platforms at Oak Ridge
National Laboratory. Our software framework is implemented in a distributed
fashion. Phoenix has the capability to utilize diverse hypergraph generators,
including HyGen, a very large scale hypergraph generator developed by Oak
Ridge National Laboratory. Phoenix also incorporates specific algorithms for ef-
ficient data representation by exploiting hidden structures of the hypergraphs.
We presented experimental results that demonstrate Phoenix’s scalable and sta-
ble performance on massively parallel computing platforms. In the future, we will
optimize our load balancing techniques for better strong and weak scaling per-
formances. Also, we plan to implement 2-D partitioning techniques to improve
the scalability of HyGen [31]. Other future directions include the development
of machine learning-based hypergraph generators, which will learn structures of
real-world hypergraphs, and based on that information, the hypergraph genera-
tor will generate massive-scale hypergraphs.
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