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Abstract: Researchers from across the four U.S. Department of Energy Bioenergy Research 47 

Centers engaged in a microbiome workshop that focused on identifying challenges and 48 

collaboration opportunities to better understand bioenergy-relevant plant–microbe interactions. 49 

The virtual workshop included hands-on educational sessions and a keynote address on current 50 

best practices in microbiome science and community microbiome standards, as well as 51 

breakout sessions aimed at identifying microbiome-related data and measurements that should 52 

be prioritized, opportunities for and barriers to integrating plant metabolites to microbiome 53 

research, and strategies for more effectively integrating microbiome data and processes into 54 

existing models. Based on participant discussion, key findings of the workshop were the need 55 

to prioritize scaling data sharing across BRCs and the broader research community and 56 

securing collaborative infrastructure in the areas of microbiome-ecosystem modeling and 57 

molecular plant-microbe interactions. This workshop review highlights additional main 58 

findings from this event, to encourage cross-site and more holistic meta-analyses while 59 

promoting wide scientific community engagement across plant microbiome sciences. 60 

  61 
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Introduction 62 

Plants and microbes form a myriad of symbiotic associations, from mutualistic to 63 

opportunistic to parasitic. It has become clear with recent research that many of the functions 64 

of plant-associated microbes benefit the host, for example, by promoting tolerance to abiotic 65 

stress, priming the immune system, or by regulating nutrient and resource availability (Turner 66 

et al. 2013). Therefore, as plant - microbiome research matures, it is expected that controlling 67 

or directing the plant microbiome to desired outcomes will become a key tool for crop 68 

management and supporting food security and crop resilience goals (Busby et al. 2017) .  69 

Bioenergy crops, also called biofuel feedstocks, are crops grown explicitly for the 70 

purpose of converting plant biomass into biofuels and/or bioproducts (Naik et al. 2010). These 71 

include first generation food crops such as sorghum, corn, rapeseed, and sugarcane, as well as 72 

second generation cellulosic crops including switchgrass, miscanthus, alfalfa, napier grass, and 73 

poplar (Mohr and Raman 2013). Third generation crops are more recently gaining interest. 74 

These include boreal plants, crassulacean acid metabolism (CAM) plants, eucalyptus, and 75 

microalgae. The microbiome of many of these bioenergy crops has been characterized and, in 76 

some cases, linked to functionality or plant performance (e.g., (Li et al. 2016)). 77 

Beneficial crop microbiomes can benefit diverse agroecosystems; however, the goals 78 

of bioenergy agriculture are markedly different from food agriculture. In food crop agriculture, 79 

a primary objective is to increase yields on prime agricultural land, making outputs available 80 

for consumption by humans and animals. Bioenergy crop agriculture shares a similar objective 81 

of high biomass yield but differs in its focus on utilizing land that is marginal or of low value 82 

for crop agriculture to avoid competition with food production. Additionally, there are several 83 

other important sustainability objectives that are imperative for the large-scale development of 84 

bioenergy crops (Raschke et al. 2021) (Figure 1). These objectives include limiting agricultural 85 
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greenhouse gas (GHG) emissions and achieving net carbon (C)-neutral or C-negative feedstock 86 

production through soil C sequestration (Gelfand et al. 2020), producing bioenergy crops on 87 

marginal land that is less suitable for food crops (Solomon 2010), and maintaining a neutral or 88 

beneficial environmental footprint within the agroecosystem (Robertson et al. 2017) (Box 1).      89 

It is expected that crop microbiomes will support these interrelated sustainability objectives of 90 

biofuel feedstock production (Zhalnina et al. 2021), which are essential, yet not exclusive, to 91 

bioenergy crops.  92 

GHG emissions reduction, carbon sequestration, and environmental remediation are 93 

beneficial sustainability goals for agroecosystems and have been emphasized as research 94 

priorities within United States Department of Energy (US DOE)-funded bioenergy research 95 

centers (BRCs). BRCs are tasked with generating data to support feedstock selection, 96 

identifying and understanding impacts of land choice for feedstock cultivation, and developing 97 

management strategies for bioenergy systems. Research at BRCs directly impacts the choice 98 

and implementation of feedstocks and thus BRCs are uniquely poised to inform sustainable 99 

development at the initial stages of management.  The BRCs’ roles in developing novel 100 

agroecosystems set us apart from food crop agriculture, which often has had long-term 101 

management practices in place. For example, the objective to grow bioenergy crops on 102 

marginal lands includes research that measures nutrient and water inputs and outputs important 103 

to environmental sustainability as well as economic profitability. Based on our knowledge of 104 

the role of plant-microbe interactions in other systems, we predict that learning to leverage the 105 

plant microbiome to benefit the host and landscape will be a decisive factor in the ultimate 106 

success of bioenergy feedstocks.   107 

The research priorities of lowering feedstock costs and improving year-round feedstock 108 

supplies are globally relevant. In 2019, the world spent $8B (USD) on biofuel and biogas 109 

compared to the $53B estimated to be necessary to meet  in the International Energy Agency's 110 
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Sustainable Development Scenario (World Energy Investment, 2020). Thus, it is important  to 111 

share BRC research priorities and impacts broadly and to maintain tight coordination and 112 

synergy between researchers within BRCs and our international scientific partners. 113 

Researchers interested in plant microbiome ecology and fundamental biological mechanisms 114 

are needed to bridge their complementary mindsets to address these grand challenges in biofuel 115 

production systems.  116 

A workshop was organized to discuss the needs, challenges, and aspirations of plant-117 

microbiome research in support of these distinctive objectives in bioenergy crop agriculture 118 

and to set the stage to enable and support large-scale collaborations among the four US-based 119 

BRCs (Box 2) and to produce a communication to share with other researchers who work in 120 

this arena. DOE BRCs are large, multidisciplinary centers spread across the United States with 121 

a focus on addressing grand challenges in biofuel research and accelerating transformational 122 

advances needed to enable cost effective and sustainable production of cellulosic biofuels in 123 

the United States (Peters 2018). The workshop was held virtually on 12 February, 2021 and 124 

attended by 74 people who represented all four BRCs and all levels of researchers, from student 125 

to investigator. Here, we report the outcomes of the sessions and discussions and aim to fuel 126 

momentum in this critical arena of feedstock microbiome research.  127 

Workshop Description 128 

The workshop was divided into two main sessions. The first session focused on current 129 

models of data management strategies that enable successful collaboration, followed by a 130 

keynote presentation on the National Microbiome Data Collaborative (NMDC) highlighting 131 

ongoing efforts to expand the state of the science with accessible and standardized microbiome 132 

datasets, how the data needs of the community could be coordinated, and the vision of the 133 

future NMDC data ecosystem. The second session was focused on sharing perspectives to 134 

prioritize research opportunities for collaboration in these areas. 135 
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The aim of the first session was to provide training and discussion on data sharing 136 

within large collaborations. This session was entitled “Discussion and tutorial on best practices 137 

for computational analyses and data sharing,” and included two discussions based on uniting 138 

BRC data and collaborative opportunities. Guidelines were based on, “FAIR guiding principles 139 

for scientific data management and stewardship” (Wilkinson et al. 2016), and 140 

recommendations based on performing computational analysis of large microbiome datasets 141 

(Wilkinson et al. 2016; Shade and Teal 2015; Shade et al. 2019). The first discussion      focused 142 

on how research groups may make data findable, accessible, interoperable, and reusable 143 

(FAIR), specifically highlighting how these integration principles can be used throughout the 144 

data generation and publication processes. A systematic review of large microbiome datasets 145 

and their capacity to protect raw digital data, organize raw digital data, organize digital data 146 

protocols and analysis workflows, and make all digital data public and available was provided. 147 

This effort highlighted the challenge of locating deposited sequence and metabolite data (and 148 

metadata) from published studies and emphasized the challenge and collective need to consider 149 

standards for data sharing and management beyond individual labs for future collective needs. 150 

This discussion was followed by a tutorial that introduced tools for version-controlled data and 151 

protocol sharing, specifically using the GitHub platform. The objective of this tutorial was to 152 

expand the previous discussion of data hygiene and opportunities for data and analysis 153 

standardization by offering practical, concrete examples. Discussion included how to 154 

effectively reproduce previously published figures, along with the opportunities for integrating 155 

with existing collaborative tools. Subsequent discussion focused on opportunities for 156 

collaborative BRC microbiome research to leverage the NMDC. 157 

The second session consisted of      break-out group discussions on      three topic areas 158 

that represent challenges to BRC microbiome research, which were selected based on survey 159 

answers from participants prior to the workshop. These challenges were: 1) priorities and 160 
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standards for collaborative microbiome-related data and measurements, 2) improved 161 

integration of plant metabolites to microbiome research, and 3) linking microbiome data and 162 

processes into existing models used within the BRCs. Below, we summarize the state of the 163 

challenges within BRC microbiome research and key opportunities for future research based 164 

on workshop discussions.   165 

BRC Challenge 1:  Priorities and standards for microbiome-related data and 166 

measurements 167 

The tools and measurements for characterizing BRC feedstock microbiomes are similar 168 

to those used more broadly to understand plant-microbe interactions, as recently reviewed 169 

(Trivedi et al. 2021). These measurements provide insights into: 1) the plant-associated 170 

microbial communities and their functions and interactions with the plant host genotype, 2) 171 

traits and performance, and 3) ecosystem and environmental contexts. Standard microbiome 172 

measurements often include the identification and relative quantification of microbial taxa, 173 

including but not limited to bacteria, archaea, fungi, and viruses, as well as assessment or 174 

prediction of their bulk activities and functions. Such characterizations are often done for 175 

aboveground tissues including the phyllosphere but are often extended belowground to root 176 

and soil microbiome niches (Cregger et al. 2018). For the plant hosts, BRC feedstocks include 177 

productive and wild-type varieties, as well as genotypes improved through selective breeding 178 

or engineered for traits of productivity, resilience, specialized metabolism or ease of 179 

deconstruction and biofuel conversion (Hao et al. 2021; Stefani et al. 2009; Belide et al. 2017). 180 

Standard plant measurements often include the plant host genotype and host phenotypic 181 

variation across traits      such as biomass, height, leaf area, biomass conversion efficiency, or 182 

disease resistance. As cellulosic biomass is often a key goal for BRC feedstocks, yield and 183 

conversion are important measurements. The management history of a field or feedstock also 184 
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influences its performance and, especially in younger fields, the documentation of stand age 185 

and environmental context can be important (Ong et al. 2016). Management factors including 186 

fertilization and other crop inputs such as bioinoculants, pesticides, water, tillage, and crop 187 

rotation history are also useful towards understanding the crop environment and their 188 

relationships to yield or sustainability objectives (Ma et al. 2021). Expanding this information 189 

and its relationships to soil and environmental characteristics such as pH, moisture, 190 

temperature, salinity, landscape/field legacy effects, and C and nitrogen (N) turnover are grand 191 

challenges in developing sustainable bioenergy cropping systems.  Given the trade-offs and 192 

co-optimization among the sustainability, ecosystem services (land sharing), and yield (land 193 

sparing) objectives of agriculture (Anderson-Teixeira et al. 2012), measurements spanning 194 

environment, plant, and management are required.  195 

Currently, there are few standardized field and plant measurement methods that are 196 

shared across BRC efforts, but there are numerous overlapping data types and needs. The 197 

differences in methodology and foci for measurements is partly due to the diversity of research 198 

questions, allocation of resources within each center, and individual investigator expertise and 199 

interest. In fact, a key realization from the workshop was the need and opportunity for BRCs 200 

to prioritize a small but impactful number of standard measurements that could broadly link 201 

microbiome and plant outcomes (e.g., plant productivity, feedstock conversion).  202 

Recommendation 1.1:  Develop a standard set of soil/environment, host, and microbiome 203 

measurements supported by cross-BRC research objectives 204 

Given the breadth of interests across BRCs, our discussions emphasized the need to 205 

prioritize a set of soil/environment, host, and microbiome measurements (e.g., cultivation-206 

independent and -dependent, biomass, growth stage, metabolite, biological activity rates) that 207 

can support multiple research objectives and lend themselves to inter-site comparisons and 208 

meta-analyses. Given the common objectives across BRCs to improve feedstock yield and 209 
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sustainability, any set of standard measurements should emphasize plant–microbe interactions 210 

that are associated with these objectives, including resilience (e.g., to drought), fertilizer needs 211 

(response to N inputs and limitations), and direct plant–microbe interactions (e.g., mediated by 212 

plant and microbial metabolites). A panel of key plant, environment/soil, and microbial 213 

measurements could be proposed that would be cross-cutting for plant microbiome research, 214 

including that of bioenergy crops.  215 

There also is a need to develop and deploy both digital infrastructure to readily share 216 

standardized data and resources across BRCs, and physical infrastructure to support large-217 

scale, cross-site experiments. For example, standardized plant-microcosms could provide 218 

tractable, comparative experimental systems for inter-BRC experiments (Box 3) and common 219 

field sites or experimental designs could provide cross-center insights and advances. BRCs 220 

contribute plant, fungal, and microbial genomic resources for the broader community. These 221 

rich genomic resources are available through the Joint Genome Institute database systems as 222 

well as others (IMG/ER, MycoCosm, GOLD, NCBI). A BRC-specific system to share and 223 

place these genomic data in the context of BRC experiments and, in particular, connections to 224 

plant host data and integration between plant and microbial datasets is currently lacking.   225 

Recommendation 1.2:  Develop collaborative infrastructure to directly link soil 226 

microbiomes, plant hosts, and feedstock productivity 227 

BRCs are situated to take advantage of recently developed tools and approaches that 228 

have the potential to enhance our understanding of complex plant and soil microbiome 229 

relationships under the context of bioenergy research. There are several infrastructural 230 

advantages among the BRCs, including access to the geographic breadth of multi-site, large-231 

scale (often long-term) field experiments with shared crops and also access to the core facilities 232 

of the Department of Energy to support sequencing, chemical, and environmental analyses of 233 

both microbes and host plants to allow for the use of cutting-edge interdisciplinary approaches 234 

Page 9 of 29



 10 

and tools. The shared mission among the BRCs of sustainable development and enhanced 235 

performance of biofuel feedstocks provides a clear connection for collaboration. Financial 236 

support through the DOE and the BRCs for workshops, working groups, meetings, and cross-237 

invitations to seminars further enhances BRCs opportunities for engagement. Thus, the 238 

resources, scale, and technology access are aligned to support BRC efforts to advance plant 239 

microbiome understanding.   240 

For example, maintaining and distributing microbial culture collections is a necessary 241 

but resource intensive activity that is beyond the capabilities of any one research group, and 242 

yet it is expected that sharing isolates across BRCs will be a key activity in the development 243 

and deployment of beneficial microbial consortia for biofuel feedstocks. Establishing a 244 

standard isolate-to-collection workflow, expected timeline, and accountability mechanism 245 

across BRCs to deposit microbial isolates to existing culture resources (that are equipped to 246 

handle, maintain, and make available these isolates to other researchers) would support strain 247 

resource sharing. The BRCs could also benefit from partnerships with central reference 248 

microbial strain repositories, such as the American Type Culture Collection (ATCC) 249 

(American Type Culture Collection 1997) or the Fungal Biodiversity Centre (CBS-KNAW). 250 

BRCs could do their part to provide resources to support existing culture collection 251 

infrastructure and could coordinate to regularly release updates of BRC-relevant depositions 252 

and associated metadata among researchers.  253 

Other discussed tools with potential cross-BRC utility include quantitative stable 254 

isotope probing (Hungate et al. 2015), high-throughput cell sorting (Hatzenpichler et al. 255 

2020), and novel culture-dependent techniques (Jo et al. 2021; Molina-Menor et al. 2020). 256 

Tools that measure plant physiological traits in real-time such as microchips (Pagay et al. 257 

2014) and at large scales such as remote sensing using hyperspectral cameras mounted on 258 

UAVs (Li et al. 2020), aircraft, and satellites may also guide researchers to decipher factors 259 
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that drive plant performance and  provide meaningful information to integrate with other 260 

current measurements. Standardized fabricated ecosystems (e.g., EcoFABS - see Box 3) 261 

provide opportunities for more controlled cross-investigator mechanistic microbiome 262 

measurements. Computational frameworks, such as artificial intelligence (AI) 263 

implementation in high resolution time-series analysis (Nauta et al. 2019; Coenen et al. 264 

2020), may be used to generate computational causal inferences, investigate how the 265 

microbiome relates to bioenergy crop phenotype, and improve our ability to navigate the 266 

large datasets we currently have, such as the ‘omics.  267 

Since their inception in 2007, DOE BRCs have produced informative plant 268 

microbiome research through the development of large-scale collaborations and open-source 269 

resources. These include multi-omic datasets for targeted feedstocks such as poplar and 270 

switchgrass, and their associated microbiome members, including mycorrhizal fungi and 271 

plant-associated bacteria (Martin and Bonito 2012; Brown et al. 2012). Identifying a set of 272 

common, impactful questions that can be addressed across bioenergy crops and centers 273 

continues to provide insight into how to leverage the biofuel crop microbiome to achieve 274 

yield and sustainability objectives and advance beyond what could be achieved in location- or 275 

crop-specific research programs. Strategies to standardize microbiome, plant, and 276 

environmental measurements, share field sites and experimental approaches, deposit and 277 

share BRC microbial isolates, and collectively adopt cutting-edge technology will foster 278 

project integration and data reuse.       279 

BRC Challenge 2:  Integration of plant metabolites to microbiome research 280 

To understand the role of the soil and plant microbiomes on sustainable production of 281 

bioenergy crops, we need to study these interactions in these systems from the perspective of 282 

both the microbiome and the plant. Bioenergy microbiomes can directly or indirectly regulate 283 

plant metabolism (Pang et al. 2021), and similarly plant metabolites can influence the 284 
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composition and function of microbiomes in above- and below-ground tissues. Consequently, 285 

microbiome research in the BRCs requires the integration of plant and microbial metabolites 286 

to understand these interactions. The rapid development of metabolomics protocols and 287 

platforms currently provides new opportunities and challenges for advancing the elucidation 288 

of plant-microbiome interactions, including signaling, substrate exchange, and utilization.  289 

There is a wide array of mass spectrometry (MS)- and nuclear magnetic resonance 290 

spectroscopy (NMR)-based analytical platforms that are suitable for generating broad 291 

spectrum, untargeted metabolomic profiles for characterizing the metabolites of plants and the 292 

microbial associates that constitute their microbiome. Although these platforms vary in their 293 

dynamic range, mass accuracy and range of detection, sensitivity and speed of analyses, and 294 

chromatographic resolution, they each have their utility in metabolomics. There is no single 295 

analytical platform that captures the breadth of plant and microbial metabolomes, but the 296 

application of different platforms is complementary, ensuring a greater breadth of coverage. 297 

Currently, reference metabolite databases are constrained by limited references, annotation 298 

errors due to co-eluting isobaric metabolites (i.e., metabolites whose molecular ions have 299 

identical mass and hence elemental composition), and the need for multiple chromatographic 300 

separations and ionization modes to obtain a greater coverage of the metabolome (Xiao et al. 301 

2012). Employing complementary approaches greatly empowers these platforms, including the 302 

ability to conduct MS/MS experiments for increasing fragmentation of parent ions to inform 303 

m/z identity, and even coupling NMR for structural elucidation of unknowns. The rapid 304 

development and widespread availability of MS analytical platforms for metabolomics, 305 

including metabolite database expansion and compilation on websites that allow searchable 306 

metabolite queries, set the stage for major advances for characterizing plant-microbiome 307 

interactions. 308 
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The major challenges to comprehensive metabolite profiling across BRCs include the 309 

large number of unannotated metabolites, difficulty in attributing metabolites to the correct 310 

organismal partner in mixed communities, challenge of deciphering the metabolic exchange 311 

between interacting partners, and elucidation of metabolically complex plant defense signaling 312 

cascades needed to distinguish microbial friend from foe to enable symbiosis or induce defense 313 

responses. A cross-institutional approach plus sharing genetic and genomic resources can 314 

address these current constraints. Despite the lack of available commercial standards, many 315 

labs have developed robust internal, user-defined databases that can be brought to bear           on 316 

a given critical unidentified metabolite. Many unknowns are designated as “known unknowns”, 317 

having been observed as responsive in previous analyses and potentially by several research 318 

groups. Sharing the fragmentation patterns of critical unidentified metabolites between 319 

research groups can close that information gap (Wang et al. 2016) or at least identify high-320 

value unknowns. 321 

Systems biology has already had a tremendous role in contributing to the elucidation 322 

of unknowns, as highlighted by interrogation of microbial gene sequences for known 323 

biosynthetic pathways using antibiotics and secondary metabolite analysis to identify gene 324 

products that are potentially present given the presence and activity of specific microorganisms 325 

(Medema et al. 2011). Additionally, multi-omic network models that include an integrated 326 

metabolomics data layer associated with single nucleotide polymorphism (SNP) variation can 327 

provide clues to the identity of unknown metabolites (Weighill et al. 2018, 2019). Such a multi-328 

omic network model generated for one species can inform metabolite identification for other 329 

species if there is a high degree of homology between the species with respect to biosynthetic 330 

pathways. Although a metabolite may be categorized as an unknown, much information on its 331 

identity can still be derived from its mass to charge ratio that can be used to generate 332 

hypothetical identities and support subsequent targets for synthesis and subsequent 333 
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confirmation. Furthermore, sorting out where and by whom a metabolite signal is generated 334 

can also be informed by a systems biology approach.  For example, succinic acid accumulation 335 

when the fungal ectomycorrhizal symbiont Laccaria bicolor is associated with Populus 336 

trichocarpa roots is likely to be driven by the fungus degrading the plant’s aromatic 337 

metabolites, as inferred from the upregulation of fungal transcripts of the pathway enzymes 338 

required to conduct the catabolism (Tschaplinski et al. 2014). Therefore, coupling MS 339 

databases, systems biology databases, and network analyses provides a powerful set of tools 340 

and approaches that can inform the underlying mechanisms driving plant–microbiome 341 

interactions.   342 

Initiatives such as NMDC highlight the need for standardized metadata to draw 343 

meaningful conclusions from microbiome studies (Vangay et al. 2021). Integrated multi-omics 344 

approaches also need to incorporate data standards to enhance science reproducibility and 345 

results comparison across BRCs. Establishing best practices, including standards for integrated 346 

dataset collection could minimize variation in key steps during the data generation process 347 

including sampling, processing, and analytical strategies. In plant–microbe metabolomics 348 

research, we recognized that describing the plant developmental stage, how the sample is 349 

collected and stored, and which analytical tools are used during the study must be reported 350 

accurately.   351 

Recommendation 2:  Support BRC collaboration within a standard, tractable, and 352 

representative ecosystem 353 

An opportunity for inter-site collaboration was identified in using fabricated 354 

ecosystems to address diverse questions across BRCs. Such fabricated ecosystems 355 

(‘mesocosms’) provide both an opportunity to increase the control, reproducibility, 356 

replicability, and observability of plant phenotypes and plant-microbe ecological interactions 357 

(Box 3). Standardized fabricated ecosystems (EcoFABs, https://doi.org/10.1111/nph.15662) 358 
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or other types of  “rhizoboxes” can provide opportunities to: 1) enable scientists to benchmark, 359 

replicate, and build on each other’s results across BRCs, 2) create standardized data sets 360 

suitable for machine learning and other types of meta-analyses, and 3) harness advanced 361 

technologies (e.g., genetic, genomic, and metabolomic) to determine causal mechanisms 362 

underlying plant and microbial interactions.  363 

BRC Challenge 3:  Linking microbiome data and processes into existing BRC models  364 

     Mathematical models provide a way to integrate data and guide engineering efforts 365 

towards a desired outcome. Within the BRCs, microbial activity is represented in two distinct 366 

types of modeling approaches employed to determine the      productivity and sustainability of 367 

bioenergy systems. First, ecosystem models are used to understand bioenergy crop yields and 368 

the environmental impact and performance of these feedstocks (e.g., soil C sequestration, N 369 

use efficiency, etc.). Second, biomass conversion models are used to study the efficacy of 370 

microbially-mediated biological conversion of plant biomass to biofuels and valuable products.  371 

The results of these two types of modeling approaches can then be integrated with techno-372 

economic assessment (TEA) and life-cycle assessment (LCA) accounting frameworks to 373 

estimate the total costs and cradle-to-grave environmental impacts, respectively, of bioenergy 374 

production.          375 

  Process-based ecosystem models such as EPIC (Zhang et al. 2010), DayCent (Field et 376 

al. 2018), DNDC (Brandes et al. 2018), and SWAT (Jager et al. 2015) are also widely used in 377 

bioenergy crop assessment to interpret and generalize limited, discrete field measurements 378 

across space and time. Such models aim to predict energy crop yields across the heterogeneous 379 

soils, climates, and land use histories of agricultural landscapes, including lands with marginal 380 

productivity for conventional crops (Qin et al. 2015) and aim to enhance understanding of 381 

feedstock production economics and total life cycle impacts of biofuel production. Ecosystem 382 
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models can also predict how biofeedstock production impacts microbially driven processes 383 

including changes in soil C storage, emissions of nitrous oxide and other agricultural 384 

greenhouse gases, emissions of ammonia and other air pollutants, leaching of nitrate and other 385 

water pollutants, and evapotranspiration and hydrological impacts. The widely used ecosystem 386 

models listed above generally rely on conceptually-defined soil carbon pools and semi-387 

empirical representation of soil microbial processes, lacking specificity on microbial biomass, 388 

taxonomy, and functional characteristics (Berardi et al. 2020; Campbell et al. 2018).  389 

There is widespread effort to expand these existing models or create new models that 390 

reflect an updated understanding of soil organic matter stabilization mechanisms (Lehmann & 391 

Kleber 2015) and more explicit representation of microbial biomass, functional grouping of 392 

microbial species, and microbial activity. Models such as MEND (Wang et al. 2013), CORPSE 393 

(Sulman et al. 2014), and MEMS (Robertson et al. 2019) are built around physically-394 

measurable soil carbon pools and include dynamic microbial pools based on biomass and 395 

functional potential that influence soil processes such as decomposition rates. Parameterizing 396 

such models is a fundamental challenge (Berardi et al. 2020), but that becomes more tractable 397 

as spatially-explicit data on microbial communities becomes more available world-wide 398 

(Crowther et al. 2019). 399 

In the process of converting cellulosic biomass into valuable bioproducts, mathematical 400 

models have been successfully used to guide bioengineering efforts to increase production. For 401 

example, genome-scale models embody a comprehensive list of metabolic processes and have 402 

been used to recommend gene knockouts that increase overall yield (Fowler et. al 2020; Maia 403 

et al. 2015; Otero et al. 2013; Xu et al. 2011). Further, 13C metabolic flux analysis can be used 404 

to obtain an insightful description of metabolic fluxes inside a cell, and this knowledge has 405 

been leveraged to identify engineering targets leading to improved production (Chowdhury et 406 

al. 2014; Costella and Martin 2018; Foster et al. 2021; Khodayari and Maranas 2016). Kinetic 407 
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models provide a dynamic picture of metabolism as a function of time that can be used to 408 

effectively guide engineering. Furthermore, data-driven processes based on machine learning 409 

algorithms (Lawson et al. 2021) have also helped design metabolic pathways which increased 410 

productivity (Jervis et al. 2019; Radivojević  et al. 2020; Zhou et al 2018).  These models are 411 

contingent on large datasets. Thus, standardized data collection and sharing across BRCs would 412 

advance these research efforts.  413 

  414 

Recommendation 3:  Strategic data collection within model ecosystems  415 

 Despite the use of modelling in the production of lignocellulosic biofuels, significant 416 

challenges remain. This type of sustainability analysis provides a strong anchor point for 417 

collaboration across the BRCs and broader community. Standardized data collection through 418 

time for use in models was identified as a potential synergistic action across BRCs. In the case 419 

of ecosystem models, at minimum, microbial biomass data should be collected during soil 420 

sampling and laboratory analysis. Specific sampling and analysis protocols will vary depending 421 

on the models adopted. For example, a microbially-explicit version of DayCent in development 422 

will differentiate microbial biomass in the litter layer versus the soil (Berardi et al. 2020), 423 

whereas CORPSE differentiates between the rhizosphere and bulk soil (Sulman et al. 2014) 424 

and MEND explicitly represents microbial function via incorporation of microbial enzymatic 425 

data (Wang et al. 2013). Such data collection complements ongoing efforts to supplement soil 426 

carbon analysis with physical fractionation that separates specific organic matter pools such as 427 

particulate organic matter and mineral-associated organic matter (Lavallee et al. 2020). Further, 428 

bottom-up controlled microcosm experiments using plant hosts with defined microbial 429 

communities can provide a suitable intermediate for linking small-scale microbial ecology to 430 

larger-scale ecosystem function. Such work also has direct relevance for engineering growth-431 

promoting microbial inoculum, a goal of some BRCs. 432 
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Conclusions 433 

 During the past decade, DOE BRCs have made significant contributions to the science, 434 

technology, and resources needed for efficient conversion of lignocellulosic feedstocks to 435 

biofuels, totaling over 3600 publications since 2007. However, sustainably produced and 436 

profitable biofuel production systems still require further development and research. A 437 

convergence of fundamental understanding of plant and microbial biochemistry, genomics, and 438 

ecology will accelerate progress toward the identification and utilization of key plant 439 

determinants and traits that drive adaptive microbiome activities and underlying plant health, 440 

yield, composition, sustainability, and resilience.  441 

 In conclusion, this workshop highlighted the need for cohesive standard data 442 

management for successful collaboration, as well as improved integration of plant and 443 

microbiome workflows across BRCs which link microbiome data and processes into existing 444 

BRC models and across the plant microbiome community. Thus, thinking systematically, 445 

collaboratively, and interactively will best leverage BRC research expertise and capabilities to 446 

tackle bioenergy and sustainability challenges. Notably, investments in the proposed key 447 

priorities should also provide data, tools, and models that can be leveraged by other researchers 448 

in the field. 449 
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Figures 765 
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Figure 1: Summary of objectives in the production of sustainable bioenergy feedstocks 767 
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Box 1:   Objectives of bioenergy feedstock agriculture 

Carbon neutrality: Agricultural production is associated with 
greenhouse gas (GHG) emissions from the production of fertilizers and 
other inputs, on-farm energy use, changes in soil carbon storage, and 
other soil trace gas emissions. Bioenergy crop production should 
ideally be at least net carbon neutral (with soil carbon sequestration 
offsetting production of other GHGs), or, more desirably, carbon 
negative. Practically, this requires sustainable agricultural 
management practices that minimize inputs such as fertilizer and 
irrigation use and promote soil C sequestration by reducing or 
eliminating tillage and growing perennial bioenergy crops such as 
switchgrass, miscanthus, and poplar that allocate substantial carbon to 
roots and root exudates.  

Marginal land utilization: Growing bioenergy crops on prime 
agricultural land increases costs and leads to undesirable “food versus 
fuel” competition which remains a key criticism of first-generation 
bioenergy systems-based corn, sugarcane, sorghum and other food 
crops. Therefore, the BRCs specifically and the bioenergy industry 
more generally increasingly target the production of dedicated 
bioenergy crops on land that is less suitable for food production, i.e., 
“marginal land”. While the specific definitions of marginal lands vary 
widely, the ability of bioenergy crops to contend with suboptimal 
conditions such as transient flooding, drought, poor soil quality, and 
possible pollutants, high temperatures, or wind is critical for lowering 
production costs and conflicts with existing agricultural production.  

Sustainable production:  Finally, minimizing the environmental 
impact of bioenergy crop agriculture is also a key objective. 
Bioenergy cropping systems should increase or preserve soil health 
and quality, local biodiversity, water quality, and other key ecosystem 
services. Environmental impact may be estimated by measuring the 
ecological footprint of bioenergy agroecosystems and applying a 
systems-level analytical approach. 
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 785 
 786 

 
Box 2: BRC vision statements along with locations of all 
collaborative institutions that are associated with a specific BRC. 
CABBI – Integrate recent advances in agronomics, genomics, and 
synthetic and computational biology to increase the value of energy 
crops — using a “plants as factories” approach to grow fuels and 
chemicals in plant stems, an automated foundry to convert biomass 
into valuable chemicals, and ensuring that its products are 
ecologically and economically sustainable. 
CBI – Accelerate domestication of bioenergy-relevant plants and 
microbes to enable high impact, value-added fuels and coproduct 
development at multiple points in the bioenergy supply chain. 
GLBRC – Develop sustainable biofuels and bioproducts from all 
usable portions of dedicated energy crops grown on marginal, 
nonagricultural lands. 
JBEI – Convert bioenergy crops into economically-viable, carbon-
neutral, biofuels and renewable chemicals currently derived from 
petroleum, and many other bioproducts that cannot be efficiently 
produced from petroleum. 
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 787 Box 3: Existing fabricated ecosystems include single plant-scale 
EcoFAB devices. 
EcoFAB device consists of an autoclavable physical chamber 
(enabling gnotobiotic studies), target plant (optional), growth 
medium (e.g., soil, sand, media), and the microbial communities to 
be tested. EcoFABs are designed for ‘omics analysis and high-
resolution rhizosphere imaging. The ‘1.0’ EcoFAB devices use 3-
D printing to create molds for casting the biocompatible polymer 
polydimethylsiloxane (PDMS) into the upper portion of a fluidics 
chamber (Inset). This is a very flexible approach that enables rapid 
design alteration to address specific research questions. More 
recently, ‘2.0’ EcoFAB devices have been constructed using 
injection molding of polycarbonate. These standardized devices 
can be mass produced to support large-scale studies of plants and 
rhizosphere microbial communities. This is subsequently attached 
to a microscope slide, completing the chamber. Both systems can 
be sealed to support analysis of volatile metabolites and stable 
isotope probing/labeling experiments. They have been successfully 
used to study a diversity of plants (Brachypodium, Arabidopsis, 
Meticago, switchgrass, etc.) and microorganisms. Data collected in 
duplicated systems in different labs had high reproducibility (Sasse 
et al. 2018) suggesting that they will be suitable for inter-BRC 
collaborations. 
 
 

 
 
 
Fabricated ecosystems (EcoFAB) showing Brachypodium distachyon 
growing in hydroponic solution. Image credit: Kateryna Zhalnina. Image 
credit: Thor Swift/Berkeley Lab. 
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