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Abstract: Researchers from across the four U.S. Department of Energy Bioenergy Research
Centers engaged in a microbiome workshop that focused on identifying challenges and
collaboration opportunities to better understand bioenergy-relevant plant—-microbe interactions.
The virtual workshop included hands-on educational sessions and a keynote address on current
best practices in microbiome science and community microbiome standards, as well as
breakout sessions aimed at identifying microbiome-related data and measurements that should
be prioritized, opportunities for and barriers to integrating plant metabolites to microbiome
research, and strategies for more effectively integrating microbiome data and processes into
existing models. Based on participant discussion, key findings of the workshop were the need
to prioritize scaling data sharing across BRCs and the broader research community and
securing collaborative infrastructure in the areas of microbiome-ecosystem modeling and
molecular plant-microbe interactions. This workshop review highlights additional main
findings from this event, to encourage cross-site and more holistic meta-analyses while

promoting wide scientific community engagement across plant microbiome sciences.
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Introduction

Plants and microbes form a myriad of symbiotic associations, from mutualistic to
opportunistic to parasitic. It has become clear with recent research that many of the functions
of plant-associated microbes benefit the host, for example, by promoting tolerance to abiotic
stress, priming the immune system, or by regulating nutrient and resource availability (Turner
et al. 2013). Therefore, as plant - microbiome research matures, it is expected that controlling
or directing the plant microbiome to desired outcomes will become a key tool for crop

management and supporting food security and crop resilience goals (Busby et al. 2017) .

Bioenergy crops, also called biofuel feedstocks, are crops grown explicitly for the

purpose of converting plant biomass into biofuels and/or bioproducts (Naik et al. 2010). These

include first generation food crops such as sorghum, corn, rapeseed, and sugarcane, as well as
second generation cellulosic crops including switchgrass, miscanthus, alfalfa, napier grass, and

poplar (Mohr and Raman 2013). Third generation crops are more recently gaining interest.

These include boreal plants, crassulacean acid metabolism (CAM) plants, eucalyptus, and
microalgae. The microbiome of many of these bioenergy crops has been characterized and, in

some cases, linked to functionality or plant performance (e.g., (Li et al. 2016)).

Beneficial crop microbiomes can benefit diverse agroecosystems; however, the goals
of bioenergy agriculture are markedly different from food agriculture. In food crop agriculture,
a primary objective is to increase yields on prime agricultural land, making outputs available
for consumption by humans and animals. Bioenergy crop agriculture shares a similar objective
of high biomass yield but differs in its focus on utilizing land that is marginal or of low value
for crop agriculture to avoid competition with food production. Additionally, there are several
other important sustainability objectives that are imperative for the large-scale development of

bioenergy crops (Raschke et al. 2021) (Figure 1). These objectives include limiting agricultural
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greenhouse gas (GHG) emissions and achieving net carbon (C)-neutral or C-negative feedstock

production through soil C sequestration (Gelfand et al. 2020), producing bioenergy crops on

marginal land that is less suitable for food crops (Solomon 2010), and maintaining a neutral or

beneficial environmental footprint within the agroecosystem (Robertson et al. 2017) (Box 1).

It is expected that crop microbiomes will support these interrelated sustainability objectives of
biofuel feedstock production (Zhalnina et al. 2021), which are essential, yet not exclusive, to

bioenergy crops.

GHG emissions reduction, carbon sequestration, and environmental remediation are
beneficial sustainability goals for agroecosystems and have been emphasized as research
priorities within United States Department of Energy (US DOE)-funded bioenergy research
centers (BRCs). BRCs are tasked with generating data to support feedstock selection,
identifying and understanding impacts of land choice for feedstock cultivation, and developing
management strategies for bioenergy systems. Research at BRCs directly impacts the choice
and implementation of feedstocks and thus BRCs are uniquely poised to inform sustainable
development at the initial stages of management. The BRCs’ roles in developing novel
agroecosystems set us apart from food crop agriculture, which often has had long-term
management practices in place. For example, the objective to grow bioenergy crops on
marginal lands includes research that measures nutrient and water inputs and outputs important
to environmental sustainability as well as economic profitability. Based on our knowledge of
the role of plant-microbe interactions in other systems, we predict that learning to leverage the
plant microbiome to benefit the host and landscape will be a decisive factor in the ultimate

success of bioenergy feedstocks.

The research priorities of lowering feedstock costs and improving year-round feedstock
supplies are globally relevant. In 2019, the world spent $8B (USD) on biofuel and biogas

compared to the $53B estimated to be necessary to meet in the International Energy Agency's
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Sustainable Development Scenario (World Energy Investment, 2020). Thus, it is important to
share BRC research priorities and impacts broadly and to maintain tight coordination and
synergy between researchers within BRCs and our international scientific partners.
Researchers interested in plant microbiome ecology and fundamental biological mechanisms
are needed to bridge their complementary mindsets to address these grand challenges in biofuel

production systems.

A workshop was organized to discuss the needs, challenges, and aspirations of plant-
microbiome research in support of these distinctive objectives in bioenergy crop agriculture
and to set the stage to enable and support large-scale collaborations among the four US-based
BRCs (Box 2) and to produce a communication to share with other researchers who work in
this arena. DOE BRCs are large, multidisciplinary centers spread across the United States with
a focus on addressing grand challenges in biofuel research and accelerating transformational
advances needed to enable cost effective and sustainable production of cellulosic biofuels in
the United States (Peters 2018). The workshop was held virtually on 12 February, 2021 and
attended by 74 people who represented all four BRCs and all levels of researchers, from student
to investigator. Here, we report the outcomes of the sessions and discussions and aim to fuel

momentum in this critical arena of feedstock microbiome research.

Workshop Description

The workshop was divided into two main sessions. The first session focused on current
models of data management strategies that enable successful collaboration, followed by a
keynote presentation on the National Microbiome Data Collaborative (NMDC) highlighting
ongoing efforts to expand the state of the science with accessible and standardized microbiome
datasets, how the data needs of the community could be coordinated, and the vision of the
future NMDC data ecosystem. The second session was focused on sharing perspectives to

prioritize research opportunities for collaboration in these areas.
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The aim of the first session was to provide training and discussion on data sharing
within large collaborations. This session was entitled “Discussion and tutorial on best practices
for computational analyses and data sharing,” and included two discussions based on uniting
BRC data and collaborative opportunities. Guidelines were based on, “FAIR guiding principles
for scientific data management and stewardship” (Wilkinson et al. 2016), and
recommendations based on performing computational analysis of large microbiome datasets
(Wilkinson et al. 2016; Shade and Teal 2015; Shade et al. 2019). The first discussion ~ focused
on how research groups may make data findable, accessible, interoperable, and reusable
(FAIR), specifically highlighting how these integration principles can be used throughout the
data generation and publication processes. A systematic review of large microbiome datasets
and their capacity to protect raw digital data, organize raw digital data, organize digital data
protocols and analysis workflows, and make all digital data public and available was provided.
This effort highlighted the challenge of locating deposited sequence and metabolite data (and
metadata) from published studies and emphasized the challenge and collective need to consider
standards for data sharing and management beyond individual labs for future collective needs.
This discussion was followed by a tutorial that introduced tools for version-controlled data and
protocol sharing, specifically using the GitHub platform. The objective of this tutorial was to
expand the previous discussion of data hygiene and opportunities for data and analysis
standardization by offering practical, concrete examples. Discussion included how to
effectively reproduce previously published figures, along with the opportunities for integrating
with existing collaborative tools. Subsequent discussion focused on opportunities for

collaborative BRC microbiome research to leverage the NMDC.

The second session consisted of  break-out group discussions on  three topic areas
that represent challenges to BRC microbiome research, which were selected based on survey

answers from participants prior to the workshop. These challenges were: 1) priorities and
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standards for collaborative microbiome-related data and measurements, 2) improved
integration of plant metabolites to microbiome research, and 3) linking microbiome data and
processes into existing models used within the BRCs. Below, we summarize the state of the
challenges within BRC microbiome research and key opportunities for future research based

on workshop discussions.

BRC Challenge 1: Priorities and standards for microbiome-related data and

measurements

The tools and measurements for characterizing BRC feedstock microbiomes are similar
to those used more broadly to understand plant-microbe interactions, as recently reviewed

(Trivedi et al. 2021). These measurements provide insights into: 1) the plant-associated

microbial communities and their functions and interactions with the plant host genotype, 2)
traits and performance, and 3) ecosystem and environmental contexts. Standard microbiome
measurements often include the identification and relative quantification of microbial taxa,
including but not limited to bacteria, archaea, fungi, and viruses, as well as assessment or
prediction of their bulk activities and functions. Such characterizations are often done for
aboveground tissues including the phyllosphere but are often extended belowground to root

and soil microbiome niches (Cregger et al. 2018). For the plant hosts, BRC feedstocks include

productive and wild-type varieties, as well as genotypes improved through selective breeding
or engineered for traits of productivity, resilience, specialized metabolism or ease of

deconstruction and biofuel conversion (Hao et al. 2021; Stefani et al. 2009: Belide et al. 2017).

Standard plant measurements often include the plant host genotype and host phenotypic
variation across traits ~ such as biomass, height, leaf area, biomass conversion efficiency, or
disease resistance. As cellulosic biomass is often a key goal for BRC feedstocks, yield and

conversion are important measurements. The management history of a field or feedstock also



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

influences its performance and, especially in younger fields, the documentation of stand age

and environmental context can be important (Ong et al. 2016). Management factors including

fertilization and other crop inputs such as bioinoculants, pesticides, water, tillage, and crop
rotation history are also useful towards understanding the crop environment and their
relationships to yield or sustainability objectives (Ma et al. 2021). Expanding this information
and its relationships to soil and environmental characteristics such as pH, moisture,
temperature, salinity, landscape/field legacy effects, and C and nitrogen (N) turnover are grand
challenges in developing sustainable bioenergy cropping systems. Given the trade-offs and
co-optimization among the sustainability, ecosystem services (land sharing), and yield (land
sparing) objectives of agriculture (Anderson-Teixeira et al. 2012), measurements spanning

environment, plant, and management are required.

Currently, there are few standardized field and plant measurement methods that are
shared across BRC efforts, but there are numerous overlapping data types and needs. The
differences in methodology and foci for measurements is partly due to the diversity of research
questions, allocation of resources within each center, and individual investigator expertise and
interest. In fact, a key realization from the workshop was the need and opportunity for BRCs
to prioritize a small but impactful number of standard measurements that could broadly link
microbiome and plant outcomes (e.g., plant productivity, feedstock conversion).
Recommendation 1.1: Develop a standard set of soil/environment, host, and microbiome
measurements supported by cross-BRC research objectives

Given the breadth of interests across BRCs, our discussions emphasized the need to
prioritize a set of soil/environment, host, and microbiome measurements (e.g., cultivation-
independent and -dependent, biomass, growth stage, metabolite, biological activity rates) that
can support multiple research objectives and lend themselves to inter-site comparisons and

meta-analyses. Given the common objectives across BRCs to improve feedstock yield and
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sustainability, any set of standard measurements should emphasize plant-microbe interactions
that are associated with these objectives, including resilience (e.g., to drought), fertilizer needs
(response to N inputs and limitations), and direct plant-microbe interactions (e.g., mediated by
plant and microbial metabolites). A panel of key plant, environment/soil, and microbial
measurements could be proposed that would be cross-cutting for plant microbiome research,
including that of bioenergy crops.

There also is a need to develop and deploy both digital infrastructure to readily share
standardized data and resources across BRCs, and physical infrastructure to support large-
scale, cross-site experiments. For example, standardized plant-microcosms could provide
tractable, comparative experimental systems for inter-BRC experiments (Box 3) and common
field sites or experimental designs could provide cross-center insights and advances. BRCs
contribute plant, fungal, and microbial genomic resources for the broader community. These
rich genomic resources are available through the Joint Genome Institute database systems as
well as others (IMG/ER, MycoCosm, GOLD, NCBI). A BRC-specific system to share and
place these genomic data in the context of BRC experiments and, in particular, connections to
plant host data and integration between plant and microbial datasets is currently lacking.
Recommendation 1.2: Develop collaborative infrastructure to directly link soil
microbiomes, plant hosts, and feedstock productivity

BRCs are situated to take advantage of recently developed tools and approaches that
have the potential to enhance our understanding of complex plant and soil microbiome
relationships under the context of bioenergy research. There are several infrastructural
advantages among the BRCs, including access to the geographic breadth of multi-site, large-
scale (often long-term) field experiments with shared crops and also access to the core facilities
of the Department of Energy to support sequencing, chemical, and environmental analyses of

both microbes and host plants to allow for the use of cutting-edge interdisciplinary approaches
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and tools. The shared mission among the BRCs of sustainable development and enhanced
performance of biofuel feedstocks provides a clear connection for collaboration. Financial
support through the DOE and the BRCs for workshops, working groups, meetings, and cross-
invitations to seminars further enhances BRCs opportunities for engagement. Thus, the
resources, scale, and technology access are aligned to support BRC efforts to advance plant
microbiome understanding.

For example, maintaining and distributing microbial culture collections is a necessary
but resource intensive activity that is beyond the capabilities of any one research group, and
yet it is expected that sharing isolates across BRCs will be a key activity in the development
and deployment of beneficial microbial consortia for biofuel feedstocks. Establishing a
standard isolate-to-collection workflow, expected timeline, and accountability mechanism
across BRCs to deposit microbial isolates to existing culture resources (that are equipped to
handle, maintain, and make available these isolates to other researchers) would support strain
resource sharing. The BRCs could also benefit from partnerships with central reference
microbial strain repositories, such as the American Type Culture Collection (ATCC)

(American Type Culture Collection 1997) or the Fungal Biodiversity Centre (CBS-KNAW).

BRCs could do their part to provide resources to support existing culture collection
infrastructure and could coordinate to regularly release updates of BRC-relevant depositions
and associated metadata among researchers.

Other discussed tools with potential cross-BRC utility include quantitative stable

isotope probing (Hungate et al. 2015), high-throughput cell sorting (Hatzenpichler et al.

2020), and novel culture-dependent techniques (Jo et al. 2021; Molina-Menor et al. 2020).

Tools that measure plant physiological traits in real-time such as microchips (Pagay et al.
2014) and at large scales such as remote sensing using hyperspectral cameras mounted on

UAVs (Li et al. 2020), aircraft, and satellites may also guide researchers to decipher factors
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that drive plant performance and provide meaningful information to integrate with other
current measurements. Standardized fabricated ecosystems (e.g., ECOFABS - see Box 3)
provide opportunities for more controlled cross-investigator mechanistic microbiome
measurements. Computational frameworks, such as artificial intelligence (Al)

implementation in high resolution time-series analysis (Nauta et al. 2019; Coenen et al.

2020), may be used to generate computational causal inferences, investigate how the
microbiome relates to bioenergy crop phenotype, and improve our ability to navigate the
large datasets we currently have, such as the ‘omics.

Since their inception in 2007, DOE BRCs have produced informative plant
microbiome research through the development of large-scale collaborations and open-source
resources. These include multi-omic datasets for targeted feedstocks such as poplar and
switchgrass, and their associated microbiome members, including mycorrhizal fungi and

plant-associated bacteria (Martin and Bonito 2012; Brown et al. 2012). Identifying a set of

common, impactful questions that can be addressed across bioenergy crops and centers
continues to provide insight into how to leverage the biofuel crop microbiome to achieve
yield and sustainability objectives and advance beyond what could be achieved in location- or
crop-specific research programs. Strategies to standardize microbiome, plant, and
environmental measurements, share field sites and experimental approaches, deposit and
share BRC microbial isolates, and collectively adopt cutting-edge technology will foster
project integration and data reuse.
BRC Challenge 2: Integration of plant metabolites to microbiome research

To understand the role of the soil and plant microbiomes on sustainable production of
bioenergy crops, we need to study these interactions in these systems from the perspective of
both the microbiome and the plant. Bioenergy microbiomes can directly or indirectly regulate

plant metabolism (Pang et al. 2021), and similarly plant metabolites can influence the
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composition and function of microbiomes in above- and below-ground tissues. Consequently,
microbiome research in the BRCs requires the integration of plant and microbial metabolites
to understand these interactions. The rapid development of metabolomics protocols and
platforms currently provides new opportunities and challenges for advancing the elucidation

of plant-microbiome interactions, including signaling, substrate exchange, and utilization.

There is a wide array of mass spectrometry (MS)- and nuclear magnetic resonance
spectroscopy (NMR)-based analytical platforms that are suitable for generating broad
spectrum, untargeted metabolomic profiles for characterizing the metabolites of plants and the
microbial associates that constitute their microbiome. Although these platforms vary in their
dynamic range, mass accuracy and range of detection, sensitivity and speed of analyses, and
chromatographic resolution, they each have their utility in metabolomics. There is no single
analytical platform that captures the breadth of plant and microbial metabolomes, but the
application of different platforms is complementary, ensuring a greater breadth of coverage.
Currently, reference metabolite databases are constrained by limited references, annotation
errors due to co-eluting isobaric metabolites (i.e., metabolites whose molecular ions have
identical mass and hence elemental composition), and the need for multiple chromatographic
separations and ionization modes to obtain a greater coverage of the metabolome (Xiao et al.
2012). Employing complementary approaches greatly empowers these platforms, including the
ability to conduct MS/MS experiments for increasing fragmentation of parent ions to inform
m/z identity, and even coupling NMR for structural elucidation of unknowns. The rapid
development and widespread availability of MS analytical platforms for metabolomics,
including metabolite database expansion and compilation on websites that allow searchable
metabolite queries, set the stage for major advances for characterizing plant-microbiome

interactions.
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The major challenges to comprehensive metabolite profiling across BRCs include the
large number of unannotated metabolites, difficulty in attributing metabolites to the correct
organismal partner in mixed communities, challenge of deciphering the metabolic exchange
between interacting partners, and elucidation of metabolically complex plant defense signaling
cascades needed to distinguish microbial friend from foe to enable symbiosis or induce defense
responses. A cross-institutional approach plus sharing genetic and genomic resources can
address these current constraints. Despite the lack of available commercial standards, many
labs have developed robust internal, user-defined databases that can be brought to bear on
a given critical unidentified metabolite. Many unknowns are designated as “known unknowns”,
having been observed as responsive in previous analyses and potentially by several research
groups. Sharing the fragmentation patterns of critical unidentified metabolites between
research groups can close that information gap (Wang et al. 2016) or at least identify high-

value unknowns.

Systems biology has already had a tremendous role in contributing to the elucidation
of unknowns, as highlighted by interrogation of microbial gene sequences for known
biosynthetic pathways using antibiotics and secondary metabolite analysis to identify gene
products that are potentially present given the presence and activity of specific microorganisms

(Medema et al. 2011). Additionally, multi-omic network models that include an integrated

metabolomics data layer associated with single nucleotide polymorphism (SNP) variation can

provide clues to the identity of unknown metabolites (Weighill et al. 2018, 2019). Such a multi-

omic network model generated for one species can inform metabolite identification for other
species if there is a high degree of homology between the species with respect to biosynthetic
pathways. Although a metabolite may be categorized as an unknown, much information on its
identity can still be derived from its mass to charge ratio that can be used to generate

hypothetical identities and support subsequent targets for synthesis and subsequent
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confirmation. Furthermore, sorting out where and by whom a metabolite signal is generated
can also be informed by a systems biology approach. For example, succinic acid accumulation
when the fungal ectomycorrhizal symbiont Laccaria bicolor is associated with Populus
trichocarpa roots is likely to be driven by the fungus degrading the plant’s aromatic
metabolites, as inferred from the upregulation of fungal transcripts of the pathway enzymes

required to conduct the catabolism (Tschaplinski et al. 2014). Therefore, coupling MS

databases, systems biology databases, and network analyses provides a powerful set of tools
and approaches that can inform the underlying mechanisms driving plant-microbiome

interactions.

Initiatives such as NMDC highlight the need for standardized metadata to draw

meaningful conclusions from microbiome studies (Vangay et al. 2021). Integrated multi-omics

approaches also need to incorporate data standards to enhance science reproducibility and
results comparison across BRCs. Establishing best practices, including standards for integrated
dataset collection could minimize variation in key steps during the data generation process
including sampling, processing, and analytical strategies. In plant-microbe metabolomics
research, we recognized that describing the plant developmental stage, how the sample is
collected and stored, and which analytical tools are used during the study must be reported
accurately.
Recommendation 2: Support BRC collaboration within a standard, tractable, and
representative ecosystem

An opportunity for inter-site collaboration was identified in using fabricated
ecosystems to address diverse questions across BRCs. Such fabricated ecosystems
(‘mesocosms’) provide both an opportunity to increase the control, reproducibility,
replicability, and observability of plant phenotypes and plant-microbe ecological interactions

(Box 3). Standardized fabricated ecosystems (EcoFABs, https://doi.org/10.1111/nph.15662)
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or other types of “rhizoboxes” can provide opportunities to: 1) enable scientists to benchmark,
replicate, and build on each other’s results across BRCs, 2) create standardized data sets
suitable for machine learning and other types of meta-analyses, and 3) harness advanced
technologies (e.g., genetic, genomic, and metabolomic) to determine causal mechanisms

underlying plant and microbial interactions.

BRC Challenge 3: Linking microbiome data and processes into existing BRC models

Mathematical models provide a way to integrate data and guide engineering efforts
towards a desired outcome. Within the BRCs, microbial activity is represented in two distinct
types of modeling approaches employed to determine the  productivity and sustainability of
bioenergy systems. First, ecosystem models are used to understand bioenergy crop yields and
the environmental impact and performance of these feedstocks (e.g., soil C sequestration, N
use efficiency, etc.). Second, biomass conversion models are used to study the efficacy of
microbially-mediated biological conversion of plant biomass to biofuels and valuable products.
The results of these two types of modeling approaches can then be integrated with techno-
economic assessment (TEA) and life-cycle assessment (LCA) accounting frameworks to
estimate the total costs and cradle-to-grave environmental impacts, respectively, of bioenergy
production.

Process-based ecosystem models such as EPIC (Zhang et al. 2010), DayCent (Field et

al. 2018), DNDC (Brandes et al. 2018), and SWAT (Jager et al. 2015) are also widely used in

bioenergy crop assessment to interpret and generalize limited, discrete field measurements
across space and time. Such models aim to predict energy crop yields across the heterogeneous
soils, climates, and land use histories of agricultural landscapes, including lands with marginal

productivity for conventional crops (Qin et al. 2015) and aim to enhance understanding of

feedstock production economics and total life cycle impacts of biofuel production. Ecosystem
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models can also predict how biofeedstock production impacts microbially driven processes
including changes in soil C storage, emissions of nitrous oxide and other agricultural
greenhouse gases, emissions of ammonia and other air pollutants, leaching of nitrate and other
water pollutants, and evapotranspiration and hydrological impacts. The widely used ecosystem
models listed above generally rely on conceptually-defined soil carbon pools and semi-
empirical representation of soil microbial processes, lacking specificity on microbial biomass,

taxonomy, and functional characteristics (Berardi et al. 2020; Campbell et al. 2018).

There is widespread effort to expand these existing models or create new models that
reflect an updated understanding of soil organic matter stabilization mechanisms (Lehmann &
Kleber 2015) and more explicit representation of microbial biomass, functional grouping of
microbial species, and microbial activity. Models such as MEND (Wang et al. 2013), CORPSE
(Sulman et al. 2014), and MEMS (Robertson et al. 2019) are built around physically-
measurable soil carbon pools and include dynamic microbial pools based on biomass and
functional potential that influence soil processes such as decomposition rates. Parameterizing
such models is a fundamental challenge (Berardi et al. 2020), but that becomes more tractable
as spatially-explicit data on microbial communities becomes more available world-wide
(Crowther et al. 2019).

In the process of converting cellulosic biomass into valuable bioproducts, mathematical
models have been successfully used to guide bioengineering efforts to increase production. For
example, genome-scale models embody a comprehensive list of metabolic processes and have

been used to recommend gene knockouts that increase overall yield (Fowler et. al 2020; Maia

et al. 2015; Otero et al. 2013; Xu et al. 2011). Further, '3C metabolic flux analysis can be used

to obtain an insightful description of metabolic fluxes inside a cell, and this knowledge has
been leveraged to identify engineering targets leading to improved production (Chowdhury et

al. 2014; Costella and Martin 2018; Foster et al. 2021; Khodayari and Maranas 2016). Kinetic
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models provide a dynamic picture of metabolism as a function of time that can be used to
effectively guide engineering. Furthermore, data-driven processes based on machine learning

algorithms (Lawson et al. 2021) have also helped design metabolic pathways which increased

productivity (Jervis et al. 2019; Radivojevi¢ et al. 2020; Zhou et al 2018). These models are
contingent on large datasets. Thus, standardized data collection and sharing across BRCs would

advance these research efforts.

Recommendation 3: Strategic data collection within model ecosystems

Despite the use of modelling in the production of lignocellulosic biofuels, significant
challenges remain. This type of sustainability analysis provides a strong anchor point for
collaboration across the BRCs and broader community. Standardized data collection through
time for use in models was identified as a potential synergistic action across BRCs. In the case
of ecosystem models, at minimum, microbial biomass data should be collected during soil
sampling and laboratory analysis. Specific sampling and analysis protocols will vary depending
on the models adopted. For example, a microbially-explicit version of DayCent in development
will differentiate microbial biomass in the litter layer versus the soil (Berardi et al. 2020),
whereas CORPSE differentiates between the rhizosphere and bulk soil (Sulman et al. 2014)
and MEND explicitly represents microbial function via incorporation of microbial enzymatic
data (Wang et al. 2013). Such data collection complements ongoing efforts to supplement soil
carbon analysis with physical fractionation that separates specific organic matter pools such as
particulate organic matter and mineral-associated organic matter (Lavallee et al. 2020). Further,
bottom-up controlled microcosm experiments using plant hosts with defined microbial
communities can provide a suitable intermediate for linking small-scale microbial ecology to
larger-scale ecosystem function. Such work also has direct relevance for engineering growth-

promoting microbial inoculum, a goal of some BRCs.

17



433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Conclusions

During the past decade, DOE BRCs have made significant contributions to the science,
technology, and resources needed for efficient conversion of lignocellulosic feedstocks to
biofuels, totaling over 3600 publications since 2007. However, sustainably produced and
profitable biofuel production systems still require further development and research. A
convergence of fundamental understanding of plant and microbial biochemistry, genomics, and
ecology will accelerate progress toward the identification and utilization of key plant
determinants and traits that drive adaptive microbiome activities and underlying plant health,
yield, composition, sustainability, and resilience.

In conclusion, this workshop highlighted the need for cohesive standard data
management for successful collaboration, as well as improved integration of plant and
microbiome workflows across BRCs which link microbiome data and processes into existing
BRC models and across the plant microbiome community. Thus, thinking systematically,
collaboratively, and interactively will best leverage BRC research expertise and capabilities to
tackle bioenergy and sustainability challenges. Notably, investments in the proposed key
priorities should also provide data, tools, and models that can be leveraged by other researchers

in the field.
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Box 1: Objectives of bioenergy feedstock agriculture

Carbon neutrality: Agricultural production is associated with
greenhouse gas (GHG) emissions from the production of fertilizers and
other inputs, on-farm energy use, changes in soil carbon storage, and
other soil trace gas emissions. Bioenergy crop production should
ideally be at least net carbon neutral (with soil carbon sequestration
offsetting production of other GHGs), or, more desirably, carbon
negative. Practically, this requires sustainable agricultural
management practices that minimize inputs such as fertilizer and
irrigation use and promote soil C sequestration by reducing or
eliminating tillage and growing perennial bioenergy crops such as
switchgrass, miscanthus, and poplar that allocate substantial carbon to
roots and root exudates.

Marginal land utilization: Growing bioenergy crops on prime
agricultural land increases costs and leads to undesirable “food versus
fuel” competition which remains a key criticism of first-generation
bioenergy systems-based corn, sugarcane, sorghum and other food
crops. Therefore, the BRCs specifically and the bioenergy industry
more generally increasingly target the production of dedicated
bioenergy crops on land that is less suitable for food production, i.e.,
“marginal land”. While the specific definitions of marginal lands vary
widely, the ability of bioenergy crops to contend with suboptimal
conditions such as transient flooding, drought, poor soil quality, and
possible pollutants, high temperatures, or wind is critical for lowering
production costs and conflicts with existing agricultural production.

Sustainable production: Finally, minimizing the environmental
impact of bioenergy crop agriculture is also a key objective.
Bioenergy cropping systems should increase or preserve soil health
and quality, local biodiversity, water quality, and other key ecosystem
services. Environmental impact may be estimated by measuring the
ecological footprint of bioenergy agroecosystems and applying a
systems-level analytical approach.
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Box 2: BRC vision statements along with locations of all
collaborative institutions that are associated with a specific BRC.

CABBI - Integrate recent advances in agronomics, genomics, and
synthetic and computational biology to increase the value of energy
crops — using a “plants as factories” approach to grow fuels and
chemicals in plant stems, an automated foundry to convert biomass
into valuable chemicals, and ensuring that its products are
ecologically and economically sustainable.

CBI — Accelerate domestication of bioenergy-relevant plants and
microbes to enable high impact, value-added fuels and coproduct
development at multiple points in the bioenergy supply chain.

GLBRC - Develop sustainable biofuels and bioproducts from all
usable portions of dedicated energy crops grown on marginal,
nonagricultural lands.

JBEI — Convert bioenergy crops into economically-viable, carbon-
neutral, biofuels and renewable chemicals currently derived from
petroleum, and many other bioproducts that cannot be efficiently
produced from petroleum.

OCABBI @CBI @GLBRC @ JBEI
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Box 3: Existing fabricated ecosystems include single plant-scale
EcoFAB devices.

EcoFAB device consists of an autoclavable physical chamber
(enabling gnotobiotic studies), target plant (optional), growth
medium (e.g., soil, sand, media), and the microbial communities to
be tested. EcoFABs are designed for ‘omics analysis and high-
resolution rhizosphere imaging. The ‘1.0’ EcoFAB devices use 3-
D printing to create molds for casting the biocompatible polymer
polydimethylsiloxane (PDMS) into the upper portion of a fluidics
chamber (Inset). This is a very flexible approach that enables rapid
design alteration to address specific research questions. More
recently, ‘2.0’ EcoFAB devices have been constructed using
injection molding of polycarbonate. These standardized devices
can be mass produced to support large-scale studies of plants and
rhizosphere microbial communities. This is subsequently attached
to a microscope slide, completing the chamber. Both systems can
be sealed to support analysis of volatile metabolites and stable
isotope probing/labeling experiments. They have been successfully
used to study a diversity of plants (Brachypodium, Arabidopsis,
Meticago, switchgrass, etc.) and microorganisms. Data collected in
duplicated systems in different labs had high reproducibility (Sasse
et al. 2018) suggesting that they will be suitable for inter-BRC
collaborations.

Fabricated ecosystems (EcoFAB) showing Brachypodium distachyon
growing in hydroponic solution. Image credit: Kateryna Zhalnina. Image
credit: Thor Swift/Berkeley Lab.
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