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SPACE-TIME REDUCED-ORDER MODELING FOR UNCERTAINTY
QUANTIFICATION

RUHUI JIN ∗, FRANCESCO RIZZI † , AND ERIC PARISH ‡

Abstract. This work focuses on the space-time reduced-order modeling (ROM) method for
solving large-scale uncertainty quantification (UQ) problems with multiple random coefficients. In
contrast with the traditional space ROM approach, which performs dimension reduction in the spatial
dimension, the space-time ROM approach performs dimension reduction on both the spatial and
temporal domains, and thus enables accurate approximate solutions at a low cost. We incorporate
the space-time ROM strategy with various classical stochastic UQ propagation methods such as
stochastic Galerkin and Monte Carlo. Numerical results demonstrate that our methodology has
significant computational advantages compared to state-of-the-art ROM approaches. By testing the
approximation errors, we show that there is no obvious loss of simulation accuracy for space-time
ROM given its high computational efficiency.

1. Introduction. Quantifying uncertainties in physical systems plays an impor-
tant role in numerous fields, including climate modeling [6], hypersonic aerodynamics
[4, 8] and quantum mechanics [11]. It has long been a computational challenge to
model and simulate large-scale dynamical and control systems with high-dimensional
parametric uncertainties. Researchers have been developing model reduction meth-
ods [10, 3] to tackle this computational bottleneck. By building and working with
a reduced-order model (ROM) as a qualified approximation to the full-oder model
(FOM), the overall computational complexity is reduced significantly.

Current ROM studies mostly consider the space ROM method and focus on only
spatial dimension reduction but maintain the full dimensionality of the temporal do-
main. As a result, space ROMs can have limited computational savings for unsteady
problems characterized by, e.g., small required time steps or long simulation hori-
zons. Regarding the UQ approach, on one hand, Monte Carlo (MC) is by far the
most popular method applied in the ROM workflow [12, 13] due to its reliability and
implementation simplicity. On the other hand, other types of UQ propagation meth-
ods, for example, the stochastic Galerkin (SG) technique [1, 9] based on polynomial
chaos expansion, have advantages of good spectral accuracy and convergence over the
classical MC.

In this work, we study the space-time ROM method [2, 5] constructed via Galerkin
projection and space-time proper orthogonal decomposition. This novel approach is
considered a variation of the space ROM. Its implementation simply stacks the space
and time dimensions to achieve the model reduction by finding a lower-dimensional
representation for both spatial and temporal domains. The method simultaneously
approximates a large-scale PDE model for all points in space and time within a
much faster computing time compared to the commonly used space ROM method.
Additionally, the space-time ROM approach is often equipped with more favorable
error bounds and stability properties than space ROMs [5].

We apply various UQ propagation techniques such as Monte Carlo and stochas-
tic Galerkin in the space-time ROM framework. We test the described methodology
on advection-diffusion PDE problems with multi-dimensional parametric uncertain-
ties. Our numerical results show that the space-time approach can result in huge
computational speed-ups while maintaining accurate approximated solutions.
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The main contributions of this work are:
1. We study the space-time ROM method and combine it with the well estab-

lished stochastic Galerkin (SG) technique. By constructing polynomial basis
on the reduced space-time domain, we demonstrate that the space-time ROM
with SG has good accuracy and a faster computing time as compared to tra-
ditional ROM techniques (e.g., the space ROM with MC sampling).

2. We implement the proposed computational scheme for one and two-dimen-
sional advection-diffusion-reaction PDE problems.

3. We provide thorough numerical assessments for the space-time ROM with
respect to the computational time, approximation errors and convergence
property given increasing number of samples (MC) and polynomial degrees
(SG).

2. Mathematical background.

2.1. Full-order model. We consider the numerical solution to the parametrized
dynamical system:

u̇(t,µ) = f(u(t,µ), t,µ)), u(0,µ) = u0(µ) (2.1)

where
1. µ ∈ D ⊂ RNµ denotes uncertain parameters;
2. u : [0, T ]×D → RNs is the time-dependent, parametrized state as the solution

to problem (2.1);
3. f : RNs × [0, T ]×D → RNs is the velocity;
4. u0 ∈ RNs is the initial state.

We aim to understand how the system state u(t,µ) responds as a function of time
t and uncertain parameters µ. To this end, we apply numerical simulation techniques
to solve the UQ problem (2.1).

We now introduce the time-discretized form of the main problem (2.1). In par-
ticular, we discretize the temporal domain [0, T ] into Nt time instances characterized
by tn = n∆t where ∆t denotes the time step. For example, one classical time-
discretization method is the Crank-Nicolson method which yields a sequence of dis-
crete solutions un(µ) ≈ u(tn,µ) ∈ RNs as the implicit solution to the system of
equations at each time step n = 1, . . . , Nt:

rn(un,un−1,µ) : RNs ⊗ RNs ⊗ RNµ → RNs

:=
un − un−1

∆t
− 1

2

(
f(un, tn,µ)− f(un−1, tn−1,µ)

) (2.2)

with initial condition u0 = u0(µ). Note the parametric dependence of the state has
been suppressed in the above for simplicity. Thus a discrete representation of the
FOM system is

[u1(µ),u2(µ), . . . ,uNt(µ)] ∈ RNs ⊗ RNt .

2.2. Projection-based model reduction. The FOM solving process is com-
putationally expensive in practice when the spatial dimension Ns and temporal di-
mension Nt are large. The reduced-order modeling technique is proposed to overcome
this computational challenge. It follows an offline-online paradigm. Please see the
workflow Figure 2.1 below.

In the offline phase, we sample and plug in a certain number of uncertain pa-
rameter instances into the full-order model and solve the system accordingly. The
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obtained sample solutions are collected to form a snapshot matrix. We then identify
a low-dimensional subspace by performing proper orthogonal decomposition (POD)
for the state snapshots. The governing equation (2.1) is projected onto this trial sub-
space to create a reduced-order model. The result of this process is a reduced-order
model which can be solved more efficiently.

Offline FOM training

Find trial sub-
space via POD

Construct ROM via
Galerkin projection

Solve ROM system

Fig. 2.1. ROM workflow

2.3. Trial subspace and POD.

2.3.1. Spatial trial subspace. Suppose in the offline training procedure, we
obtain a collection of snapshot solutions for Ntrain randomly drawn parameter in-
stances :

Utrain =
[
u1(µ1), . . . ,uNt(µ1), . . . ,u1(µNtrain

), . . . ,uNt(µNtrain
)
]
∈ RNs×(NtNtrain).

The proper orthogonal decomposition method identifies a lower-dimensional trial
subspace represented by an orthonormal matrix Φ from the above training solution
set. In particular, we consider the optimization problem in a least squares sense:

arg min
Φ∈RNs×K

‖ΦΦ>Utrain −Utrain‖22, subject to Φ>Φ = IK , (2.3)

where K is the subspace dimension. For the choice of K, we set a relative energy
tolerance threshold etol and compute K such that the selected basis Φ ∈ RNs×K
preserves the amount of energy for the training solution set Utrain that exceeds the
threshold.

To solve (2.3), we compute the singular value decomposition of Utrain: L, s, =
SVD(Utrain). The subspace dimension K is determined by

K := arg min
K∈N

∣∣∣∣∣etol −
∑K
i=1 s

2
i

‖s‖22

∣∣∣∣∣ .
We then select the first K columns of the left singular vectors L to form the basis
Φ ∈ RNs×K .
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2.3.2. Space-time trial subspace. In the space-time formulation, instead of
expressing residuals of all time steps as in (2.2), we formulate the residual in just one
system:

−→r (−→u (µ), t,µ) = 0 ∈ RNsNt , (2.4)

where we concatenate solutions and residuals of all time steps along one dimension,
i.e. −→u (µ) = [u1(µ)>, . . . ,uNt(µ)>]> ∈ RNsNt .

Identifying a space-time trial subspace is rather similar to identifying the spatial
subspace. To be more specific, given a collection of space-time training solutions

−→
Utrain = [−→u (µ1), . . . ,−→u (µtrain)] ∈ R(NsNt)×Ntrain ,

we apply POD to find a lower-dimensional subspace that captures most of the energy
of the above solution set.

2.4. Galerkin projection. After identifying a basis Φ of the training solution
set, we apply Galerkin projection to construct a reduced-order model. We denote the
approximated low-dimensional solution û(µ) ∈ RK . By the assumption of u(µ) ≈
Φû(µ), we impose the residual of the full-order model to be orthogonal to the basis:

Φ>r(Φû(µ), t,µ) = 0 ∈ RK (2.5)

and solve the above reduced system for û(µ).
Note that the above general forms of state solution û and residual r in (2.5) can

be replaced by
−→
û ,−→r for the space-time ROM approach.

3. Uncertainty quantification methods. In the above section, we introduced
the spatial-Galerkin and space-time-Galerkin ROMs to reduce the computational cost
associated with solving the forward model. This section details how these ROMs can
be combined with several classical UQ propagation methods to solve the underlying
UQ problem. In particular, we consider Monte Carlo (MC) sampling and stochastic
Galerkin projection.

3.1. Monte Carlo sampling. The MC methodology simply follows as:
1. draw samples of random parameters from certain probability distributions;
2. solve the system (2.1) based on these parameter instances;
3. compute quantities of interest (e.g., mean, variance) from the ensemble of

solutions.

3.2. Stochastic Galerkin. We first provide some background of polynomial
chaos expansion (PCE) which the stochastic Galerkin approach is built upon. We
consider a parametrized linear system

A(µ)u(µ) = b(µ) ∈ RN , (3.1)

where the linear operators A : D → RN and b : D → RN are constructed correspond-
ingly from the residuals of spatial domain (2.2) (N = Ns) or space-time domain (2.4)
(N = NsNt), with initial condition given by u0 = u0(µ) ∈ RNs .

The idea is to approximate the numerical solution function u(·) : D → RN by
using a spectral approximation that lies in the span of a finite set of polynomials

{ψj(·)}
Nψ
j=1 ⊂ L2(D). The mathematical formulation is as follows:

u(µ) ≈ ũ(µ) =
(
ψψψ(µ)> ⊗ IN

)
m, (3.2)
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where ψψψ(µ) = [ψ1(µ), . . . , ψNψ (µ)]> ∈ RNψ denotes the collection of the polynomial
basis and m ∈ RNNψ is the coefficient vector .

Thus we can define the approximation residual with respect to polynomial coef-
ficients and uncertainty parameters,

r(m,µ) : RNNψ ⊗ RNµ → RN
:= A(µ)

(
ψψψ(µ)> ⊗ IN

)
m− b(µ)

=
(
ψψψ(µ)> ⊗A(µ)

)
m− b(µ).

(3.3)

We compute the unknown coefficients m by the residual formula.
We now formally introduce the stochastic Galerkin approach to solve for the

coefficients m in (3.3). Given a density function ρ for the probability space D, we
define the inner product:

〈g(µ), h(µ)〉ρ =

∫
D
g(µ)h(µ) ρ(µ)dµ, (3.4)

where g, h ∈ L2(D) are functions. The expectation of a function g is given by:

E[g] =

∫
D
g(µ) ρ(µ)dµ. (3.5)

To solve for the coefficients in (3.3), the stochastic Galerkin method asks to impose
orthogonality on the residual of the system (3.3) with respect to the inner product
〈·, ·〉 (3.4). That is to say, we restrict the residual to be orthogonal to the polynomial
bases, i.e.

〈ψj , ri(m)〉ρ = E[ψj ri(m)] = 0,

for all residual dimensions i = 1, . . . , N, and stochastic dimensions j = 1, . . . , Nψ. An
alternative vector expression is

E[ψψψ ⊗ r(m)] = 0 ∈ RN Nψ .

From the PCE residual formula given in (3.3), we end up with solving

E[ψψψψψψ> ⊗A] m = E[ψψψ ⊗ b] (3.6)

and form an approximating function solution ũ(·) by (3.2) at each time step t =
1, . . . , Nt.

Similarly, for the stochastic Galerkin ROM solution û(·) : D → RK , based on the
Galerkin projection approach shown in (2.5), we solve coefficients m̂ ∈ RKNψ in a
reduced system:

E[ψψψψψψ> ⊗Φ>AΦ] m̂ = E[ψψψ ⊗Φ>b] (3.7)

and formulate û(·) by
(
ψψψ(µ)> ⊗ IK

)
m̂.

We would like to remark that, for SG space ROM method, we solve (3.7) for
function û(·) at each time step, while in the SG space-time ROM scheme, we solve

(3.7) and obtain function solution
−→
û (·) for all time steps at once. We additionally

remark that both the SG space ROM and SG space-time ROM methods result in
significantly smaller solution vectors than the standard SG approach and are thus
significantly more computationally tractable.



6 Space-time ROM for UQ

4. Numerical experiment I: 1D parametrized advection-diffusion prob-
lem. We focus on the numerical solution of the one-dimensional parametrized advec-
tion -diffusion problem with initial and boundary conditions:

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
,

u(0, t, (c, ν)) = 0, ∀ t ∈ [0, 1], (c, ν) ∈ D

u(x, 0, (c, ν)) = 0, ∀ x ∈ [0, 1], (c, ν) ∈ D

(4.1)

where the state u : [0, 1] × [0, 1] × D → R. Here, the wave speed c ∼ N (1, 0.15) and
the diffusion coefficient ν ∼ U [0.01, 0.02]. We set the initial condition to be û0 = 0
for the space ROM, which exactly enforces the homogeneous initial conditions of the
original problem (4.1). The homogeneous initial conditions are trivially satisfied for
the space-time ROM. It is noted that more complex initial conditions can be handled
by building an affine trial subspace centered about the initial conditions.

We apply the backward difference scheme for spatial discretization with Ns = 255
spatial degrees of freedom. For time discretization, we employ the Crank-Nicolson
method with uniform time step ∆t = 0.001 and implicitly solve results for all Nt =
1/∆t = 1000 time instances. For consistency, we use the same time step in the online
phase of both FOM and space ROM approaches and solve the system iteratively at
each time step. For the space-time ROM method, we directly obtain the solution at
all time steps.

In terms of the ROM solving workflow — see Figure 2.1, we set the number of
training samples to be 20 in the offline phase and select a trial subspace that captures
at least 99.9999% of the energy in the original snapshot solution set.

4.1. Numerical results. We first consider ROMs equipped with the Monte
Carlo sampling approach for the UQ problem (4.1). In what follows, we discuss the
computational efficiencies of space ROM and space-time ROM methods in comparison
with the FOM solutions. The computation time of a ROM method is calculated as
the total running time of:

finding trial subspace + building ROM system + solving ROM system. (4.2)

We test FOM and ROM methods on 10, 000 MC samples and give a detailed time
assessment for space and space-time ROMs in Table 4.1. From the table, we can see
that the actual solving time (the third column) of the space-time ROM method is 8000
times lower than the time of space ROM, which shows the computational advantages
of the space-time ROM approach.

Table 4.1
Computation time for each step in the workflow (unit: second).

find trial subspace build ROM solve ROM

space ROM 0.606 0.005 245.507

space-time ROM 0.197 0.370 0.323

To evaluate ROM methods’ efficiency, we employ the speed-up metric, i.e., the
result of FOM’s computation time divided by ROM’s computation time given the
same number of Monte Carlo samples. These time results are obtained by the same
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experiment for Table 1. It is shown in Figure 4.1 that the MC space-time ROM method
has much greater (3000 times) speed-up compared to the space ROM method.

Fig. 4.1. Monte Carlo ROM speed-up.

We proceed to investigate the convergence of the space and space-time ROM
methods. Given a certain number of Monte Carlo samples, we plot the relative errors
of solution mean and variance respectively for FOM, space ROM and space-time ROM
methods. The relative errors for solution mean and variance are defined as follows:

‖E[u]− sample mean[Φû]‖2
‖E[u]‖2

,
‖var[u]− sample variance[Φû]‖2

‖var[u]‖2
,

where E[u], var[u] are the expectation and variance of true solution obtained by 12
million FOM MC samples. sample mean[Φû] and sample variance[Φû] denote the
empirical evaluation for approximated solutions by MC sampling. Note that in the
FOM setting, the projection basis Φ is simply the identity matrix.

Regarding the reproducibility of the experiment, we set a random seed and draw
10, 000 pairs of random samples to run the test. The errors shown in Figure 4.2 are
averaged results from 5 different repetitions of the experiment.

In Figure 4.2, all three methods converge well as the number of MC samples
increases. The MC FOM method achieves the lowest solution errors, while the MC
space-time ROM method in general has the largest errors, especially for the solution
variance. We emphasize that the accuracy of both the space and space-time ROMs
can be improved by using more basis vectors. Moreover, from the observation on the
curves’ tendency, the stability of the three methods are rather similar. These numer-
ical results imply space-time approach in general owns good accuracy and stability
properties.

Another important UQ propagation method is stochastic Galerkin based on poly-
nomial chaos expansion (PCE) — see Section 3.2 for details. Following the same
layout in the Monte Carlo case, we are interested in the computational speed-ups and
convergency properties of stochastic Galerkin ROM approaches.

In order to demonstrate the computational efficiency, we plot the space and space-
time ROM methods’ speed-ups depending on various SG approximation polynomial
degrees in Figure 4.3. The speed-up gradually increases as the polynomial degree
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(a) solution mean (b) solution variance

Fig. 4.2. Monte Carlo convergence: relative error versus number of samples.

grows. Moreover, the space-time ROM method achieves greater speed-ups than the
space ROM.1

Fig. 4.3. stochastic Galerkin ROM speed-up.

We discuss the convergence performances of SG FOM and ROM methods. Simi-
larly, we plot the relative errors of solution mean and variance as quantities of interests
in Figure 4.4. The relative errors in the SG setting are defined as:

‖E[u]− E[Φû]‖2
‖E[u]‖2

,
‖var[u]− var[Φû]‖2

‖var[u]‖2
,

where the expectation and variance of the true solution obtained by 12 millions FOM
MC simulations. We use integrations like (3.5) to calculate the expectation and
variance for approximated solution function Φû.

Figure 4.4 shows that FOM, space ROM and space-time ROM implemented by the
stochastic Galerkin strategy all converge smoothly as the approximation polynomial

1Computational times are reported from one run only. We expect that averaging over multiple
runs will smooth the observed trends; in particular, the space ROM at polynomial degree 5.
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degree increases. Similar to the MC case, space-time SG ROM has slightly larger
errors than the other two methods. We again emphasize that the accuracy of the
space and space-time ROM can be improved by including more basis vectors.

(a) solution mean (b) solution variance

Fig. 4.4. stochastic Galerkin convergence: relative error versus maximal polynomial degrees.

5. Numerical experiment II: 2D parametrized advection-diffusion
problem. In this section, we consider a rather similar advection-diffusion problem
to (4.1), but in higher dimensions and with more parameters. Specifically, we con-
sider the following two-dimensional parametrized system with initial and boundary
conditions:

∂u

∂t
+ b cos(

π

3
)
∂u

∂x
+ b sin(

π

3
)
∂u

∂y
+ σu = ν

(
∂2u

∂x2
+
∂2u

∂y2

)
,

u((0, y), t, (b, σ, ν)) = 0, ∀ y ∈ [0, 1], t ∈ [0, 2.5], (b, σ, ν) ∈ D

u((x, 0), t, (b, σ, ν)) = 0, ∀ x ∈ [0, 1], t ∈ [0, 2.5], (b, σ, ν) ∈ D

u((x, y), 0, (b, σ, ν)) = 0, ∀ (x, y) ∈ [0, 1]× [0, 1], (b, σ, ν) ∈ D

(5.1)

where the state u : [0, 1] × [0, 1] × D → R. Here, the speed b ∼ N (0.5, 0.1), the
reaction coefficient σ ∼ U [0.003, 0.005] and the diffusion coefficient ν ∼ U [0.9, 1.1].

Similarly, we apply the second-order backward difference scheme for spatial dis-
cretization with Nsx = 63, Nsy = 63 nodes respectively in the x and y directions,
hence total Ns = Nsx × Nsy = 3969 degrees of freedom on the spatial domain. We
still apply the Crank-Nicolson method with uniform time step ∆t = 0.005 and im-
plicitly solve results for all Nt = 2.5/∆t = 500 time instances.

We set the number of training samples to be 20 in the offline phase and select a
trial subspace that captures at least 99.9999% of the energy in the original snapshot
solution set.

We first show the computational efficiencies of the MC space ROM and space-
time ROM methods. The computation time of a ROM method is calculated as same
as in (4.2).

In order to identify a spatial trial subspace for the numerical solution of (5.1),
one needs to do a singular value decomposition on a Ns × NtNtrain = 3969 × 10000
snapshot matrix that has a large number of columns. This procedure is so expensive



10 Space-time ROM for UQ

that it may even exceed the actual computation time of solving the reduced system.
Therefore, we propose the random range finder (RRF) method [7] for the spatial
subspace finding to reduce this overhead complexity. The methodology of RRF is
introduced as follows:

1. fix the number of truncated columns K̂;

2. right multiply a Gaussian testing matrix G ∼ N (0, 1)NtNtrain×K̂ on the train-
ing solutions Utrain ∈ RNs×NtNtrain ;

3. compute the svd for the resulting matrix with a much reduced number of

columns UtrainG ∈ RNs×K̂ and keep the left singular vectors to be the basis.

5.1. Numerical results. In Table 5.1, we test FOM and ROM methods on 2000
MC samples and provide a time report for space and space-time ROMs. For the setup
of RRF, we pick the number of truncated columns to be K̂ = 20 versus Ktrue = 12
applying a conventional svd on Utrain.

Some important observations from Table 5.1 are: (1) The solving time (the third
table column) of the space-time ROM method is 300 times lower than the time of
space ROM; (2) Applying RRF for spatial trial subspace reduces almost 1000 times
of the computation time compared to the conventional spatial subspace finding — see
the first table column.

Table 5.1
Computation time for each step in the workflow (unit: second).

find trial subspace build ROM solve ROM

space ROM 77.908 0.006 63.059

space ROM (RRF) 0.822 0.007 76.351

space-time ROM 4.016 1.055 0.227

From the same experiment for Table 5.1, we report the ROM speed-ups in Fig-
ure 5.1. The speed-up’s metric is the same as in Figure 4.1. We again observe that
the space-time ROM method is the fastest among the three methods.

Fig. 5.1. Monte Carlo ROM speed-up.

We next discuss the convergence property. Figure 5.2 shows the convergence of
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the FOM and ROM methods with respect to the number of MC samples. Similar
to the presentation in Figure 4.2 for the 1D UQ problem, we make the y-axis to be
the solution errors for relative mean and variance with respect to the number of MC
samples in the x-axis. The experiment runs on a total 2000 random instances of
(b, σ, ν) ∈ D in eq. (5.1). The errors are averaged results from 3 repetitions of the test
based on different random seeds.

In general, all four MC solving methods converge with the same trend. MC
space-time ROM is the least accurate method and has the largest error means and
variances. This can be considered as a trade-off of its computational efficiency and
accuracy. The error results of FOM and both two variants of space ROM methods
are very close and almost overlapping, which proves the high accuracy of MC space
ROM.

(a) solution mean (b) solution variance

Fig. 5.2. Monte Carlo convergence: relative error versus number of samples.

We employ stochastic Galerkin ROM methods for the 2D advection-diffusion
problem (5.1). Please note that it is commonly recognized that running a full-order
model with stochastic Galerkin is too time consuming, especially in large-scale prob-
lems, thus we skip its implementation in this subsection.

We are interested in the computation time of space and space-time ROMs im-
plemented with the stochastic Galerkin strategy. In Figure 5.3, we report the ROM
solving times (the last step in the workflow Figure 2.1) — other workflow steps are
already studied above in the MC case. We use the space ROM implemented by
conventional subspace finding as the representative space ROM approach.

Figure 5.3 demonstrates the time comparisons of the SG space and space-time
ROM. It is clearly shown that SG space-time ROM method is roughly 40− 800 times
faster than SG space ROM. As the approximating polynomial degrees grows, this
solving time discrepancy becomes more pronounced.

We finally discuss the convergence and accuracy properties of the SG ROMs.
From Figure 5.4, we can observe that space ROM, space ROM with random range
finder and space-time ROM methods all converge very smoothly as the approximating
polynomial degree tends to increase. In terms of accuracy, the SG space ROM method
with conventional trial subspace finding achieves the highest precision, while the SG
space-time ROM overall has bigger error means and variances than space ROMs.

6. Conclusions and future directions. In this work, we have studied and
showed the significant computational advantages of the space-time ROM method in-
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Fig. 5.3. stochastic Galerkin ROM solving time.

(a) solution mean (b) solution variance

Fig. 5.4. stochastic Galerkin convergence: relative error versus maximal polynomial degrees.

corporated with Monte Carlo and stochastic Galerkin techniques. By testing our pro-
posed method on parametrized 1D and 2D advection-diffusion problems, we provided
thorough numerical experiments to demonstrate both computational and convergence
properties of the space-time ROM method and compared them with the FOM and
space ROM methods. The numerical performance showed that the space-time ROM
method achieved remarkably high efficiency compared to the other two approaches.
However, it also suffered a small loss of solution accuracy as suggested in convergence
plots.

We finally lay out the remaining future works.
1. We hope to directly compare the computational cost and theoretical perfor-

mance of SG ROMs to MC ROMs.
2. Since stochastic Galerkin is an intrusive method, implementing the space-

time ROM by other non-intrusive UQ propagation methods such as stochastic
collocation could be a promising direction.

3. We also want to extend the proposed method to challenging nonlinear systems
where explicitly forming reduced operators is more difficult.
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4. Developing theoretical error bounds for the proposed method is another sound
future plan.

5. It is interesting to explore the advanced sparse grid strategy to further reduce
the computational complexity.
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