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Executive Summary 

This report details the accomplishments from the ASCR funded project “Integrated End-to-end 
Performance Prediction and Diagnosis for Extreme Scientific Workflows” under the award numbers FWP-
66406 and DE-SC0012630, with a focus on the UC San Diego (Award No. DE-SC0012630) part of the 
accomplishments. We refer to the project as IPPD. 

The main activities of IPPD were centered on the development and integration of provenance information 
to capture empirically workflow information and identify the sources of bottlenecks as well as variability, 
and modeling and simulation to provide insights and predictively explore multiple scenarios for 
development of advanced techniques for optimization of resources and workflow execution.  After a Phase 
I of the project, a Phase II effort focused on three major aspects: a) observe how data is generated, 
distributed, and used; b) analyze how data is (repeatedly) consumed with a focus both on repeated patterns 
and anomalies; and c) explore how to optimize data motion. The project leveraged and extended our existing 
tools with new research and demonstrated our work on the Belle II workflow suite as well as on workflows 
from NSLS-II.  

The highlights outlined in this report as a part of the collaborative goals above are as follows:  

Provenance for Workflows. Provenance is used to provide information enabling quality control, re-run 
computational workflows, and reproduce results. IPPD has built a scalable provenance management system 
that enables the capture of provenance from the high-level workflow through all relevant system levels in 
one integrated environment. Leveraging this work, our efforts have included using provenance as an 
enabling technique.  

Modeling Performance and Faults with Deep Learning. Deep learning has become a popular method 
for characterizing complex systems. Resource contention can be difficult to characterize analytically. UC 
San Diego team explored the potential of deep learning methods for predicting performance and workflow 
faults using a provenance dataset that represents two years of production Belle II data.  

Dynamic Bottleneck Alleviation. Exploiting our provenance, analysis, and modeling efforts, IPPD 
explored and developed several techniques for dynamically detecting and alleviating bottlenecks in data 
movement.  UC San Diego team developed PPoDS, a new methodology and set of tools for team science 
and intelligent end-to-end workflow development. It includes the SmartFlows Toolkit for real-time data 
collection.  

Accelerating Workflows. Finally, we have participated in considerable effort demonstrating our 
techniques on production-like workflow configurations.  



Specific UC San Diego Accomplishments 
 
In Phase I of IPPD, the UCSD team primarily worked on workflow performance prediction using the Kepler 
workflow system and its provenance framework. Another focus was the work on extending its provenance 
data model to include performance related variables, and performed a gap analysis between existing 
schemas and requirements for predictive analytics to achieve higher scheduling optimization. Significant 
UCSD contributions have included a framework for performance prediction of arbitrarily nested workflows 
that run on distributed platforms. Our technique views a workflow as a collection of sub‐modules running 
on specific resources and performs localized learning for each resource site. It utilizes instruction set 
characterization, machine configuration and system workload information to predict overall workflow 
performance metrics. Specifically, the following was achieved: 

1. Identify essential characteristics of hardware resources, program instructions and system load to 
make accurate predictions of performance metrics of workflow execution instances.  

2. Develop a modular ML‐based model that trains resource‐specific agents to learn the behavior of 
modular building blocks of a large‐scale workflow.  

3. Demonstrate that this modular technique scales to large workflows involving arbitrary levels of 
nested tasks and complex dataflow patterns.  

4. Empirically show that resource‐node level predictors deliver a scalable solution for wide range of 
workflows from a relatively small training sample.  

In Phase II, we built on this work to develop a modular framework that leverages Machine Learning for 
creating precise performance predictions of a workflow. We built an approach to leveraging Deep Learning 
algorithms to discover solutions to unique problems that arise in a system with computational infrastructure 
that is spread over a wide area. We presented an approach to make the execution of Scientific Workflows 
more reliable, robust and efficient by predicting if they are likely to fail.  

1. MOTIVATION 

It is increasingly difficult to design, analyze, and optimize large-scale workflows for scientific computing, 
especially in situations where time-critical decisions should be taken. Workflows are often designed to 
execute on a loosely connected set of distributed and heterogeneous computational resources. Each 
computational resource may have vastly different capabilities, ranging from sensors to high performance 
clusters. Frequently, workflows are composite applications built from loosely connected parts, and often 
workflow tasks communicate via files sent over general-purpose networks. As a result of this complex 
software and execution space, large-scale scientific workflows exhibit extreme performance variability, 
often due to blocking for data and contending for data-movement resources. Therefore, it is critical to 
understand clearly the factors that influence performance, data-movement bottlenecks and to develop 
techniques to minimize them, enabling more science via improved response times and throughput.  

IPPD worked towards an integrated approach to the prediction and diagnosis of extreme scale workflows 
for scientific computing that enables exploration, prediction and optimization of performance of a workflow 
and its components. Underlying this is a multi-scale view that enables fine-grained component analysis 
using simulation-based tools that allow in-depth analysis and, through suitable abstractions, end-to-end 
workflow performance analysis and prediction using analytical prediction. Provenance information 
collected through instrumentation and monitoring of actual workflow execution, provides empirical bounds 
on the expected performance as well as identifying priority areas and scenarios for further performance 
modeling and simulation. 

 



2. PROVENANCE for WORKFLOWS 
 
In IPPD, workflow provenance was used to carry out empirical studies of workflow performance variations 
and their causes. Results of this work, produced by the collaborative partnership of PNNL, BNL and UC 
San Diego resulted in techniques for collection and storage of provenance information in a form that enables 
insights into workflow behavior that directed IPPD’s modeling and simulation efforts towards high value 
targets.   
 
UC San Diego team contributed to IPPD’s efforts on provenance metrics hybridization. Realizing that in 
order to have a more complete understanding of a description of a workflow application, it becomes 
necessary to combine or merge disclosed provenance with the observed system metrics, we designed and 
built a data model as a critical link between the workflow application and its execution environment. This 
model supported ACME climate simulations study reconstruction and workflow performance analysis, and 
high-energy physics Belle2 scheduling strategies, as well as reproducibility of workflows in biology and 
thermal modeling.   
 
A key research question emerged, ‘How can provenance assertions be made by relating historical evidence 
to interrelated time-series metric events?’. Provenance metrics are used to provide this link by defining 
translations of provenance data into time-series measurement representation for storage in a Metrics Store, 
and thus, enabling the alignment of provenance and the system metrics data.  Conducting performance 
analysis of this data, we were able to successfully use metrics on PNNL’s Seapearl cluster (instrumented 
for Power and Thermal activities) to predict or detect a compute node based on its power/thermal signature.  
 
3. ANALYSIS: MODELING PERFORMANCE AND FAULTS WITH DEEP LEARNING  

 
3.1. Performance Prediction Using Machine Learning  

 
We have developed a modular framework that leverages Machine Learning for creating precise 
performance predictions of a workflow. A diagram is shown in Figure 1. The central idea is to partition a 
workflow in such a way that makes the task of forecasting each atomic unit manageable and gives us a way 
to combine the individual predictions efficiently. We recognize a combination of an executable and a 
specific physical resource as a single module. This gives us a handle to characterize workload and machine 
power as a single unit of prediction. The modular approach of the presented framework allows it to adapt 
to highly complex nested workflows and scale to new scenarios. We present performance estimation results 
of independent workflow modules executed on the XSEDE SDSC Comet cluster using various Machine 
Learning algorithms. The results provide insights into the behavior and effectiveness of different algorithms 
in the context of scientific workflow performance prediction.  

 



Figure 1. Profiling	Framework	is	designed	with	scalability	at	its	core.	The	Kepler	workflow	system	interfaces	with	the	
computing	 resource	 (such	 as	 Comet).	 A	 local	 Python	 scripts	 automates	 the	 job	 of	 generating	 all	 possible	 profiling		
experiment	combinations	and	invokes	Kepler	to	submit	tasks	to	the	distributed	infrastructure.	

 

Figure 2. Summary	of	different	performance	models.	Simple	models	can	give	accurate	results	in	unexpected	domains	–	
evaluate	before	abandoning	the	linear	models.	Use	heavy	weight	complex	models	wisely	–	verify	and	deploy	as	necessary.	

Figure 2 summarizes our results evaluating several different modeling techniques. When Linear models get 
samples from all modules, they perform excellent on some modules, but do not give reliable results for all 
modules. Support Vector Machine based models perform sporadically even when given training samples 
from all modules. Polynomial Kernel shows fairly good performance. Linear still outperforms in 2 / 4 cases. 
Support Vector Machines can give precise results for some modules. Ensemble methods give outstanding 
performance across all modules, when given chance to learn about each module. In this graph, we see 
drastic improvement on module A (low error), a module on which all models struggled when under data 
deprivation.  

 
3.2. Mining Facility Logs for Performance and Faults 

 
Belle II, an important workflow in the High Energy Physics (HEP) community, is a good example of a 
distributed workflow. Raw data is generated by the Belle II detector located at Japan’s High Energy 
Accelerator Research Organization (KEK). Physicists around the world generate additional data through 
Monte Carlo simulations and user analysis.  

 
Using a provenance dataset that represents two years of production Belle II data, we have applied deep 
learning to characterize performance and faults.  

 
Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows. 
We have outlined an approach to leveraging Deep Learning algorithms to discover solutions to unique 
problems that arise in a system with computational infrastructure that is spread over a wide area [30]. The 
presented vision, motivated by a real scientific use case from Belle II experiments, is to develop multi-layer 
neural networks to tackle forecasting, anomaly detection and optimization challenges in a complex and 
distributed data movement environment. Through this vision based on Deep Learning principles, we 
achieved reduced congestion events, faster file transfer rates, and enhanced site reliability.  

 
Deep Learning for Enhancing Fault Tolerant Capabilities of Scientific Workflows. We developed an 
approach to make the execution of Scientific Workflows more reliable, robust and efficient. We focused on 
the question of whether it is possible to increase performance by forecasting job failures in distributed 
workflows. Although some jobs fail ‘quickly’ (e.g., crash soon after launch), others fail by ‘slowly’ (e.g., 



hang or crash long after launch). If we can predict soon after job launch whether a job is likely to fail 
‘slowly’, the management system can kill and re-execute the job, recovering much of the wasted time.  

 
We applied deep learning techniques to develop a mechanism that forecasts the final state (success or 
failure) of a dynamic job in a large-scale particle physics experiment, with minimal data gathering, and as 
early as possible in job’s life cycle. The key advantage of having a predictive mechanism to identify and 
anticipate failure-prone jobs is the potential for designing intelligent Fault Tolerance mechanisms to handle 
anomalous events. We achieved a 14 percent improvement in computational resources utilization, and an 
overall classification accuracy of 85 percent on real tasks executed in a High Energy Physics Computing 
workflow. To the best of our knowledge, this is the most exhaustive and first of its kind study of neural 
network architectures in context of a real-dataset profiled from a large-scale scientific workflow.  
 
4. PPoDS and SmartFlows 
 
Today’s computing has diverse workload characteristics spanning high-performance computing, high- 
throughput computing and big data analytics. The traditional supercomputing applications are stronger than 
ever on their way to embrace exascale computing capacity. As our ability to collect data in real-time from 
internet-of-things has improved, the demand to process such data at scale has increased and requires big 
data processing capabilities. We observe a growing number of applications, including smart cities, precision 
medicine, energy management and smart manufacturing, that require a combination of advanced data 
analytics with traditional modeling and simulations. In addition, thanks to the advances in new computer 
architectures, most scientific codes are ported for special environments, e.g., GPUs. There is also an 
increasing demand for computing from scientific disciplines like social sciences which were not 
traditionally seen as supercomputing disciplines. In fact, every domain of science and engineering today 
can take advantage of big data and computing. A challenge for today’s computing architectures is the ability 
to respond to such heterogeneous needs and lowering the barriers to computing for long tail researchers as 
well as supporting the most cutting-edge computing applications.  
 
On the software side, we observe many new ways to manage big data and high-performance storage as well 
as new forms of data integrity technologies, e.g., blockchain. Use of analytical and big data frameworks, 
e.g., Spark and Keras (keras.io), are common in individual machine learning applications and as a part of 
integrated data-driven scientific simulations. Such heterogeneous capability in computing and software 
brings with it the need for software systems that can coordinate applications across different scales of 
computing, data and networking needs. A number of software innovations like cluster virtualization and 
container technologies, e.g., Docker (docker.com) and Singularity (singularity.lbl.gov), increased the 
portability of these software frameworks and environments, making it possible to turn any executable to 
run as a service on multiple platforms. Kubernetes (kubernetes.io) has emerged as a dynamic container and 
resource management platform that can automate the configuration and orchestration of computing 
resources for varying workloads. Gateways , Jupyter notebooks (jupyter.org) and similar enabling web and 
mobile interface have lowered the barriers for many more to access data on the fly and take advantage of 
computing.  
 
All these make workflows even more needed at the converged application level to enable communications 
with data and computing middleware, while optimizing resources and dynamically adapting to the changes 
during the execution of integrated applications. Workflows provide an ideal programming model for 
deployment of computational and data science applications on all scales of computing and provide a 
platform for system integration of data, modeling tools and computing while making the applications 
reusable and reproducible. They make it possible to manage dynamic-data driven applications and decision 
support using advances in big data platforms and on-demand computing systems, e.g., dynamic data-driven 
fire behavior modeling in real-time (e.g., wifire.ucsd.edu).  
 



 
Fig. 3. The high-level PPoDs architecture showing the dependencies between the presented collaborative 
workflow-driven science tools.  
 
Moreover, there is a new opportunity here for workflows to become even more useful and more aligned 
with the way teams of scientists collaborate and develop integrated applications. Starting with the question 
“can there be a methodology to make workflows a systematic part of the collaborative scientific process?” 
and tackling the problem of “what would a toolkit look like for optimizing workflow effectivity from 
multiple perspectives within a team?”, we built a new methodology and set of tools for team science and 
intelligent end-to-end workflow development. Figure 3 depicts key relationships. Specifically, we 
contributions were:  
       (1) an introduction to the conceptual PPoDS (Process for the Practice of Data Science) methodology 
for collaborative metric-based workflow design,  
       (2)  a framework design for measuring and testing exploratory workflows using the PPoDS metrics,  
       (3)  a design for capturing data during exploratory workflow development to make intelligent 
scalability and steering possible,  
       (4)  an introduction to the SmartFlows Toolkit for real-time data collection, benchmarks and 
intelligence for smart workflow execution, and  
       (5)  a collaboration-centered reference architecture using contributions 1-4 to extend workflow systems 
with dynamic, predictable and programmable interfaces to teams, systems and scalable infrastructure while 
bridging the exploratory and scalable activities in the scientific process.   
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