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Executive Summary

This report details the accomplishments from the ASCR funded project “Integrated End-to-end
Performance Prediction and Diagnosis for Extreme Scientific Workflows” under the award numbers FWP-
66406 and DE-SC0012630, with a focus on the UC San Diego (Award No. DE-SC0012630) part of the
accomplishments. We refer to the project as [PPD.

The main activities of IPPD were centered on the development and integration of provenance information
to capture empirically workflow information and identify the sources of bottlenecks as well as variability,
and modeling and simulation to provide insights and predictively explore multiple scenarios for
development of advanced techniques for optimization of resources and workflow execution. After a Phase
I of the project, a Phase Il effort focused on three major aspects: a) observe how data is generated,
distributed, and used; b) analyze how data is (repeatedly) consumed with a focus both on repeated patterns
and anomalies; and c) explore how to optimize data motion. The project leveraged and extended our existing
tools with new research and demonstrated our work on the Belle II workflow suite as well as on workflows
from NSLS-II.

The highlights outlined in this report as a part of the collaborative goals above are as follows:

Provenance for Workflows. Provenance is used to provide information enabling quality control, re-run
computational workflows, and reproduce results. IPPD has built a scalable provenance management system
that enables the capture of provenance from the high-level workflow through all relevant system levels in
one integrated environment. Leveraging this work, our efforts have included using provenance as an
enabling technique.

Modeling Performance and Faults with Deep Learning. Deep learning has become a popular method
for characterizing complex systems. Resource contention can be difficult to characterize analytically. UC
San Diego team explored the potential of deep learning methods for predicting performance and workflow
faults using a provenance dataset that represents two years of production Belle II data.

Dynamic Bottleneck Alleviation. Exploiting our provenance, analysis, and modeling efforts, IPPD
explored and developed several techniques for dynamically detecting and alleviating bottlenecks in data
movement. UC San Diego team developed PPoDS, a new methodology and set of tools for team science
and intelligent end-to-end workflow development. It includes the SmartFlows Toolkit for real-time data
collection.

Accelerating Workflows. Finally, we have participated in considerable effort demonstrating our
techniques on production-like workflow configurations.



Specific UC San Diego Accomplishments

In Phase [ of IPPD, the UCSD team primarily worked on workflow performance prediction using the Kepler
workflow system and its provenance framework. Another focus was the work on extending its provenance
data model to include performance related variables, and performed a gap analysis between existing
schemas and requirements for predictive analytics to achieve higher scheduling optimization. Significant
UCSD contributions have included a framework for performance prediction of arbitrarily nested workflows
that run on distributed platforms. Our technique views a workflow as a collection of sub-modules running
on specific resources and performs localized learning for each resource site. It utilizes instruction set
characterization, machine configuration and system workload information to predict overall workflow
performance metrics. Specifically, the following was achieved:

1. Identify essential characteristics of hardware resources, program instructions and system load to
make accurate predictions of performance metrics of workflow execution instances.

2. Develop a modular ML-based model that trains resource-specific agents to learn the behavior of
modular building blocks of a large-scale workflow.

3. Demonstrate that this modular technique scales to large workflows involving arbitrary levels of
nested tasks and complex dataflow patterns.

4. Empirically show that resource-node level predictors deliver a scalable solution for wide range of
workflows from a relatively small training sample.

In Phase II, we built on this work to develop a modular framework that leverages Machine Learning for
creating precise performance predictions of a workflow. We built an approach to leveraging Deep Learning
algorithms to discover solutions to unique problems that arise in a system with computational infrastructure
that is spread over a wide area. We presented an approach to make the execution of Scientific Workflows
more reliable, robust and efficient by predicting if they are likely to fail.

1. MOTIVATION

It is increasingly difficult to design, analyze, and optimize large-scale workflows for scientific computing,
especially in situations where time-critical decisions should be taken. Workflows are often designed to
execute on a loosely connected set of distributed and heterogeneous computational resources. Each
computational resource may have vastly different capabilities, ranging from sensors to high performance
clusters. Frequently, workflows are composite applications built from loosely connected parts, and often
workflow tasks communicate via files sent over general-purpose networks. As a result of this complex
software and execution space, large-scale scientific workflows exhibit extreme performance variability,
often due to blocking for data and contending for data-movement resources. Therefore, it is critical to
understand clearly the factors that influence performance, data-movement bottlenecks and to develop
techniques to minimize them, enabling more science via improved response times and throughput.

IPPD worked towards an integrated approach to the prediction and diagnosis of extreme scale workflows
for scientific computing that enables exploration, prediction and optimization of performance of a workflow
and its components. Underlying this is a multi-scale view that enables fine-grained component analysis
using simulation-based tools that allow in-depth analysis and, through suitable abstractions, end-to-end
workflow performance analysis and prediction using analytical prediction. Provenance information
collected through instrumentation and monitoring of actual workflow execution, provides empirical bounds
on the expected performance as well as identifying priority areas and scenarios for further performance
modeling and simulation.



2. PROVENANCE for WORKFLOWS

In IPPD, workflow provenance was used to carry out empirical studies of workflow performance variations
and their causes. Results of this work, produced by the collaborative partnership of PNNL, BNL and UC
San Diego resulted in techniques for collection and storage of provenance information in a form that enables
insights into workflow behavior that directed IPPD’s modeling and simulation efforts towards high value
targets.

UC San Diego team contributed to IPPD’s efforts on provenance metrics hybridization. Realizing that in
order to have a more complete understanding of a description of a workflow application, it becomes
necessary to combine or merge disclosed provenance with the observed system metrics, we designed and
built a data model as a critical link between the workflow application and its execution environment. This
model supported ACME climate simulations study reconstruction and workflow performance analysis, and
high-energy physics Belle2 scheduling strategies, as well as reproducibility of workflows in biology and
thermal modeling.

A key research question emerged, ‘How can provenance assertions be made by relating historical evidence
to interrelated time-series metric events?’. Provenance metrics are used to provide this link by defining
translations of provenance data into time-series measurement representation for storage in a Metrics Store,
and thus, enabling the alignment of provenance and the system metrics data. Conducting performance
analysis of this data, we were able to successfully use metrics on PNNL’s Seapearl cluster (instrumented
for Power and Thermal activities) to predict or detect a compute node based on its power/thermal signature.

3. ANALYSIS: MODELING PERFORMANCE AND FAULTS WITH DEEP LEARNING
3.1. Performance Prediction Using Machine Learning

We have developed a modular framework that leverages Machine Learning for creating precise
performance predictions of a workflow. A diagram is shown in Figure 1. The central idea is to partition a
workflow in such a way that makes the task of forecasting each atomic unit manageable and gives us a way
to combine the individual predictions efficiently. We recognize a combination of an executable and a
specific physical resource as a single module. This gives us a handle to characterize workload and machine
power as a single unit of prediction. The modular approach of the presented framework allows it to adapt
to highly complex nested workflows and scale to new scenarios. We present performance estimation results
of independent workflow modules executed on the XSEDE SDSC Comet cluster using various Machine
Learning algorithms. The results provide insights into the behavior and effectiveness of different algorithms
in the context of scientific workflow performance prediction.
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Figure 1. Profiling Framework is designed with scalability at its core. The Kepler workflow system interfaces with the
computing resource (such as Comet). A local Python scripts automates the job of generating all possible profiling
experiment combinations and invokes Kepler to submit tasks to the distributed infrastructure.
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Figure 2. Summary of different performance models. Simple models can give accurate results in unexpected domains -
evaluate before abandoning the linear models. Use heavy weight complex models wisely - verify and deploy as necessary.

Figure 2 summarizes our results evaluating several different modeling techniques. When Linear models get
samples from all modules, they perform excellent on some modules, but do not give reliable results for all
modules. Support Vector Machine based models perform sporadically even when given training samples
from all modules. Polynomial Kernel shows fairly good performance. Linear still outperforms in 2 / 4 cases.
Support Vector Machines can give precise results for some modules. Ensemble methods give outstanding
performance across all modules, when given chance to learn about each module. In this graph, we see
drastic improvement on module A (low error), a module on which all models struggled when under data
deprivation.

3.2.Mining Facility Logs for Performance and Faults

Belle II, an important workflow in the High Energy Physics (HEP) community, is a good example of a
distributed workflow. Raw data is generated by the Belle II detector located at Japan’s High Energy
Accelerator Research Organization (KEK). Physicists around the world generate additional data through
Monte Carlo simulations and user analysis.

Using a provenance dataset that represents two years of production Belle II data, we have applied deep
learning to characterize performance and faults.

Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows.
We have outlined an approach to leveraging Deep Learning algorithms to discover solutions to unique
problems that arise in a system with computational infrastructure that is spread over a wide area [30]. The
presented vision, motivated by a real scientific use case from Belle II experiments, is to develop multi-layer
neural networks to tackle forecasting, anomaly detection and optimization challenges in a complex and
distributed data movement environment. Through this vision based on Deep Learning principles, we
achieved reduced congestion events, faster file transfer rates, and enhanced site reliability.

Deep Learning for Enhancing Fault Tolerant Capabilities of Scientific Workflows. We developed an
approach to make the execution of Scientific Workflows more reliable, robust and efficient. We focused on
the question of whether it is possible to increase performance by forecasting job failures in distributed
workflows. Although some jobs fail ‘quickly’ (e.g., crash soon after launch), others fail by ‘slowly’ (e.g.,



hang or crash long after launch). If we can predict soon after job launch whether a job is likely to fail
‘slowly’, the management system can kill and re-execute the job, recovering much of the wasted time.

We applied deep learning techniques to develop a mechanism that forecasts the final state (success or
failure) of a dynamic job in a large-scale particle physics experiment, with minimal data gathering, and as
early as possible in job’s life cycle. The key advantage of having a predictive mechanism to identify and
anticipate failure-prone jobs is the potential for designing intelligent Fault Tolerance mechanisms to handle
anomalous events. We achieved a 14 percent improvement in computational resources utilization, and an
overall classification accuracy of 85 percent on real tasks executed in a High Energy Physics Computing
workflow. To the best of our knowledge, this is the most exhaustive and first of its kind study of neural
network architectures in context of a real-dataset profiled from a large-scale scientific workflow.

4. PPoDS and SmartFlows

Today’s computing has diverse workload characteristics spanning high-performance computing, high-
throughput computing and big data analytics. The traditional supercomputing applications are stronger than
ever on their way to embrace exascale computing capacity. As our ability to collect data in real-time from
internet-of-things has improved, the demand to process such data at scale has increased and requires big
data processing capabilities. We observe a growing number of applications, including smart cities, precision
medicine, energy management and smart manufacturing, that require a combination of advanced data
analytics with traditional modeling and simulations. In addition, thanks to the advances in new computer
architectures, most scientific codes are ported for special environments, e.g., GPUs. There is also an
increasing demand for computing from scientific disciplines like social sciences which were not
traditionally seen as supercomputing disciplines. In fact, every domain of science and engineering today
can take advantage of big data and computing. A challenge for today’s computing architectures is the ability
to respond to such heterogeneous needs and lowering the barriers to computing for long tail researchers as
well as supporting the most cutting-edge computing applications.

On the software side, we observe many new ways to manage big data and high-performance storage as well
as new forms of data integrity technologies, e.g., blockchain. Use of analytical and big data frameworks,
e.g., Spark and Keras (keras.io), are common in individual machine learning applications and as a part of
integrated data-driven scientific simulations. Such heterogeneous capability in computing and software
brings with it the need for software systems that can coordinate applications across different scales of
computing, data and networking needs. A number of software innovations like cluster virtualization and
container technologies, e.g., Docker (docker.com) and Singularity (singularity.lbl.gov), increased the
portability of these software frameworks and environments, making it possible to turn any executable to
run as a service on multiple platforms. Kubernetes (kubernetes.io) has emerged as a dynamic container and
resource management platform that can automate the configuration and orchestration of computing
resources for varying workloads. Gateways , Jupyter notebooks (jupyter.org) and similar enabling web and
mobile interface have lowered the barriers for many more to access data on the fly and take advantage of
computing.

All these make workflows even more needed at the converged application level to enable communications
with data and computing middleware, while optimizing resources and dynamically adapting to the changes
during the execution of integrated applications. Workflows provide an ideal programming model for
deployment of computational and data science applications on all scales of computing and provide a
platform for system integration of data, modeling tools and computing while making the applications
reusable and reproducible. They make it possible to manage dynamic-data driven applications and decision
support using advances in big data platforms and on-demand computing systems, e.g., dynamic data-driven
fire behavior modeling in real-time (e.g., wifire.ucsd.edu).
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Fig. 3. The high-level PPoDs architecture showing the dependencies between the presented collaborative
workflow-driven science tools.

Moreover, there is a new opportunity here for workflows to become even more useful and more aligned
with the way teams of scientists collaborate and develop integrated applications. Starting with the question
“can there be a methodology to make workflows a systematic part of the collaborative scientific process?”
and tackling the problem of “what would a toolkit look like for optimizing workflow effectivity from
multiple perspectives within a team?”, we built a new methodology and set of tools for team science and
intelligent end-to-end workflow development. Figure 3 depicts key relationships. Specifically, we
contributions were:

(1) an introduction to the conceptual PPoDS (Process for the Practice of Data Science) methodology
for collaborative metric-based workflow design,

(2) a framework design for measuring and testing exploratory workflows using the PPoDS metrics,

(3) a design for capturing data during exploratory workflow development to make intelligent
scalability and steering possible,

(4) an introduction to the SmartFlows Toolkit for real-time data collection, benchmarks and
intelligence for smart workflow execution, and

(5) acollaboration-centered reference architecture using contributions 1-4 to extend workflow systems
with dynamic, predictable and programmable interfaces to teams, systems and scalable infrastructure while
bridging the exploratory and scalable activities in the scientific process.

5. Publications Resulting from this Research

e Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen and Ilkay Altintas. 2015. "Big data
provenance: Challenges, state of the art and opportunities," 2015 IEEE International Conference
on Big Data (Big Data), 2015, pp. 2509-2516, doi: 10.1109/BigData.2015.7364047.

e Singh, A., Stephan, E., Elsethagen, T., MacDuff, M., Raju, B., Schram, M., Kleese van Dam, K.,
J Kerbyson, D., Altintas 1. 2016. Leveraging Large Sensor Streams for Robust Cloud Control, In
Proceedings of the Big Data for Cloud Operations Management: Problems, Approaches, Tools,
and Best Practices Workshop at IEEE International Conference on Big Data (BigData 2016).

e Elsethagen, T., E. Stephan, B. Raju, M. Schram, M. MacDuff, D. Kerbyson, K. K. van Dam, A.
Singh, and I. Altintas. 2016. “Data Provenance Hybridization Supporting Extreme-Scale
Scientific Workflow Applications.” In 2016 New York Scientific Data Summit (NYSDS), 1-10.
doi:10.1109/NYSDS.2016.7747819

o Alok Singh, Arvind Rao, Shweta Purawat, and Ilkay Altintas. 2017. A Machine Learning
Approach for Modular Workflow Performance Prediction. In Proceedings of the 12th Workshop
on Workflows in Support of Large-Scale Science (WORKS *17). ACM,NewYork,NY,USA,7:1—
7:11. https://doi.org/10.1145/3150994.3150998




Alok Singh, Eric Stephan, Malachi Schram, and Ilkay Altintas. 2017. Deep Learning on
Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows. In 2017
IEEE 13th International Conference on e-Science (e-Science). IEEE,586-591.
https://doi.org/10.1109/eScience.2017.94

Alok Singh, Ilkay Altintas, Malachi Schram, and Nathan Tallent. 2018. Deep Learning for
Enhancing Fault Tolerant Capabilities of Scientific Workflows. In Second IEEE Intl. Workshop
on Benchmarking, Performance Tuning and Optimization for Big Data Applications (Proc. Of the
IEEE Intl. Conf. on Big Data). 3905-3914. https://doi.org/10.1109/BigData.2018.8622509

Ilkay Altintas, Shweta Purawat, Daniel Crawl, Alok Singh, and Kyle Marcus. 2019. Towards A
Methodology and Framework for Workflow-Driven Team Science. IEEE Computing in Science
and Engineering (2019), 38-49. https: //doi.org/10.1109/MCSE.2019.2919688

Shweta Purawat, Cathie Olschanowsky, Laura E. Condon, Reed Maxwell, Ilkay Altintas. 2020.
Scalable Workflow-Driven Hydrologic Analysis in HydroFrame. In: Krzhizhanovskaya V. et al.
(eds) Computational Science — ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol
12137. Springer, Cham. https://doi.org/10.1007/978-3-030-50371-0_20

Alok Singh, Shweta Purawat, Arvind Rao, Ilkay Altintas. 2021. Modular performance prediction
for scientific workflows using Machine Learning, Future Generation Computer Systems, Volume
114, 2021, Pages 1-14, ISSN 0167-739X.




