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SUMMARY

Incorporating the seismic attenuation into the waveform
inversion framework could not only improve the accu-
racy of the velocity model but also provide an additional
Q model. Recently, we proposed a viscoacoustic wave
equation assisted by the fractional Laplacian operators
to accurately model the wave propagation in heteroge-
neous attenuating media with computational efficiency.
The explicit presence of Q as a coefficient in this equa-
tion suggests the potential to conveniently develop its
full waveform inversion scheme. In this study, we utilize
the adjoint-state method to formulate the computation
of the Fréchet kernels with respect to both velocity and
attenuation based on this wave equation. These kernels
will play a fundamental role in the viscoacoustic multi-
parameter waveform inversion.

INTRODUCTION

Full waveform inversion (FWI, e.g. Virieux and Op-
erto 2009) as well as the more general adjoint tomogra-
phy (e.g. Tromp et al. 2005) utilizes the adjoint-state
method (e.g. Plessix 2006) to minimize the residual be-
tween observed and synthetic seismograms by iteratively
adjusting the model parameters. In this process, the
Fréchet kernel (the gradient of the objective function
with respect to the model parameters) is computed by
interacting the forward and the adjoint wavefields at
each iteration to refine the initial model into a high-
resolution final model. The quality of the final model
critically depends on whether the forward and the ad-
joint modelings take into account all the relevant wave
physics (Tarantola, 1988). Seismic attenuation, quan-
tified by the quality factor Q, has a significant impact
on both the amplitude and phase of seismograms, espe-
cially in the presence of fluid in porous media (White,
1975; Dvorkin and Mavko, 2006; Müller et al., 2010).
Thus, it is crucial to incorporate the viscoelasticity into
the computation of the Fréchet kernel as we can not only
enhance the accuracy and reliability of the resultant ve-
locity model but can also obtain a Q model.

One popular method to model the attenuating wavefield
in the time domain is superposing rheological bodies
(e.g. Maxwell, Kelvin-Voigt, Zener) to approximate the
constant-Q observations (McDonal et al., 1958; Knopoff,
1964) and introducing memory variables to solve the vis-
coacoustic/viscoelastic wave equation (Emmerich and
Korn, 1987; Carcione et al., 1988; Robertsson et al.,
1994). Based on this method, Bai et al. (2014) derive
the adjoint-based theoretical framework for velocity in-
version. The development of the attenuation inversion,
however, is hindered by its implicit Q encoding. Ficht-

ner and van Driel (2014) parametrize the attenuation
mechanisms via a curve-fitting process to allow the ex-
plicit presence of Q in the wave equation and compute
the corresponding Fréchet kernels. Yang et al. (2016)
establish the systematic formulation for multiparameter
viscoelastic FWI based on the memory variable method.

On the other hand, several studies propose wave equa-
tions assisted by the fractional Laplacian operators to
model the viscoacoustic waves (e.g. Zhu and Harris
2014; Chen et al. 2016; Yang and Zhu 2018) and vis-
coelastic waves (Zhu and Carcione, 2013; Wang et al.,
2017). These equations rigorously characterize the constant-
Q property (Kjartansson, 1979) without the necessity
to introduce the memory variables, and, uniquely, have
separate controls over dissipation and dispersion effects.
Taking advantage of it, Xue et al. (2017) conduct the
Q-compensated FWI to accelerate the convergence. Re-
cently, Xing and Zhu (2018) propose a viscoacoustic
wave equation with fixed Fractional Laplacian powers
that can accurately simulate the wavefield in heteroge-
neous Q media. Meanwhile, the Q appears explicitly as
coefficients in this equation, which makes it straightfor-
ward to formulate the inverse problem.

In this study, we derive the formulations to compute
the adjoint-state Fréchet kernels associated with this
viscoacoustic wave equation. We first present the frac-
tional wave equation based on the Kjartansson constant-
Q model. On the top of it, we derive its adjoint oper-
ator and the Fréchet kernels for various objective func-
tions. Finally, we conduct numerical experiments to im-
plement the kernel computation algorithm.

FORWARD MODELING

The Kjartansson model represents a frequency-independent
Q with only three parameters (Kjartansson, 1979): the
reference angular frequency ω0, its corresponding phase
velocity c0 and a Q-related dimensionless parameter γ =
1
π
arctan( 1

Q
). Based on this model, Xing and Zhu (2018)

propose a viscoacoustic wave equation:

Lu = (L0 + L1 + L2)u = f, (1)

L0 =
1

c2
∂2

∂t2
−∇2, (2)

L1 = −γ ω0

c
(−∇2)

1
2 + γ

c

ω0
(−∇2)

3
2 , (3)

L2 = (πγ
1

c
(−∇2)

1
2 − πγ2 1

ω0
∇2)

∂

∂t
, (4)

where u is the pressure wavefield, f is the source term
and c = c0cos(

πγ
2

) is a reference velocity. As shown in
Equation (1), the wave propagation operator L has three
contributions: L0 the lossless acoustic wave propagator,
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Viscoacoustic Fréchet Kernels

L1 the phase dispersion corrector and L2 the amplitude
loss corrector. This wave equation is implemented using
the pseudospectral method to model the viscoacoustic
wavefield accurately and efficiently.

FRÉCHET KERNELS

Following the Lagrangian multiplier method (Plessix,
2006), we can formulate the computation of Fréchet ker-
nels K with Equation (1) for forward modeling as well as
two extra equations for adjoint modeling and wavefield
interaction, respectively:

L∗λ =
∂J

∂u
, (5)

K =
dJ

dm
= −〈λ, ∂L

∂m
u〉, (6)

where ∗ denotes adjoint, λ is the adjoint wavefield, J is
the objective function and m is the model parameter.

Objective functions

We consider three objective functions, i.e., the misfit of
waveform, cross-correlation traveltime and amplitude.
For different objective functions, the adjoint wavefields
are excited by different adjoint sources as in Equation
(5). The waveform objective function JW = 1

2
(u − d)2

(for simplicity, we omit the sampling operator at the re-
ceiver location hereinafter) is adopted in the FWI, where
u and d are synthetic and observed seismograms. Its
corresponding adjoint source is

∂JW
∂u

= u− d. (7)

Besides, we introduce the traveltime and amplitude ob-
jective function (Tromp et al., 2005): JT = 1

2
∆T 2 with

∆T = Tu − Td, where Tu and Td are the traveltimes
for synthetic and observed seismograms, respectively;
JA = 1

2
∆A2 with ∆A = Au−Ad

Ad
, where Au =

∫ t2
t1
u2dt,

Ad =
∫ t2
t1
d2dt and (t1, t2) defines the time window to

measure the misfit. Hence, their formulations of the
adjoint sources can be derived using implicit differen-
tiation technique (Luo and Schuster, 1991; Dahlen and
Baig, 2002):

∂JT
∂u

= ∆T · u̇∫ t2
t1
uüdt

, (8)

∂JA
∂u

= ∆A · u

AuAd
. (9)

Adjoint operator

In order to materialize Equation (5), we need to de-
rive the explicit form of L∗ = L∗0 + L∗1 + L∗2. Recall
(∇2)∗ = ∇2 and ( ∂

∂t
)∗ = − ∂

∂t
, we can infer that the

acoustic propagator is self-adjoint: L∗0 = L0. In the
following, we validate that the fractional Laplacian op-

erators (−∇2)
1
2 and (−∇2)

3
2 are both self-adjoint by

conducting dot product tests.
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Figure 1: The dot product test of the fractional Lapla-
cian operators for one random wavefield pair.

Since the fractional Laplacians are spatial derivative op-
erators, we can consider the dot product in only one
single time slice without the need for time integral. We
generate two random wavefields (Figures 1a and 1b)
and apply fractional Laplacians to them (Figures 1 c-
f). Then we compute the element-by-element multi-
plication between Figures 1(c), 1(e) and Figures 1(d),
1(f), as shown in Figures 1(g)-(j). The summation of all
the resultant elements for each figure yields the inner
product and it appears that for these two random wave-

fields u and v, we have 〈(−∇2)
1
2 u, v〉 = 〈u, (−∇2)

1
2 v〉

and 〈(−∇2)
3
2 u, v〉 = 〈u, (−∇2)

3
2 v〉. Moreover, we con-

duct tests for another 100 random wavefield pairs and
the fractional Laplacian operators pass the test for each

pair. Thus, we can conclude that both (−∇2)
1
2 and

(−∇2)
3
2 are self-adjoint.

Hence, we have L∗1 = L1 and L∗2 = −L2 so that L∗ =
L0 + L1 − L2. Physically, it means that the adjoint
operator of the viscoacoustic propagator compensates
(anti-attenuates) the amplitude of the waves while pre-
serves the velocity dispersion character (Zhu, 2014; Zhu
et al., 2014). However, since we simulate the adjoint
wavefield in a time reversal mode, the reversed adjoint
wavefield attenuates rather than compensates the am-
plitude as the forward wavefield:

Lq‡ = (
∂J

∂u
)‡, (10)

where ‡ indicates the time reversal.

Wavefield interaction

The last step to compute the Fréchet kernel is interact-
ing the forward and adjoint wavefields, which requires
an explicit formulation of equation (6). The Fréchet
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Viscoacoustic Fréchet Kernels

kernel K can be separated into three parts as L does:
K = K0 +K1 +K2, where Ki = −〈q, ∂Li

∂m
u〉 (i = 0, 1, 2).

In this study, we regard c and γ as the model param-
eters. Then the operators ∂Li

∂m
can be derived directly

from Equations (2)-(4). In particular, ∂L0
∂c

= − 2
c3

∂2

∂t2
,

∂L1
∂c

= γω0
c2

(−∇2)
1
2 + γ

ω0
(−∇2)

3
2 , ∂L2

∂c
= −πγ

c2
(−∇2)

1
2 ∂
∂t

,
∂L0
∂γ

= 0, ∂L1
∂γ

= −ω0
c

(−∇2)
1
2 + c

ω0
(−∇2)

3
2 , and ∂L2

∂γ
=

(π
c

(−∇2)
1
2 − 2πγ

ω0
∇2) ∂

∂t
.

NUMERICAL EXAMPLES

Kernel gallery
We implement the adjoint formulations derived in the
previous section to compute the Fréchet kernels of a ho-
mogeneous model for the three different objective func-
tions. To do that, we set up a 2-D target model on a 400
× 200 grid with spacing of 10 m in both directions. The
target model has a reference phase velocity 3.05 km/s at
20 Hz with the quality factor Q = 80. We put a receiver
at (3.7, 1) km and the source at (0.3, 1) km with a 20 Hz
Ricker wavelet. We simulate the synthetic seismogram
with 1 ms time interval as the ground truth data.

In the meantime, we set up an initial model on the same
grid with 3 km/s reference phase velocity and Q = 100.
First, we simulate the forward wavefield according to
Equation (1). After that, the synthetic recorded at the
receiver as well as the data is used to generate the ad-
joint source for different objective functions based on
Equations (7)-(9). Next, we excite the adjoint source
at the location of the receiver and simulate the adjoint
wavefield in a reverse time order as Equation (10). Fi-
nally, the forward and adjoint wavefields are interacted
to assemble the Fréchet kernels as Equation (6).
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Figure 2: Velocity Fréchet kernels for waveform, travel-
time and amplitude objective functions.

The first column of Figure 2 shows the velocity c ker-
nel of different operator (L0, L1 and L2) contributions

as well as their summation for the waveform objective
function. The waveform kernels of attenuation γ are
shown in the first column of Figure 3. Besides, the c
and γ kernels for the traveltime and amplitude objec-
tive functions are shown in the rest of Figure 2 and 3,
respectively. It appears that the c kernel is dominated
by the contribution of acoustic propagator L0 compared
to L1 and L2. On the contrary, γ has absolutely no sen-
sitivity of L0 but is determined by the dispersion term
L1 and the dissipation term L2. Moreover, the L2 con-
tribution dominates the γ kernel for each of the objective
functions, which is consistent with the fact that the am-
plitude loss is the first order viscoacoustic phenomenon
compared to the velocity dispersion.

Furthermore, since the target model has higher c com-
pared to the initial model, we would expect that the
majority of the c kernel to be negative. In this sense,
the traveltime kernel is more likely to benefit the conver-
gence compared to the other two. On the other hand,
the target model also has higher γ (lower Q) as both
the waveform and the amplitude γ kernels capture this
feature almost equally well. However, the traveltime γ
kernel has a flipped polarity. Since the attenuation is
barely sensitive to the traveltime phase shift, the trav-
eltime γ kernel generally should not be used to update
the model.
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Figure 3: Attenuation Fréchet kernels for waveform,
traveltime and amplitude objective functions.

Finite difference validation
To validate our algorithm, in this section, we use fi-
nite difference (FD) method to compute the kernels of a
small (80 × 30) model and compare them with the ones
obtained by the adjoint-state method. The adjoint ker-
nels are computed as illustrated in the previous section.
As for the FD kernels, we first compute the objective
function, which is the misfit between the data and the
synthetic generated by the initial model. For one single
grid point of the initial model, we perturb the parameter
(c or γ) by 10%, which leads to the model perturbation
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Viscoacoustic Fréchet Kernels

∆m. We simulate the synthetic using this perturbed
model and compute the new misfit, which has a subtle
difference ∆J compared to the original objective func-
tion. The Fréchet kernel value at this grid point is then
assigned as ∆J

∆m
and we iterate this process for all the

grid points in the model. The comparison between the
resultant kernels provided by two methods is shown in
Figure 4. We only show the waveform and amplitude
kernels since the tiny traveltime change caused by the
perturbation of one grid point cannot be measured by
the cross-correlation method, which results in zero trav-
eltime FD kernels. It turns out that the kernels gen-
erated by both methods are consistent with each other
thus it validates our adjoint-state algorithm.
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Figure 4: Adjoint (left) and FD (right) Fréchet kernels.
The FD kernels are scaled appropriately to match the
adjoint kernels.

Circular anomaly model
In this section, we demonstrate the capability of Fréchet
kernels to characterize the velocity or attenuation anomaly.
In this test, the initial model is the same homogeneous
model as in the first numerical example. Compared to
the initial model, the target model has a circular (ra-
dius 0.3 km) velocity anomaly of 3.1 km/s centered at
(1.5, 0.8) km, which is smoothed by a Gaussian filter.
We have 98 sources/receivers evenly distributed on the
four margins of the model. The c and γ Fréchet ker-
nels are computed for each shot and the stacked kernels
are shown in Figure 5 for the three objective functions.
Both the waveform and the traveltime c kernels reveal
the velocity anomaly while the amplitude kernel has sig-
nificant artifacts. Hence, the former two kernels should
be utilized to invert for velocity. Meanwhile, the γ ker-
nels indicate that there is a cross-talk between the ve-
locity and attenuation.

The second test is conducted for a target model with a
Q = 50 anomaly at the same position and the resultant
kernels are shown in Figure 6. As expected, the wave-
form and the amplitude γ kernels delineate the anomaly
while the traveltime has the least sensitivity to the Q
variation. The leakage to the incorrect parameter (ve-
locity) also exists in this test as shown by the c kernels.
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Figure 5: Fréchet kernels for the velocity anomaly.
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Figure 6: Fréchet kernels for the Q anomaly.

DISCUSSION AND CONCLUSIONS

We establish the formulations to compute the Fréchet
kernels of the fractional viscoacoustic wave equation for
different objective functions. In particular, we demon-
strate that the adjoint modeling operator compensates
the amplitude, though the adjoint wavefield is attenu-
ating since it is simulated in a reverse time order. Also,
according to the contribution from different operators
(L0, L1 and L2), the acoustic propagator dominates
the velocity kernel while the dissipation corrector dom-
inates the attenuation kernel. Numerical examples sug-
gest that it might be robust to first use traveltime and
amplitude as objective functions to invert for velocity
and attenuation, respectively; when the initial model is
close enough to the target model, we might then adopt
the waveform objective function to further refine the
model. These Fréchet kernels lay the foundation of the
waveform inversion and how to combine them to guar-
antee the convergence of the multiparameter inversion
will be investigated in the future work.
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