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SUMMARY

Recent progress on fractional modeling enables incor-
porating seismic attenuation into wavefield simulation
in an accurate and efficient way. But its inverse prob-
lem, i.e., the multiparameter viscoacoustic full waveform
inversion (FWI), still suffers from various issues, espe-
cially the crosstalk between velocity and attenuation. In
this study, we integrate the Hessian information via the
Newton-CG framework and develop the multiparameter
fractional viscoacoustic FWI algorithm. It significantly
mitigates the crosstalk problems and sheds light upon
simultaneous inversion for both velocity and Q models.

INTRODUCTION

The traditional full waveform inversion (FWI) produces
high-resolution velocity model. Beyond seismic veloc-
ity, seismic attenuation could provide complementary
constraints on subsurface physical properties (e.g., tem-
perature, fluid saturation, and mineral composition).
Hence, it would be advantageous to develop the multi-
parameter viscoacoustic FWI to invert for both velocity
and attenuation (Q) models simultaneously. However,
one major challenge faced by the multiparameter FWI
is the crosstalk (or trade-off) phenomenon, where the
data-synthetic residual introduced by one model param-
eter is mistakenly assigned to another (Hak and Mulder,
2011; Kamei and Pratt, 2013; Alkhalifah and Plessix,
2014). In the viscoacoustic problem, in particular, both
kinetic and dynamic information could be attributed to
either velocity or Q heterogeneity. Thus, we would ex-
pect a serious crosstalk between these two parameters,
especially in the classic gradient-based FWI.

One approach to mitigate the crosstalk is to incorpo-
rate the information of the 2nd-order Fréchet deriva-
tive, i.e., the Hessian. In particular, the multiparameter
Hessian has a block structure (Operto et al., 2013) and
the off-diagonal blocks measure the coupling effect be-
tween different model parameters. Thus, applying the
inverse Hessian operator on the gradient, as in the New-
ton’s method (Nocedal and Wright, 2006), is expected
to suppress the crosstalk between parameters (Innanen,
2014; Pan et al., 2016). Besides, the Hessian carries the
information about the uneven illumination, the finite-
frequency effects and the 2nd-order scattering. Hence,
the artifacts generated by these effects can be mitigated
by the inverse Hessian operator as well (Pratt et al.,
1998). However, explicitly calculating, storing and in-
verting the Hessian matrix requires huge memory space
and computational load beyond the current hardware
capability, especially for the large-scale 3-D problems
(Métivier et al., 2014).

The Newton-CG (also know as truncated Newton) algo-
rithm offers a promising way out of the computational
difficulty. At each iteration, it approximates the gra-
dient preconditioned by the inverse Hessian by solv-
ing a linear system using a conjugate gradient inter-
nal loop (Nocedal and Wright, 2006). This algorithm is
computationally feasible as long as the Hessian-vector
product can be accessed in an efficient matrix-free fash-
ion. In this respect, previous studies have proposed
the 2nd-order adjoint-state method (Fichtner and Tram-
pert, 2011; Métivier et al., 2014; Yang et al., 2018) and
the scattering-integral approach (Yang et al., 2016) to
compute the Hessian-vector product.

Recently, we proposed a time-domain viscoacoustic wave
equation aided by fractional Laplacian operators (Xing
and Zhu, 2019b), which guarantees good accuracy and
computational efficiency (Zhu and Harris, 2014). Be-
sides, the adjoint of the wave propagator and the Fréchet
derivatives associated with this equation have been de-
veloped (Xing and Zhu, 2019a). Based on this wave
equation, here, we develop a Hessian-based multiparam-
eter fractional viscoacoustic FWI by incorporating the
Hessian via the Newton-CG algorithm. Preliminary re-
sults indicate that the preconditioned gradient approxi-
mated by the internal loop can significantly mitigate the
crosstalk issue.

VISCOACOUSTIC FORWARD MODELING

Seismic attenuation of frequency-independent Q media
can be described by three parameters (Kjartansson, 1979):
the reference angular frequency ω0, its corresponding
phase velocity c0 and a the strength of attenuation γ =
1
π
arctan( 1

Q
). To model the wavefield in such media, we

recently propose a fractional viscoacoustic wave equa-
tion (Xing and Zhu, 2019b):

Lu = (L0 + L1 + L2)u = f, (1)

where u is the pressure wavefield, f is the source term.
The wave propagator L has three contributions, i.e., the
lossless acoustic wave propagator L0, the phase disper-
sion corrector L1 and the amplitude loss corrector L2:
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where c = c0cos(
πγ
2

) is a parameter with the unit of
velocity. In this study, we adopt this wave equation to
conduct the forward modeling because of its accuracy
and computational efficiency (Xing and Zhu, 2019b).
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MULTIPARAMETER VISCOACOUSTIC FWI

Our proposed FWI algorithm has a nested loop struc-
ture. The internal loop uses the CG iterations to ap-
proximately solve the linear system H∆m = −g, where
H is the Hessian matrix, ∆m is the model update vector
and g is the gradient, i.e., the first order Fréchet deriva-
tive. In the external loop, we update both velocity (c)
and attenuation (γ) models according to the vector ∆m.

Gradient and adjoint propagator

The computation of the gradient g can be formulated
using the adjoint-state method (Plessix, 2006). Besides
a forward simulation (Equation 1), this process consists
of an adjoint simulation and a wavefield interaction:

L∗λ = R∗(Ru− d), (5)

g = −〈λ, ∂L
∂m

u〉U, (6)

where ∗ denotes adjoint; R is the operator that samples
the wavefield at the receivers, which makes R∗ the op-
erator that pads zeros at non-receiver locations; d is the
data; λ denotes the adjoint wavefield; and 〈·, ·〉U is the
inner product in the state variable (wavefield) space U.

It has been argued that the adjoint viscoacoustic prop-
agator has the form L∗ = L0 +L1−L2 (Xing and Zhu,
2019a). Physically, it means that the adjoint wavefield
λ preserves the velocity dispersion (L1 term) while com-
pensates (−L2 term) instead of attenuating the ampli-
tude. Nevertheless, the adjoint wavefield is simulated in
a reverse-time order, which makes the reversed adjoint
wavefield attenuate the amplitude just like the forward
one. The interaction between the two wavefields (Equa-
tion 6) requires the operator ∂L

∂m
, the explicit form of

which can be derived from Equations (2)-(4).

Hessian-vector product validation

The internal CG loop requires computing the Hessian-
vector product in an efficient way. Instead of calculat-
ing the Hessian matrix explicitly, the 2nd-order adjoint-
state method offers an option to conduct the multiplica-
tion in a matrix-free fashion (Métivier et al., 2014; Yang
et al., 2018; Fichtner and Trampert, 2011). In partic-
ular, for an arbitrary model space vector ν, the prod-
uct Hν for each source can be computed at the cost of
two more simulations (one forward and one adjoint) and
three more interactions:

Lµ2 = −〈ν, ∂L
∂m

u〉M, (7)

L∗µ1 = R∗Rµ2 − 〈ν, (
∂L

∂m
)∗λ〉M, (8)

Hν = −〈µ1,
∂L

∂m
u〉U − 〈µ2,

∂L∗

∂m
λ〉U − 〈ν, 〈λ,

∂2L

∂m2
u〉U〉M,

(9)

where 〈·, ·〉M denotes the inner product in the model
space M; µ2 and µ1 are the 2nd-order forward and ad-
joint wavefields, respectively.

To illustrate the physical meaning of the productHν, we
assume that ν represents a scatterer with a perturbation
of model parameters (c or γ). As a result, the source
of the 2nd-order forward wavefield µ2 has only non-zero
values at the location of the scatterer ν (Equation 7),
which suggests that µ2 propagates outward from the
scatterer. The two terms on the right hand side of the
Equation (8) indicate that the 2nd-order adjoint wave-
field µ1 has two sources: the first source (Source A) is
located at the receiver while the second source (Source
B) is at the scatterer. Their corresponding wavefields
are denoted by µ1A and µ1B , respectively.

The Hessian-vector productHν consists of three interac-
tions (Equation 9) denoted by (Hν)1, (Hν)2 and (Hν)3.
In particular, (Hν)1 has two parts, (Hν)1A and (Hν)1B ,
corresponding to µ1A and µ1B , respectively. The inter-
action between µ1A and the forward wavefield u gives
rise to (Hν)1A. Hence, it is influenced by the Fres-
nel zone between the source and the receiver. Similarly,
(Hν)1B marks the area between the source and the scat-
terer while (Hν)2 is sensitive to the area between the
receiver and the scatterer. The last interaction (Hν)3
only has non-zero values at the location of the scatterer
and it accounts for the non-linearity introduced by the
parameterization (Fichtner and Trampert, 2011).

Internal CG loop

Equipped with the efficient computation of both gra-
dient and the Hessian-vector product, we can construct
the internal CG loop following Nocedal and Wright (2006),
as shown in Algorithm 1.

Algorithm 1 CG method to solve H∆m = −g
Input: g, kmax (max iter.), Jtol (residual tolerance)
Require: Method to compute Hν for an arbitrary ν
Output: Model parameter update ∆m
Initialization: ∆m← 0, r ← g, p← −r, J1 ← rT r,
k ← 0
while J1 > Jtol & k < kmax do
ξ ← Hp
α← J

pT ξ

r ← r + αξs
∆m← ∆m+ αp
J2 ← rT r
β ← J2

J1
p← −r + βp
J1 ← J2
k ← k + 1

end while

The early iterations of the CG algorithm account for the
largest eigenvalues of the Hessian. Hence, a truncation
strategy for the internal loop has an intrinsic regular-
ization effect (Kaltenbacher et al., 2008; Métivier et al.,
2014). Thus, we only run the CG internal loop for a few
iterations (kmax ∼ 5) in our viscoacoustic FWI prob-
lem. After that, we conduct a line search to determine
the step lengths for different parameter classes.
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Step length computation

The most popular line search methods for FWI base on
either parabola fitting (e.g., Köhn et al., 2012) or Born
modeling (e.g., Pica et al., 1990). In the multiparam-
eter viscoacoustic FWI, we need to take into account
the interaction between different parameter classes in
optimizing the step lengths for both velocity (αc) and
attenuation (αγ). Here, we generalize the Born-based
method and propose a Born-based multiparameter step
length computation (BMPSLC) algorithm.

We separate the model update ∆m into two vectors
∆m = ∆mc + ∆mγ , where ∆mc only has non-zero val-
ues in the first half (velocity part) while ∆mγ only has
non-zero values in the second half (attenuation part).
Conducting the Taylor expansion of the objective func-
tion after the model update, followed by zeroing its par-
tial derivatives with respect to αc and αγ , yields:

〈 δf
δm

∆mc,
δf

δm
∆mc〉Dαc + 〈 δf

δm
∆mγ ,

δf

δm
∆mc〉Dαγ

= 〈d− f(m),
δf

δm
∆mc〉D, (10)

〈 δf
δm

∆mc,
δf

δm
∆mγ〉Dαc + 〈 δf

δm
∆mγ ,

δf

δm
∆mγ〉Dαγ

= 〈d− f(m),
δf

δm
∆mγ〉D, (11)

where f is the forward modeling operator, which makes
δf
δm

the linear Born modeling operator; 〈·, ·〉D denotes
the inner product in data space D. Two Born modelings
are required to obtain the coefficients of Equations (10)-
(11). In our study, we conduct the Born modelings in a
finite-difference fashion:

δf

δm
∆mi ≈

f(m+ ε∆mi)− f(m)

ε
, (i = c, γ) (12)

where ε is a small scalar. So, αc and αγ can be achieved
by solving the linear system of Equations (10)-(11) at
the cost of two additional forward modeling per source.

NUMERICAL EXAMPLES

Hessian-vector product

We set up a homogeneous 2-D target model on a 400×
200 grid with spacing of 8 m in both x and z direc-
tions. The target model has a quality factor Q = 80
and a reference phase velocity c0 = 3.05 km/s at 20 Hz.
We put a source at (0.24, 0.8) km with a 20 Hz Ricker
wavelet and one receiver is located at (2.96, 0.8) km.
Using this target model, we simulate the synthetic seis-
mogram, which is considered as the ground truth data.
Meanwhile, we build a homogeneous initial model on
the same grid with slightly different velocity and atten-
uation (c0 = 3.0 km/s, Q = 100). To demonstrate the
physical meaning of the Hessian-vector product, we set
up the model space vector ν as a scatterer with 20 m/s
velocity perturbation located at (1.36, 0.64) km. In an-
other word, the vector ν has only one non-zero entry,
which is located in its first half (velocity part).

We conducted two forward simulations (Equations 1 and
7) and two adjoint simulations (Equations 5 and 8).
Taking the interactions between the resultant wavefields
(Equation 9) leads to the Hessian-vector product (Hν),
which includes both velocity (c) and attenuation (γ)
parts. Four constituent parts ((Hν)1A, (Hν)1B , (Hν)2
and (Hν)3) are shown in Figure 1(a)-(j) along with their
summation. As expected, each of the four constituent
parts has the shape as described in the previous section.

0 1 2 3
Dist. (km)

0.0

0.5

1.0

1.5

De
pt

h 
(k

m
) (a) (Hν)c, 1A

0.5

1.0

1.5

De
pt

h 
(k

m
) (c) (Hν)c, 1B

0.5

1.0

1.5

De
pt

h 
(k

m
) (e) (Hν)c, 2

0.5

1.0

1.5
De

pt
h 

(k
m

) (g) (Hν)c, 3

0.5

1.0

1.5

De
pt

h 
(k

m
) (i) (Hν)c

0.5

1.0

1.5

De
pt

h 
(k

m
) (k) (Δg)c

0.5

1.0

1.5

De
pt

h 
(k

m
) (m) (Hν)c − (Δg)c

−1 0 1
Mag. (10−24)

1 2 3
Dist. (km)

(b) (Hν)γ, 1A

(d) (Hν)γ, 1B

(f) (Hν)γ, 2

(h) (Hν)γ, 3

(j) (Hν)γ

(l) (Δg)γ

(n) (Hν)γ − (Δg)γ

−5 0 5
Mag. (10−21)

Figure 1: Hessian-vector product. Left: velocity (c)
part; right: attenuation (γ) part. (a)-(h): Constituent
parts of the product; (i)-(j) 2nd-order adjoint-state
method product; (k)-(l) finite-difference method prod-
uct; (m)-(n) residual between two methods.

To validate the accuracy of the algorithm, we use the
finite-difference method to compute the product with
the same ν. The definition of the Hessian indicates

Hν ≈ g(m+ ν)− g(m) (13)

when ν is sufficiently small, where g(m) and g(m+ν) are
the gradients evaluated at the initial model m and the
perturbed model m+ν, respectively. We conducted this
finite-difference computation and the resultant Hessian-
vector product is shown in Figure 1(k)-(l). It turns out
that the products computed using both methods are al-
most the same; and their residuals (Figure 1m-n) are
negligible except for some artifacts at source locations
(either forward or adjoint, either first-order or second-
order), which can be removed by a Gaussian taper ap-
plied on the source region wavefields.
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2-D Cross-well FWI example

We set up a 2-D model on a 101 × 151 grid (0.8 m
interval) with a cross-well acquisition system: 15 sources
on the left edge and 36 receivers on the right edge. The
target model (Figure 2) has a homogeneous background
(c0 = 3.0 km/s at 150 Hz, Q = 100) with a velocity
anomaly (c0 = 3.05 km/s at 150 Hz) on the top left and
an attenuation anomaly (Q = 50) on the bottom right.
We start from homogeneous initial models without the
anomalies of either velocity or attenuation.
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Figure 2: Target models: (a) phase velocity; (b) Q.
Stars denote sources and triangles represent receivers.

For the classic gradient-based FWI, the update direction
is the negative gradient (−g); while for our proposed
Hessian-based method, the direction is the (approxi-
mate) preconditioned negative gradient (∆m) produced
by the internal CG loop (Algorithm 1). At the very first
iteration of our example, we show the directions com-
puted using both methods in Figure 3. In the gradient-
based FWI, both velocity and attenuation direction can
capture the anomalies but the velocity anomaly is mis-
takenly mapped to the attenuation direction. In par-
ticular, the maximum value of the attenuation direction
is located at the velocity anomaly (Figure 3b), leading
to a significant crosstalk. The Hessian-based direction,
on the contrary, is generally sharper than the gradient-
based ones. More importantly, the crosstalk artifact in
the attenuation direction is substantially reduced (Fig-
ure 3d), which confirms the capability of the internal
CG loop to mitigate the crosstalk.
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Figure 3: Normalized model update direction: (a)-(b)
gradient-based method; (c)-(d) proposed Hessian-based
method. Left: velocity (c); right: attenuation (γ).

In Figure 4, we show the final velocity and attenuation
models after 20 iterations. Both anomalies are recov-
ered with little crosstalk artifacts. The magnitudes of
the anomalies, however, are slightly less than the tar-

get model, while the shapes of both anomalies are wider
than they are supposed to be. Both imperfections are
due to the limitation of the cross-well acquisition sys-
tem, where the horizontal resolution is better than the
vertical one, leading to less constraints on the width of
the anomalies and the reduction in the magnitude. If we
add 9 sources on the top margin and 23 receivers on the
bottom, the resultant final models (after 20 iterations)
are shown in Figure 5. With better coverage, the shapes
and magnitudes of both anomalies are much improved.
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Figure 4: Final models: (a) phase velocity; (b) Q.
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Figure 5: Final models for the FWI with more sources
and receivers: (a) phase velocity; (b) Q.

CONCLUSIONS

Based on the recently proposed fractional wave equa-
tion, we develop the multiparameter viscoacoustic FWI
to invert for both velocity and attenuation simultane-
ously. To deal with the crosstalk between model param-
eters, we incorporate the Hessian via the Newton-CG
framework. In particular, we use the 2nd-order adjoint-
state method to compute the Hessian-vector product
in the internal CG loop; and we develop a Born-based
multiparameter step length computation algorithm by
considering the interaction between different parameter
classes. Preliminary results indicate that the crosstalk
can be significantly mitigated, and both velocity and
attenuation models can be properly recovered.
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