
Decoupled Fréchet kernels based on a fractional

viscoacoustic wave equation

Guangchi Xing* and Tieyuan Zhu*�

*Department of Geosciences, The Pennsylvania State University, University Park, PA

16802 �EMS Energy Institute, The Pennsylvania State University, University Park, PA

16802

(October 21, 2021)

Running head: Decoupled viscoacoustic Fréchet kernel

ABSTRACT

We formulate the Fréchet kernel computation using the adjoint-state method based on a

fractional viscoacoustic wave equation. We first numerically prove that both the 1/2- and

the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we show

that the adjoint wave propagator preserves the dispersion and compensates the amplitude,

while the time-reversed adjoint wave propagator behaves identically as the forward propa-

gator with the same dispersion and dissipation characters. Without introducing rheological

mechanisms, this formulation adopts an explicit Q parameterization, which avoids the im-

plicit Q in the conventional viscoacoustic/viscoelastic full waveform inversion (Q-FWI). In

addition, because of the decoupling of operators in the wave equation, the viscoacoustic

Fréchet kernel is separated into three distinct contributions with clear physical meanings:

lossless propagation, dispersion, and dissipation. We find that the lossless propagation ker-

nel dominates the velocity kernel, while the dissipation kernel dominates the attenuation

kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-

1



difference method, we conduct a numerical example to demonstrate the capability of the

kernels to characterize both velocity and attenuation anomalies. The kernels of different

misfit measurements are presented to investigate their different sensitivities. Our results

suggest that rather than the traveltime, the amplitude and the waveform kernels are more

suitable to capture attenuation anomalies. These kernels lay the foundation for the mul-

tiparameter inversion with the fractional formulation, and the decoupled nature of them

promotes our understanding of the significance of different physical processes in the Q-FWI.
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INTRODUCTION

Full waveform inversion (FWI, e.g., Virieux and Operto, 2009), as well as the more general

adjoint tomography (e.g., Tromp et al., 2005), utilizes the adjoint-state method (e.g., Plessix,

2006) to minimize the misfit between observed and synthetic seismograms by iteratively

adjusting the model parameters. This method has wide applications ranging from near

surface imaging, to exploration-scale inversion, and to global tomography. For a broader

overview, the reader can refer to the reviews on this topic (Fichtner, 2010; Liu and Gu,

2012). In FWI, the Fréchet kernel (i.e., the gradient of the objective function with respect

to the model parameters) is computed by interacting the forward and the adjoint wavefields

at each iteration. It provides the (opposite) direction for model parameters to update,

refining a low-resolution initial model into a high-resolution final model. The accuracy

of the final model depends critically on whether the modeling takes into account all the

relevant wave physics (Tarantola, 1988). While the classic FWI algorithm is focused on

the inversion of seismic velocity, seismic attenuation, quantified by the quality factor Q,

plays an important role, especially in the study of both shallow and deep Earth geology

having partial melt (e.g., Wiens et al., 2008), high temperature (e.g., Romanowicz, 1995), or

fluid-saturated rocks (e.g., Müller et al., 2010). Physically, attenuation distorts the seismic

waveform by reducing the amplitude (dissipation) and altering the phase (dispersion). Thus,

to accurately account for the dissipation and the dispersion effects, it is crucial to incorporate

seismic attenuation into the FWI workflow via the computation of the Fréchet kernel. In

this way, the resultant velocity kernel can enhance the accuracy and reliability of the final

velocity model; the attenuation kernel can lead to an additional high-resolution Q model,

which provides complementary constraints of subsurface structure (Zhu et al., 2013, 2017).
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Nevertheless, incorporating seismic attenuation brings about complications. First, the

state-of-the-art time-domain viscoacoustic/viscoelastic FWI (Q-FWI) algorithms represent

seismic attenuation by superposing rheological mechanisms to approximate the widely ac-

cepted frequency-independent-Q (also known as constant-Q, McDonal et al., 1958; Knopoff,

1964). As a consequence, Q is usually parametrized implicitly by different relaxation times

characterizing their corresponding rheological mechanisms, which brings complexity to the

Q inversion. Recently, Fichtner and van Driel (2014) and Yang et al. (2016) proposed a

special parameterization to enforce the explicit representation of Q, which involves an ad-

ditional curve-fitting procedure parametrizing the weight and the relaxation time of each

rheological mechanism to fit the constant-Q; and the accuracy of Q between 50 and 500

was satisfied with 3 rheological mechanisms. Second, the attenuation-associated physical

processes, i.e., dissipation and dispersion, are always coupled with each other and with

lossless wave propagation. This coupling complicates both forward and inversion problems,

and hinders our understanding of the contribution to the Fréchet kernel (and thus to the

Q-FWI) from each individual physical process. Bai et al. (2014) built the adjoint-based

theoretical framework for viscoacoustic monoparameter (velocity) inversion; with the “un-

relaxed” velocity as the model parameter, the velocity gradient (i.e., Fréchet kernel) has

the same form as lossless acoustic FWI, and the input of dissipation and dispersion vanish.

Fichtner and van Driel (2014) and Yang et al. (2016)’s formulations involve the forward

or adjoint memory variables into the wavefield interaction to compute both velocity (or

modulus) and attenuation kernels. The contributions from dissipation or dispersion process

are implicitly embedded in these memory variables. Another Q-FWI method (Tromp et al.,

2005) obtains the attenuation kernel with an additional adjoint simulation excited by a

Q adjoint source (Zhu et al., 2013), instead of conducting wavefield interaction involving
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the memory variables. This method is derived from encoding the Q information with the

complex velocity (or modulus, Aki and Richards, 2002), and has been applied to the real

VSP dataset for velocity/attenuation inversion (Pan and Innanen, 2019). Although the dis-

persion and dissipation terms are separated in the Q adjoint source, it is still unclear how

each of the decoupled terms contributes to the Fréchet kernel. Third, the coupling between

elastic (velocity) and anelastic (attenuation) model parameters gives rise to the crosstalk

artifacts (Kamei and Pratt, 2013; Keating and Innanen, 2019), which causes difficulties to

determine whether the data residual should be attributed to velocity or attenuation.

Recently, a variety of viscoacoustic/viscoelastic wave equations featuring the fractional

Laplacian operators (Chen and Holm, 2004) have been proposed for seismic modeling (e.g.,

Zhu and Harris, 2014; Zhu and Carcione, 2014; Chen et al., 2016; Xing and Zhu, 2019) as well

as inversion (e.g., Chen et al., 2017, 2020; Yang et al., 2020). Their unique features suggest

the potential to deal with the aforementioned issues in the Q-FWI. First, both forward

and inversion algorithms based on these fractional equations fundamentally differ from

the traditional methods: the traditional methods manage the attenuation effects through

exploiting the temporal wavefield history by either storing it (e.g., Carcione et al., 2002;

Zhu, 2017) or introducing memory variables to “record” the necessary part of it (e.g.,

Carcione et al., 1988; Fichtner and van Driel, 2014; Yang et al., 2016); while the algorithms

based on the fractional equations retrieve the attenuation fingerprints embedded in the

spatial variation of the wavefield. Second, these fractional equations, derived from the

Kjartansson model that analytically characterizes the constant-Q property (Kjartansson,

1979), have explicit representation of Q, instead of the implicit Q parameterization using

relaxation times of rheological mechanisms. Third, this type of equations has an exceptional

characteristic that they decouple the attenuation-associated effects, i.e., dissipation and
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dispersion, from the lossless wave propagation, with separate operators for different physical

processes (Zhu, 2014). Previous studies showed that the decoupled operators enable the

Q-compensated reverse-time migration and time-reversal imaging by only flipping the sign

of the dissipation operator (Zhu, 2014; Zhu et al., 2014). Xue et al. (2018) demonstrated

that the Q-compensated velocity FWI can accelerate the convergence, where both forward

and adjoint simulations are compensated. This compensation acts as a preconditioner in

the FWI to balance the illumination by boosting the gradient at depth that suffers from the

“double-damping” (attenuated for both source-side and receiver-side wavefields), especially

for the reflection acquisition system.

Taking advantage of these features, in this study, we provide a detailed derivation of

the formulation for the Fréchet kernel computation based on a decoupled fractional viscoa-

coustic wave equation (Xing and Zhu, 2019), which improves the accuracy of simulating

the wavefield in heterogeneous Q media using fixed fractional Laplacian powers. As with

the wave propagator that is decoupled into lossless propagation, dispersion, and dissipation

operators, we demonstrate that the resultant Fréchet kernel can also be decoupled into

contributions from these three physical processes, which could promote our understanding

of the significance of each process in the Q-FWI. We also explore the Fréchet kernels of

various misfit measurements (objective functions) to investigate its potential to disentangle

the coupling between the velocity and attenuation.

We first introduce the forward modeling using the fractional viscoacoustic wave equa-

tion derived from the Kjartansson constant-Q model. In the next section, we formulate

its associated adjoint wave propagator and the Fréchet kernel computation for various mis-

fit measurements. In the numerical example section, we conduct experiments to validate

the kernel computation algorithm, and demonstrate the decoupling property and the sen-
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sitivities of velocity/attenuation anomalies of the kernels. Meanwhile, the advantages and

challenges of this algorithm are discussed, followed by presenting the conclusions.

FORWARD MODELING

The Kjartansson model represents frequency-independent-Q media with only three param-

eters (Kjartansson, 1979): the reference angular frequency ω0, its corresponding phase

velocity c0, and a dimensionless parameter γ = 1
πarctan(

1
Q) that represents the strength

of attenuation. Based on this model, Xing and Zhu (2019) proposed a viscoacoustic wave

equation featured by the fractional Laplacian operators:

Lu = (L0 + L1 + L2)u = f, (1)

L0 =
1

c2
∂2

∂t2
−∇2, (2)

L1 = −γ
ω0

c
(−∇2)

1
2 + γ

c

ω0
(−∇2)

3
2 , (3)

L2 = (πγ
1

c
(−∇2)

1
2 − πγ2

1

ω0
∇2)

∂

∂t
, (4)

where u is the pressure wavefield, f is the source term, and c = c0cos(
πγ
2 ) is the “propagation

velocity”. As shown in Equation (1), the viscoacoustic wave propagator L is decoupled into

three parts: L0 the lossless acoustic wave propagator, L1 the phase dispersion corrector,

and L2 the amplitude loss (dissipation) corrector. Each operator corresponds to a unique

physical process. This equation characterizes the attenuation features by interrogating the

spatial variation of the wavefield via operators L1 and L2. To numerically implement

Equations (1-4), we follow Xing and Zhu (2019) to use the pseudospectral method to model

the viscoacoustic wavefield with good accuracy and efficiency. Note that to guarantee

the accuracy of the numerical simulation, the reference angular frequency ω0 should be

selected, without loss of generality, to be the center of the frequency band of interest,
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and the corresponding phase velocity c0 should thus be adjusted accordingly based on the

velocity dispersion of the Kjartansson model.

FRÉCHET KERNELS

Following the Lagrangian multiplier method (Plessix, 2006), we can formulate the compu-

tation of Fréchet kernel K with Equation (1) for forward modeling, and two extra equations

for adjoint modeling and wavefield interaction, respectively:

L∗λ = a =
∂χ

∂u
, (5)

K =
dχ

dm
= −⟨λ, ∂L

∂m
u⟩, (6)

where ∗ denotes adjoint, λ is the adjoint wavefield, χ is the objective function, a = ∂χ
∂u is

the adjoint source, and m is the model parameter. The inner (dot) product ⟨·, ·⟩ of two

wavefields u and v is defined by

⟨u, v⟩ =
∫ T

0

∫
V
u(x, t)v(x, t)dxdt, (7)

where [0, T ] and V are the duration and the region of simulation, respectively. We will

illustrate how to use both Equations (5) and (6) in the following subsections.

Adjoint wave propagator L∗

In order to use Equation (5), we need to derive the explicit form of L∗ = L∗
0+L∗

1+L∗
2. For

an arbitrary operator P, its adjoint operator P∗ satisfies ⟨Pu, v⟩ = ⟨u,P∗v⟩. As we have

known that (∇2)∗ = ∇2 and ( ∂
∂t)

∗ = − ∂
∂t , we can infer from Equation (2) that the acoustic

propagator is self-adjoint: L∗
0 = L0. For the fractional Laplacian operators (−∇2)

1
2 and

(−∇2)
3
2 , there is a lack of mathematical proof of their self-adjoint property. In the following,
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we conduct dot product tests to numerically prove that both of these fractional Laplacian

operators are self-adjoint.

The fractional Laplacians are spatial operators, so we just need to consider the dot

product in only one single time slice without the time integral in Equation (7). Thus, we

investigate two randomly generated single-time-slice wavefields u (Figure 1a) and v (Figure

1b). We apply fractional Laplacians (both 1
2 and 3

2 orders) to u and v, and obtain the

wavefields (−∇2)
1
2u (Figure 1c), (−∇2)

1
2 v (Figure 1d), (−∇2)

3
2u (Figure 1e), and (−∇2)

3
2 v

(Figure 1f). Next, we conduct element-by-element multiplications between (−∇2)
1
2u (Figure

1c) and v (Figure 1b) to obtain Figure 1(g), and between (−∇2)
1
2 v (Figure 1d) and u

(Figure 1a) to get Figure 1(h). While these two resultant wavefields involving 1
2 order

Laplacians (Figures 1g and h) appear to be correlated but different, the summation of all

the elements in each wavefield, i.e., the inner product, turns out to be the same (0.18).

Similarly, we conduct the element-by-element multiplication and summation over elements

for the 3
2 order Laplacians, and obtain the equivalence (1.97) between ⟨(−∇2)

3
2u, v⟩ (Figure

1i) and ⟨u, (−∇2)
3
2 v⟩ (Figure 1j). Hence, for this random wavefield pair (u and v), we have

⟨(−∇2)
1
2u, v⟩ = ⟨u, (−∇2)

1
2 v⟩ and ⟨(−∇2)

3
2u, v⟩ = ⟨u, (−∇2)

3
2 v⟩. Moreover, we conduct

tests for another 100 random wavefield pairs, and the comparisons of the resultant inner

products are shown in Figure 2. Since the inner products are equivalent for each wavefield

pair, we can conclude that both fractional Laplacian operators are self-adjoint: ((−∇2)
1
2 )∗ =

(−∇2)
1
2 and ((−∇2)

3
2 )∗ = (−∇2)

3
2 .

Hence, based on Equations (3) and (4), we have L∗
1 = L1 and L∗

2 = −L2, and thus

L∗ = L0+L1−L2. Physically, it means that the adjoint viscoacoustic propagator compen-

sates (anti-attenuates) the amplitude of the waves while preserves the velocity dispersion

character (Zhu, 2014; Zhu et al., 2014). This behavior is consistent with the equations based
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on the traditional “temporal-history” method, where Tarantola (1988) derived the adjoint

wave equation and highlighted its feature of an “anti-causal” relaxation function that leads

to the growth of energy (Komatitsch et al., 2016).

Contrary to the zero initial condition for forward modeling (Equation 1), the adjoint

wave equation (Equation 5) is associated with a zero final (terminal) condition (Plessix,

2006). Hence, in practice, we simulate the adjoint wavefield in a time-reversed mode:

(L∗)‡λ‡ = a‡,

where ‡ indicates the time reversal. For variables (i.e., the adjoint wavefield λ and the adjoint

source a), the ‡ operator flips the time order; for operators (i.e., the adjoint viscoacoustic

propagator L∗ as well as its constituent L∗
0, L∗

1 and L∗
2), it replaces t with −t. As a

result, we have (L∗
0)

‡ = L‡
0 = L0, (L

∗
1)

‡ = L‡
1 = L1, and (L∗

2)
‡ = −L‡

2 = L2, and thus,

straightforwardly, the time-reversed adjoint viscoacoustic propagator (L∗)‡ = L0+L1+L2 =

L. Hence, instead of compensating, the time-reversed adjoint wavefield attenuates the

amplitude and preserves the velocity dispersion as the forward wavefield:

Lλ‡ = a‡. (8)

In other words, the behavior of the time-reversed adjoint wave propagation is identical to

that of the forward wavefield. Note that this invariance should be satisfied as long as the

source-receiver reciprocity holds (Pratt et al., 1998).

Adjoint source ∂χ
∂u

The right-hand side of Equation (5) suggests that the adjoint source exciting the adjoint

wavefield depends on the form of the objective function χ, which is the measurement of
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the misfit between observed and synthetic seismograms. In the classic FWI, the waveform

misfit is adopted as the objective function:

χW =
1

2

∫
(u− d)2dt, (9)

where u and d are the synthetic and the observed seismograms, respectively. For simplicity,

we consider the single-source single-receiver case; and we hereinafter omit the sampling

operator at the receiver location, and the time window in which the measurement is con-

ducted. Hence, its corresponding adjoint source is the data (waveform) residual, expressed

as:

aW =
∂χW

∂u
= u− d. (10)

Besides, we consider two additional objective functions, i.e., the cross-correlation trav-

eltime shift and the amplitude difference. The traveltime objective function is defined by

χT =
1

2
∆T 2 (∆T = Tu − Td), (11)

where Tu and Td are the traveltimes of the synthetic and the observed seismograms, re-

spectively; and the traveltime shift ∆T is defined by the time lag with the maximum cross-

correlation coefficient of u and d. Using the implicit differentiation technique (Luo and

Schuster, 1991; Tromp et al., 2005), we can formulate the adjoint source for the traveltime

objective function:

aT =
∂χT

∂u
= −∆T

ḋ(t−∆T )∫
u̇(t)ḋ(t−∆T )dt

, (12)

where the dot (in ḋ and u̇) denotes time derivative.

We can define the amplitude objective function as

χA =
1

2
∆A2 (∆A =

Au −Ad

Ad
), (13)
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where Au = (
∫
u2dt)

1
2 and Ad = (

∫
d2dt)

1
2 are the root-mean-square amplitudes of the

synthetic and the observed seismograms, respectively. Its corresponding adjoint source can

then be formulated (Dahlen and Baig, 2002; Tromp et al., 2005):

aA =
∂χA

∂u
= ∆A · u

AuAd
. (14)

In practice, the amplitude information could be unreliable when the signal-to-noise ratio is

low. In such scenarios, other amplitude-based objective functions such as spectral amplitude

ratio can also be considered (Pan and Innanen, 2019; Pan and Wang, 2020).

Generally, the traveltime and the amplitude captures the kinematic and the dynamic

information, respectively. We incorporate these two misfit measurements as an attempt to

understand the sensitivity of traveltime and amplitude data to velocity and attenuation.

Wavefield interaction

The last step to compute the Fréchet kernel is to interact the forward and adjoint wavefields,

which requires an explicit formulation of equation (6). As mentioned in Forward Modeling

section, one of the unique features of the fractional wave equation is its capability to decouple

the wave propagator L into three parts representing different physical processes: the lossless

propagator L0, the dispersion corrector L1, and the dissipation corrector L2. As a result,

the Fréchet kernel K is perfectly separated into three parts as L does:

K = K0 +K1 +K2 where Ki = −⟨λ, ∂Li

∂m
u⟩ (i = 0, 1, 2). (15)

Here, we regard c (propagation velocity) and γ (attenuation strength, ∼ 1/πQ) as the model

parameters. Then the operators ∂Li
∂m can be derived directly from Equations (2)-(4), and

12



thus the decoupled Fréchet kernels can be obtained by:

Kc,0 = −⟨λ, ∂L0

∂c
u⟩ = −⟨λ,− 2

c3
∂2

∂t2
u⟩, (16)

Kc,1 = −⟨λ, ∂L1

∂c
u⟩ = −⟨λ, (γω0

c2
(−∇2)

1
2 +

γ

ω0
(−∇2)

3
2 )u⟩, (17)

Kc,2 = −⟨λ, ∂L2

∂c
u⟩ = −⟨λ,−πγ

c2
(−∇2)

1
2
∂

∂t
u⟩, (18)

Kγ,0 = −⟨λ, ∂L0

∂γ
u⟩ = 0, (19)

Kγ,1 = −⟨λ, ∂L1

∂γ
u⟩ = −⟨λ, (−ω0

c
(−∇2)

1
2 +

c

ω0
(−∇2)

3
2 )u⟩, (20)

Kγ,2 = −⟨λ, ∂L2

∂γ
u⟩ = −⟨λ, (π

c
(−∇2)

1
2 − 2πγ

ω0
∇2)

∂

∂t
u⟩. (21)

Thus, we have decoupled the Fréchet kernels into contributions from three different physical

processes: lossless propagation kernel K0 (Equations 16 and 19), dispersion kernel K1

(Equations 17 and 20), and dissipation kernel K2 (Equations 18 and 21). Note that the form

of Equation (16) is identical to the velocity gradient computation in the classic acoustic FWI

(e.g., Bunks et al., 1995). Taking Kc,0 as an example (Equation 16), its physical meaning

is: how significant the misfit will change due to the velocity (c) perturbation when only

the lossless propagation process is considered. According to the Kjartansson model (c is

involved in both L1 and L2), the velocity perturbation will slightly affect the dispersion and

the dissipation. The velocity kernel contributions from these two processes (Equations 17

and 18) are expected to be far less significant than the lossless propagation (Equation 16).

Equation (19) indicates that the misfit will not change at all no matter how we manipulate

the attenuation (γ) in a lossless world, thus the lossless propagation will not contribute to

the attenuation kernel. In addition to the dispersion contribution (Equation 20), we would

expect the attenuation to have a significant impact through the dissipation (Equation 21)

process, which will be demonstrated in the Numerical Examples section.
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NUMERICAL EXAMPLES

Kernel gallery

We implement the adjoint-state method derived in the previous section to compute the

Fréchet kernels of a homogeneous model for three different objective functions. To do that,

we consider a case of exploration scale, and set up a 2-D homogeneous target model on a

401 × 201 grid with spacing of 10 m in both directions. The target model has the reference

phase velocity 3.05 km/s at 20 Hz and the quality factor Q = 80. We put a receiver at (3.7,

1) km and a source at (0.3, 1) km with a 20 Hz Ricker wavelet. We run the simulation with

1 ms time interval, and the resultant synthetic seismogram is regarded as the ground truth

data.

Meanwhile, we set up an initial model on the same grid with 3 km/s reference phase

velocity and Q = 100. Using this model, first, we simulate the forward wavefield according

to Equation (1). Next, the synthetic recorded at the receiver is compared with the ground

truth data to generate the adjoint sources for different objective functions according to

Equations (10), (12), and (14). After that, the adjoint wavefield excited by each adjoint

source is modeled in a time-reversed mode using the same simulator as the forward wave-

field (Equation 8). Finally, the forward and the adjoint wavefields are interacted following

Equations (16)-(21) to produce the Fréchet kernels contributed by different physical pro-

cesses as well as their summation. The resultant velocity and attenuation kernels (Kc and

Kγ) are displayed in Figures 3 and 4, respectively.

Figure 3 and Figure 4 show the velocity and attenuation Fréchet kernels, respectively,

for the three objective functions (waveform: Kc,W and Kγ,W ; traveltime: Kc,T and Kγ,T ;

amplitude: Kc,A and Kγ,A). In both figures, the first three rows are the decoupled kernels,
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i.e., the contributions from lossless propagation (K0), dispersion (K1), and dissipation (K2),

respectively, while the bottom row is their summation (K, i.e., Ktotal). As expected, for

all the objective functions, the velocity kernels (Kc, row 4 of Figure 3) are dominated by

the contribution of lossless propagation (Kc,0 in Equation 16 and row 1 of Figure 3), while

the dispersion and dissipation counterparts (Kc,1 in Equation 17 and Kc,2 in Equation 18)

are very small and virtually invisible (Kc,1 in row 2, and Kc,2 in row 3 of Figure 3). On

the contrary, the attenuation has absolutely no sensitivity of the lossless process (Kγ,0 in

Equation 19 and row 1 of Figure 4), but is instead determined by the dispersion (Kγ,1 in

Equation 20 and row 2 of Figure 4) and dissipation (Kγ,2 in Equation 21 and row 3 of Figure

4). While the dispersion kernel (Kγ,1) is relatively small, the dissipation kernel (Kγ,2 in

Equation 21 and row 3 of Figure 4) is much larger for each of the objective functions.

To further quantify the kernel contribution from different processes (at least to some

extent), we extract the central vertical profile (at 2 km of the horizontal coordinate) for

each kernel and show them in Figure 5. The above observations can be confirmed: loss-

less propagation kernel K0 dominates the velocity kernel, while the dissipation kernel K2

contributes to the majority of the attenuation kernel. In addition, we noticed that the dis-

persion and dissipation attenuation kernels (Kγ,1 and Kγ,2) mildly anti-correlate with each

other (correlation coefficients are -0.31, -0.54, and -0.11 for the three objective functions,

respectively), as shown in the row 2 of Figure 5. We also extract the value at the central

depth for each profile (i.e., the central point of the 2-D model), and present the percentage

of the contributions from different processes in Table 1. It turns out that the lossless prop-

agation (K0) contributes almost 100% of the velocity kernel; while the dissipation (K2) is

dominant by taking up more than 80% of the attenuation kernel, compared to the dispersion

(K1) contribution, which is around 20%.
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Since the target model has higher velocity compared to the initial model, we would

expect that the majority of the velocity kernel to be negative. In this sense, the traveltime

kernel (Kc,T in Figure 3) with the largest bluish area is more likely to benefit the FWI

convergence compared to the others. On the other hand, the target model also has higher

attenuation (lower Q), which is well captured by both the waveform and the amplitude

kernels (Kγ,A in Figure 4) with negative values in the Fresnel zone. The traveltime atten-

uation kernel (Kγ,T in Figure 4), however, has a flipped polarity. As the attenuation is

barely sensitive to the traveltime phase shift, the traveltime attenuation kernel generally

should not be used to update the model.

It is worth mentioning that the raw kernels, especially the attenuation kernels, have a

cross-shaped artifact near the source location. For example, a part (boxed area of Figure 4j)

of the raw waveform attenuation kernel is shown in Figure 6(a). This artifact is produced by

applying fractional Laplacian operators on the source-point singularity when the wavefield

interaction is taken (Equations 17, 18, 20, and 21). To suppress the artifact, we use a

Gaussian function to taper the source region of the forward wavefield for all the time

steps before the wavefield interaction. With this source region taper (SRT) process, the

attenuation kernel is shown in Figure 6(b), and the cross-shaped artifact disappears. By

checking the difference between the kernels with and without SRT (Figure 6c), we can see

that the artifact is mostly removed along with the kernel of a small source region. Since

the model parameters are not updated at the source region in practice, this SRT solution

for the artifact is valid. All the Fréchet kernels in Figures 3 and 4 are generated with SRT.
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Finite-difference validation

To validate our algorithm, in this subsection, we use the finite-difference (FD) method to

compute the kernels of a small (61 × 31) model, and compare them with the ones obtained

by the adjoint-state (AD) method. Apart from the size, the setup of the target and initial

models are the same as the previous section. The source and the receiver are located at (0.10,

0.15) km and (0.50, 0.15) km, respectively. The AD kernels are computed as illustrated in

the previous section but without SRT (for better validation).

Based on Equation (6), the FD Fréchet kernel K̃ can be defined by

K̃ =
∆χ

∆m
≈ dχ

dm
, (22)

when the model parameter perturbation ∆m is sufficiently small. To implement, we first

compute the original objective function, which is the misfit between the observed data and

the synthetic seismogram generated by the initial model. For one single grid point of the

initial model, we perturb the parameter by a small value ∆m (1 km/s for velocity ∆c,

10−3 for attenuation ∆γ). Using this perturbed model, we simulate the new synthetic and

compute the perturbed objective function, which has a subtle difference ∆χ compared to

the original objective function. The FD Fréchet kernel value at this grid point is then set

to be ∆χ
∆m , followed by undoing the perturbation ∆m. We iterate this process for all the

grid points in the model to obtain the FD Fréchet kernel K̃.

The comparison between the AD kernels and the FD kernels is shown in Figure 7.

Here, we only show the kernels for the waveform and the amplitude misfit, because the

tiny traveltime change caused by the perturbation of one grid point cannot be measured

by the cross-correlation method, which results in zero traveltime FD kernels. It turns

out that the kernels generated by both methods are consistent with each other. For each
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objective function, there is some residual near the source location (Column 3 of Figure

7) because of its singularity. Apart from that, the velocity kernel residuals are negligible.

The visible residuals of the attenuation kernels are because the attenuation perturbation

(∆γ = 10−3, here corresponding to ∆Q = 23.9) is not small enough to guarantee the

accuracy of the approximation in Equation (22). However, if we decrease ∆γ, the objective

function perturbation ∆J will fall below the level of numerical noise, which leads to a

noisy FD kernel. Nevertheless, we believe that the similarity between the attenuation AD

and the FD kernels is fair enough to validate our adjoint-state method for Fréchet kernel

computation.

Circular anomaly model

In this subsection, we demonstrate the capability of Fréchet kernels with regarding to a

velocity anomaly (Test 1) and an attenuation anomaly (Test 2). The initial model is the

same homogeneous model as in the first numerical example. Compared to the initial model,

the Test 1 target model has a circular (radius 0.3 km) velocity anomaly of 3.1 km/s centered

at (1.5, 0.8) km. We have 56 sources (20 on top/bottom, 8 on left/right) and 118 receivers

(40 on top/bottom, 19 on left/right) evenly distributed on the four margins of the model.

As in the previous examples, the sources are 20 Hz Ricker wavelet, and the simulations are

ran with 1 ms time interval.

For each source, we compute the velocity and the attenuation Fréchet kernels for all the

three objective functions, and show the ones generated by the source at (1.15, 0.15) km in

Figures 8. The waveform (Kc,W ) and the traveltime (Kc,T ) have narrow fan-shaped velocity

kernels that concentrated on the wave paths passing through the anomalous area, while the
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amplitude kernel (Kc,A) is much wider with artifacts in adjacent zones. Besides, the stacked

Fréchet kernels from all the sources are shown in Figure 9. It appears that velocity kernels

of all the three objective functions (Figures 9a, c and e) reveal the velocity anomaly. In

particular, the waveform kernel (Figure 9a) and the traveltime kernel (Figure 9c) better

capture the interior of the anomaly; while the amplitude kernel (Figure 9e) emphasizes the

boundary of the anomaly with larger contrasts. Meanwhile, the attenuation kernels (column

2 of Figures 8 and 9) indicate the crosstalk between velocity and attenuation.

Test 2 is conducted for a target model with a Q = 50 anomaly at the same anomaly

location as Test 1, and a homogeneous velocity model. The resultant single-source and the

stacked kernels are shown in Figures 10 and 11, respectively. As expected, the waveform

(Kγ,W ) and the amplitude (Kγ,A) attenuation kernels delineate the anomaly well (Figures

11b and f), while the traveltime (Kγ,T ) has little sensitivity to the Q variation (Figure

11d). The leakage to the incorrect parameter (velocity) also exists in this test as shown by

the velocity kernels (the left column of Figures 10 and 11). Both tests in this subsection

manifest the crosstalk between velocity and attenuation.

DISCUSSION

This study aims to establish a new Fréchet kernel computation algorithm based on a frac-

tional viscoacoustic wave equation, which may resolve the three issues of the Q-FWI: the im-

plicit Q parameterization, the dispersion-dissipation coupling, and the velocity-attenuation

crosstalk. First, this wave equation, and thus the kernel computation, intrinsically in-

volves the explicit Q (parametrized as attenuation strength γ) as a coefficient. Thus it

avoids implicit Q representation (or the curve-fitting process) of rheological-mechanism-

based methods (Fichtner and van Driel, 2014; Yang et al., 2016).

19



Second, the decoupled wave equation operators (L0, L1, and L2 in Equation 1) lead

to the decoupled Fréchet kernels (K0, K1, and K2 in Equations 16 - 21) that directly

represent the contributions from different physical processes, i.e., the lossless propagation,

the dispersion and the dissipation. The lossless propagation (K0) dominates the velocity

kernel, while the dissipation (K2) dominates the attenuation kernel, which indicates the

significance of each physical process in the Q-FWI. Taking advantage of it, we could save

some computational cost by using K0 as the velocity kernel, and K2 as the attenuation

kernel. In addition, as with the Q-compensated reverse-time migration (Zhu, 2014; Zhu

et al., 2014; Xing and Zhu, 2019), the decoupling of the operators could also be used to

construct the Q-compensated FWI algorithm (Xue et al., 2018), where both forward and

time-reversed adjoint wavefields are compensated to boost the kernel below low-Q areas.

Third, our derived formulation may provide an option to mitigate the crosstalk between

velocity and attenuation by involving different misfit measurements other than the classic

waveform residual (Pan and Wang, 2020). In particular, the traveltime dominated by

the kinematic part of the data can well capture the interior of the velocity anomaly, but is

hardly sensitive to attenuation; while the amplitude primarily representing the dynamic part

highlights the boundary of the velocity anomaly, and is particularly suitable for attenuation

inversion. Our formulation provides the flexibility to accommodate any misfit measurements

by casting the adjoint source corresponding to the objective function (Equation 5), although

the kernels of the three conventional misfits (waveform, traveltime, and amplitude) in the

circular anomaly example show the crosstalk between the two parameter classes (both

kinematic and dynamic information can be attributed to either velocity or attenuation after

all). Potential solutions within the kernel-based (i.e., gradient-based) framework include

involving more advanced misfit measurements such as the envelope (e.g., Bozdağ et al.,
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2011), the peak frequency (e.g., Dutta and Schuster, 2016) or the spectral ratio (e.g., Pan

and Wang, 2020). In addition, incorporating the second-order Fréchet derivative, i.e., the

Hessian, might be a good option to mitigate the crosstalk artifacts (e.g., Operto et al., 2013;

Yang et al., 2018; Xing and Zhu, 2020). The future work should be focused on investigating

how to promote the performance of the multiparameter inversion, in particular how to make

the most of kernels of different objective functions and how to incorporate the Hessian

information.

Furthermore, we would like to mention that the derivation of the Fréchet kernels in

this study is associated with a recently proposed viscoacoustic wave equation (Xing and

Zhu, 2019). In fact, the kernels with respect to viscoelastic, anisotropic, and attenuation-

anisotropic properties (e.g., Qs, δ, ϵQ) can be further derived based on fractional wave

equations incorporating viscoelasticity (Wang et al., 2019) and anisotropy (Zhu and Bai,

2019).

CONCLUSIONS

We have established a new system of formulations to compute the velocity and the atten-

uation Fréchet kernels for different objective functions based on a fractional viscoacoustic

wave equation. These Fréchet kernels lay the foundation of the Q-FWI with fractional for-

mulation. We have numerically proved that both 1/2- and 3/2-order fractional Laplacian

operators are self-adjoint, which facilitates the derivation of the adjoint viscoacoustic wave

propagator: it preserves the phase dispersion while compensates the amplitude. In practice,

however, the time-reversed adjoint wavefield behaves identically as the forward one with the

same dispersion and dissipation characters. This new formulation presents an explicit Q

parameterization instead of the implicit one in traditional methods. The resultant Fréchet
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kernels for both velocity and attenuation can be decoupled into K0 the lossless propagation

kernel, K1 the dispersion kernel, and K2 the dissipation kernel. We found that the lossless

propagation kernel K0 dominates the velocity kernel; while the dissipation K2 dominates

the attenuation kernel. Numerical experiments using different objective functions suggest

that waveform and traveltime are sensitive to the interior of velocity anomaly while ampli-

tude emphasizes its boundary; rather than the traveltime, the waveform and the amplitude

misfits are more suitable for attenuation inversion.
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Figure 1: The dot product test of the fractional Laplacian operators for one random wave-

field pair.
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Figure 2: The dot product test results of 100 wavefield pairs for (a) (−∇2)
1
2 and (b) (−∇2)

3
2 .

Each black cross denotes the result of a wavefield pair; the gray dashed line shows where

the values of x- and y-axis are equal.
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Figure 3: Velocity Fréchet kernels (Kc) for waveform (column 1), traveltime (column 2),

and amplitude (column 3) objective functions. Row 1: K0, contribution from the lossless

propagation (L0); row 2: K1, contribution from the dispersion (L1); row 3: K2, contribution

from the dissipation (L2); row 4: the total Fréchet kernels.
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Figure 4: Attenuation Fréchet kernels (Kγ) for waveform (column 1), traveltime (column

2), and amplitude (column 3) objective functions. Row 1: K0, contribution from the lossless

propagation (L0); row 2: K1, contribution from the dispersion (L1); row 3: K2, contribution

from the dissipation (L2); row 4: the total Fréchet kernels. The boxed area of (j) is used

to illustrate the source region taper (SRT) process in Figure 6.
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Figure 5: Central vertical profiles (at 2 km of the horizontal coordinate) of Fréchet kernels for

waveform (column 1), traveltime (column 2), and amplitude (column 3) objective functions.

Row 1: velocity kernel (Kc); row 2: attenuation kernel (Kγ). Gray solid line: total kernel

K; blue dashed line: lossless propagation kernel (K0); cyan solid line: dispersion kernel

(K1); green dashed line: dissipation kernel (K2).
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Kc,W Kc,T Kc,A Kγ,W Kγ,T Kγ,A

Loss propagation K0 100.17% 99.17% 100.17% 0.00% 0.00% 0.00%

Dispersion K1 0.14% 0.12% 0.13% 10.02% -28.40% 14.07%

Dissipation K2 -0.30% 0.71% -0.29% 89.98% 128.40% 85.93%

Table 1: Kernel contributions from different operators at the central point of a homogeneous

model
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Figure 6: The effect of the source region taper (SRT). (a) The raw attenuation kernel

without SRT; (b) the attenuation kernel with SRT (a close-up of the boxed area in Figure

4j); (c) the difference between the kernels with and without SRT.
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Figure 7: The comparison between Fréchet kernels computed using the adjoint-state (AD)

method and the finite-difference (FD) method. Column 1: AD kernels; Column 2: FD

kernels; column 3: residual between the AD and the FD kernels. Row 1: waveform velocity

kernel (Kc,W and K̃c,W ); row 2: waveform attenuation kernel (Kγ,W and K̃γ,W ); row 3:

amplitude velocity kernel (Kc,A and K̃c,A); row 4: amplitude attenuation kernel (Kγ,A and

K̃γ,A).
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Figure 8: Single-source Fréchet kernels for the Test 1 (velocity-anomaly model). Column

1: velocity kernels (Kc); Column 2: attenuation kernels (Kγ). Row 1: waveform; row 2:

traveltime; row 3: amplitude.
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Figure 9: Stacked Fréchet kernels for the Test 1 (velocity-anomaly model). Column 1:

velocity kernels (Kc); Column 2: attenuation kernels (Kγ). Row 1: waveform; row 2:

traveltime; row 3: amplitude.
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Figure 10: Single-source Fréchet kernels for the Test 2 (attenuation-anomaly model). Col-

umn 1: velocity kernels (Kc); Column 2: attenuation kernels (Kγ). Row 1: waveform; row

2: traveltime; row 3: amplitude.
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Figure 11: Stacked Fréchet kernels for the Test 2 (attenuation-anomaly model). Column

1: velocity kernels (Kc); Column 2: attenuation kernels (Kγ). Row 1: waveform; row 2:

traveltime; row 3: amplitude.
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