

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-817853

Transport cost for carbon removal projects with biomass and CO₂ storage

J. K. Stolaroff, S. H. Pang, W. Li, H. M. Goldstein,
R. D. Aines, S. E. Baker

December 21, 2020

Frontiers in Energy Research

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Transport cost for carbon removal projects with biomass and CO₂ storage

1 **Joshuah K. Stolaroff^{1*}, Simon H. Pang², Wenqin Li³, Hannah M. Goldstein¹, Roger D. Aines,¹**
2 **and Sarah E. Baker²**

3 ¹Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore,
4 CA, USA

5 ² Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA

6 ³ Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA,
7 USA

8 *** Correspondence:**
9 stolaroff1@llnl.gov

10 **Keywords:** CCS, negative emissions, BECCS, hydrogen, CO₂ transport

11 Abstract

12 Strategies to remove carbon from the atmosphere are needed to meet global climate goals. Promising
13 strategies include the conversion of waste biomass to hydrogen, methane, liquid fuels, or electricity
14 coupled with CO₂ capture and storage (CCS). A key challenge for these projects is the need to
15 connect geographically dispersed biomass supplies with geologic storage sites by either transporting
16 biomass or CO₂. We assess the cost of transport for biomass conversion projects with CCS using
17 publicly available cost data for trucking, rail, and CO₂ pipelines in the United States. We find that for
18 large projects (order of 1 Mt/yr CO₂ or greater), CO₂ by pipeline is the lowest cost option. However,
19 for projects that send most of the biomass carbon to storage, such as gasification to hydrogen or
20 electricity production, biomass by rail is a competitive option. For smaller projects and lower
21 fractions of carbon sent to storage, such as for pyrolysis to liquid fuels, CO₂ by rail is the lowest cost
22 option. Assessing three plausible example projects in the state of California, we estimate that total
23 transport costs range from \$7/t-CO₂ stored for a gasification to hydrogen project traversing 170 km to
24 \$48/t for a pyrolysis to liquid fuels project traversing 530 km. In general, if developers have
25 flexibility in choosing transport mode and project type, biomass sources and storage sites can be
26 connected across hundreds of kilometers for transport costs in the range of \$10-30/t-CO₂ stored.
27 Truck and rail are often viable modes when pipelines cannot be constructed. Distances of 1000 km or
28 more can be connected in the same cost range when shared CO₂ pipelines are employed.

29 1 Introduction

30 It is now well understood that carbon removal strategies, also known as negative emissions
31 technologies (NETs), will be needed to achieve a net-zero carbon society, and specifically to achieve
32 climate goals of limited warming (Masson-Delmotte et al. 2018; National Academies of Sciences
33 2019). One long-studied type of carbon removal is the combustion of biomass coupled to carbon
34 capture and storage (bio-energy with carbon capture and storage, BECCS) (Minx et al. 2018).
35 Traditionally, the biomass is combusted to produce electricity, which is sold as a co-product.

36
37 There have been a handful of BECCS projects so far (Consoli 2019). Furthermore, biomass-fired
38 power plants without carbon capture are common, and CCS has been demonstrated on fossil plants
39 such that coupling the two is expected to be straightforward compared to many other NETs.
40
41 A related set of strategies, much less studied, is to convert biomass to other products, such as liquid
42 fuel, renewable natural gas (methane), or hydrogen, while capturing and storing the process CO₂. If
43 the source of biomass regrows and has limited other climate impacts, then the result is net-negative
44 biofuels (NNBFs): clean fuels and carbon removal as co-products.
45
46 The source of biomass, type of fuel, and processing technology all affect the life cycle climate impact
47 of biofuels. In general, NNBFs can easily be achieved using waste biomass, such as agricultural
48 residue or brush and small trees from fire management in forests (Creutzig et al. 2015).
49
50 Recently, with our coworkers, we assessed many pathways for NNBFs and BECCS as well as other
51 carbon removal strategies for the U.S. state of California (Baker et al. 2020). We found that NNBFs,
52 and specifically biomass gasification to hydrogen, had the largest potential and among the lowest
53 cost of carbon removal options for California. The high availability of waste biomass and excellent
54 geologic conditions for CO₂ storage in the state contribute to this result, however these circumstances
55 are far from unique. The National Academies assessed biomass in the United States for energy
56 applications and estimated 512 Mt/yr of wastes and residues were available (National Academies of
57 Sciences 2019). This is similar on a per capita basis to the 55 Mt/yr that we estimated for California.
58 Previous studies have found large areas of the United States have suitable geology for CO₂ storage,
59 including biomass-rich regions in the upper Midwest and southeast (Baik et al. 2018).
60
61 In Baker et al., we found that NNBFs have enormous potential to contribute carbon removal at a
62 reasonable cost while providing clean fuels and other benefits, such as jobs and waste disposal.
63 However, a successful NNBF project has to solve a transport and logistics problem that connects at
64 least four elements:
65 1. The supply of biomass
66 2. The biomass conversion facility, e.g. gasification or pyrolysis plant
67 3. The CO₂ storage site
68 4. The customers of the fuel or electricity
69
70 The fourth element, transport of electricity or fuel from the plant to customers, is relatively well-
71 understood and typically contributes a small share to the cost of those commodities. An exception to
72 this may be for hydrogen, which currently doesn't have as wide a customer base or a well-developed
73 transport network as for methane or liquid fuels. Transport of hydrogen by truck is straightforward in
74 the absence of other options, but the proximity of hydrogen users may constrain the placement of
75 NNBF plants more than for other fuels. Overall, we don't consider the cost of fuel transport here and
76 rather focus on the first three elements above.
77
78 Transport of biomass for bioenergy has long been considered an important cost driver. Compared to
79 fossil fuels, biomass carries relatively less energy per unit mass, and so assessments of bioenergy
80 potential have concluded that biomass transport distances must be relatively short for economic
81 success (Helena Chum et al. 2011). The calculation changes when biomass is considered as a carrier
82 for carbon removal. Many forms of biomass are carbon-rich, making them feasible to transport for
83 longer distances than when biomass is valued as an energy carrier alone.
84

85 In this paper, we seek to estimate the cost of carbon transport for NNBF projects as a function of
 86 distance and type of project. For project developers, there will often be a choice about which mode of
 87 transport to use and whether to transport biomass or CO₂ the longer distance. We will identify the
 88 circumstances that favor each of the choices. To do this, we'll first lay out our assumptions on the
 89 logistics of NNBF projects. We'll then report unit cost estimates for several modes of transport from
 90 the literature. Finally, we'll calculate transport costs per unit of CO₂ stored for an NNBF project as a
 91 function of several variables, including distances, plant size, and biomass conversion technology. We
 92 will conclude with a discussion of implications of these findings for NNBF developers and for
 93 policymakers considering carbon removal incentives.

94 2 Materials and Methods

95 In this paper, we aim to assess the costs of carbon transport for BECCS and NNBF projects in the
 96 United States. The analysis shares some common methods and assumptions with Chapter 7 of Baker
 97 et al., but here we generalize the results for the United States and ignore the system integration
 98 aspects, taking the perspective of a single project. The cost data below are sourced from the United
 99 States, but the general trends and relative costs between modes should be similar to these costs
 100 internationally.

101 As discussed in the previous section, a successful NNBF or BECCS project must connect at least
 102 three elements: biomass supply, plant, and CO₂ storage. There are a variety of transport strategies to
 103 achieve this. Biomass can be transported by truck or rail, and CO₂ can be transported by truck, rail, or
 104 pipeline. Both can also be transported by ship, but this option is highly limited by geography and we
 105 don't consider it here.

106 Major potential sources of waste biomass include forest residues, agricultural residues, municipal
 107 solid waste, as well as liquid wastes, such as from food processing, and biogas, such as from landfills
 108 and wastewater treatment. Liquid and gaseous wastes are available in relatively small volumes and
 109 have different challenges for use as NNBFs. We focus here on the major categories of solid biomass.

110 For solid biomass, the carbon chain typically starts with a collection stage by truck or off-road
 111 vehicle and ends with CO₂ injection at a geologic storage site. One major choice is whether to site the
 112 conversion facility near the biomass and transport CO₂ the greater distance, or to site the facility near
 113 the storage site and transport the biomass. There are several additional choices for the mode of
 114 transport in between. Figure 1 illustrates five possible transport chains, which are named for the
 115 longest leg in each case. Each of these five scenarios is assessed for several example projects
 116 described below.

117 2.1 Biomass collection

118 The first step in the carbon chain is collection and pre-treatment of biomass into loads suitable for
 119 transport by on-road truck. Representative costs for this stage are shown in Table 1 along with
 120 average moisture content of the biomass, which affects transport costs down the line. Collection cost
 121 is not the focus of this analysis, be we discuss it here for context.

122 Collection of forest and chaparral residues typically includes chipping and potentially drying before
 123 loading trucks at the roadside. For agricultural residues, collection and processing may have already
 124 occurred, such as for pistachio shells or almond hulls. As a result, some such residues can be
 125 purchased at very low additional cost. Other types require collection from the field, so collection cost
 126 varies widely. Municipal solid waste (MSW) is already collected by truck and typically already

131 sorted. Biomass from MSW may even be available at negative cost because processing this waste
 132 avoids tipping fees at landfills. As described in the Billion-Ton Report (Langholtz, Stokes, and Eaton
 133 2016), many millions of tons of biomass are available in each of these categories in the United States;
 134 any of these types of biomass could support an NNBF project. Supplies are sufficiently concentrated
 135 that even a large NNBF plant, say 1 Mt/yr biomass capacity, could, in many places, be supported by
 136 a single county supply, or in other cases by several adjacent counties.

137 2.2 Transport of biomass

138 From the collection points, biomass will typically be trucked either to a rail station for longer-range
 139 transport, or directly to a biomass conversion facility. Trucking is a commodity market with stable
 140 prices. Average operating expenses of commercial truck are surveyed annually by the American
 141 Transportation Research Institute (Hooper and Murray 2018), who reported a national average of
 142 \$1.05/km in 2017. The cost per ton depends on the load size and capacity factor. We assume that
 143 outbound trucks carry 22 tons of biomass, which is close to the legal limit and tracks the average net
 144 loads for trucks carrying bulk commodities (National Research Council 2010). Although there are
 145 some agricultural residues that aren't dense enough to fit 22 t in a standard trailer volume, these can
 146 be compacted or otherwise processed to reduce shipping volume. We assume the trucks return empty
 147 (50% capacity factor). We also add 6% profit to reflect prices for the project operator (Biery 2018).
 148 The resulting unit cost is shown in Table 2, along with several other unit costs described below.

149
 150 Biomass transport by rail is also common in the U.S. as well as internationally. Rail is well known to
 151 have lower cost and lower externalities than trucking (GAO 2011), so it is generally preferred
 152 wherever it is available. However, rail access is limited and building new rail spurs is expensive, with
 153 representative costs in the range of \$0.6–1.2M/km – somewhat more than for CO₂ pipelines
 154 (Compass Int 2017). Short delivery distances may also favor trucking.

155
 156 The market for rail transport is more heterogeneous than for trucking. Unit prices vary significantly
 157 contract to contract, and average prices vary by about a factor of two depending on the travel
 158 distance, load size (number of cars), and type of commodity (Prater and O'Neil 2014; Mintz, Saricks,
 159 and Vyas 2015). For our base case cost, we assume that transport will be in the short-haul category
 160 (<800 km), but with larger loads (>75 cars per train), suggesting a unit cost that is 1.6 times the
 161 national average.

162 2.3 Transport of CO₂

163 Once biomass is transported to the NNBF or BECCS facility, it is processed and treated. The
 164 resulting CO₂ is captured and either compressed for transport via pipeline or liquified for transport by
 165 truck or rail. Pipeline CO₂ can then be injected directly underground when it reaches the storage site.
 166 Liquified CO₂, which is kept at about -40°C and 20 bar of pressure, must be warmed and compressed
 167 before injection into a pipeline (80-120 bar and ambient temperature).

168 Liquified CO₂ can be transported in insulated tanker cars that are similar between truck and rail. We
 169 assume the near-full capacity of 22 t is retained for trucks, however costs are somewhat higher
 170 because the trailers are more expensive and the trucks are slightly more expensive to operate and
 171 maintain. Survey results give \$1.16/km with the adjusted unit cost shown in Table 2.

172 CO₂ transport by rail is less common than other modes. Although it occurs commercially (ITJ 2019),
 173 we have not found published market data on CO₂ specifically. The costs should be similar to other
 174 tanker-shipped commodities, with the exceptions that staging and loading facilities must be built at

175 the origin station, and unloading and reconditioning facilities must be constructed at the destination
 176 station. A pipeline spur is likely also needed at the destination.

177 Two studies have used techno-economic models to estimate the cost of CO₂ by rail for CO₂ storage
 178 case studies. Gao et al. calculated 77 RMB/t-CO₂ (\$13/t in 2018 US dollars) to transport 1.5 Mt/yr
 179 over 600 km for a project in China (Gao et al. 2011). This included \$0.88/t for staging and loading
 180 facilities. Roussanaly et al. estimated 4 €/t and 11 €/t (\$5 and \$13) to transport CO₂ for 50 km and
 181 200 km, respectively, for a project in the Czech Republic (Roussanaly et al. 2017). That includes
 182 about 1 €/t for loading and unloading facilities. The staging operation thus appears to be a minor part
 183 of transport cost. Overall, we assume that the staging and loading operating adds 2 \$/t-CO₂ to the
 184 cost of transport by rail, while the unit cost remains the same as for biomass.

185 The cost of CO₂ transport by pipeline is more variable than for other modes since it depends on local
 186 construction costs and securing rights of way. Even with these challenges, pipelines are strongly
 187 preferred for large volumes of CO₂. There are over 7000 km of CO₂ pipelines in the U.S. as well as a
 188 vastly larger network of natural gas pipelines that also informs the cost of pipeline construction
 189 (Wallace, Goudarzi, and Wallace 2015).

190 To estimate CO₂ transport costs via pipeline, we use a spreadsheet-based model developed by the
 191 National Energy Technology Laboratory (NETL 2018), which in turn implements several earlier
 192 models from the literature (McCoy and Rubin 2008; Parker 2004). When validating the model
 193 against recent CO₂ pipeline projects, the authors found that the variant based on Parker tended to
 194 overestimate costs, while the variant based on McCoy and Rubin underestimated it. We thus take
 195 these to be the upper and lower bounds of the pipeline costs in further analysis. Figure 2 shows
 196 results from the model for a 1 Mt/yr CO₂ flow. The McCoy model provides costs for five different
 197 regions of the U.S. This yields a cost variation of about +/- 20%, whereas the difference between the
 198 models can be more than a factor of two. For the generic cost comparisons in Figures 4 and 5, we use
 199 the lowest regional result from McCoy (central) and the Parker results as the lower and upper
 200 bounds, respectively. For the single-point cost estimates in Figure 6, we use the midpoint between the
 201 average of the McCoy estimates and the Parker estimate. The retrieved costs are the break-even cost
 202 of CO₂ transport in the first year of operation.

203 2.4 Plant size and CO₂ storage factor

204 The amount of CO₂ that ultimately ends up in the ground for each ton of biomass collected depends
 205 on the BECCS or NNBF technology used, and to a lesser extent, on the type of biomass. To estimate
 206 the transport costs per ton of CO₂ stored, we have to account for this “CO₂ storage factor.” Table 3
 207 shows these factors for a handful of likely projects. Most of these plant types are in development in
 208 California or neighboring states. The values range from 0.49 t CO₂ per t dry biomass for a pyrolysis
 209 to liquid fuels plant, where the majority of biomass carbon ends up in fuel, to 1.6 for gasification to
 210 hydrogen, where virtually all the input carbon ends up in the ground. For combustion to electricity,
 211 we assume the CO₂ capture system is 90% efficient, a typical benchmark, but it could be made more
 212 efficient. Alternatively, some gasification plant designs are less efficient at capturing CO₂ and would
 213 have slightly lower values. Project developers can make these choices based on market conditions
 214 and regulatory incentives for carbon removal. These storage factors, and thus the costs per ton of CO₂
 215 calculated later, do not account for fossil CO₂ emitted during transport or other life-cycle
 216 considerations. However, we previously found transport-related emissions to be less than 1% of the
 217 CO₂ stored (Baker et al. 2020).

218 Along with the storage factor, the size of the BECCS or NNBF plant determines the flowrate of CO₂

219 and biomass that must be transported. This affects the cost of pipelines most strongly. In general,
220 larger plants are more economic from a transport perspective. Although not covered here, CO₂
221 storage cost also depends strongly on CO₂ flowrate. A larger NNBF project may be able to support a
222 dedicated storage project economically; for reference, a single well in a good formation can accept on
223 the order of 1 Mt/yr of CO₂ injection. Smaller projects would likely need to send CO₂ to a storage
224 site that aggregates CO₂ from multiple sources for the best marginal cost. Aggregating CO₂ sources
225 would also be a way to economically transport CO₂ over longer distances by using a shared CO₂
226 trunk line.

227 For the benchmark values in Table 3, we assume a pyrolysis plant capacity of 2000 metric tons per
228 day of bone dry biomass. This is a commonly used commercial plant size assumption to meet the cost
229 goal for hydrocarbon fuels production from lignocellulosic biomass proposed by the U.S. Department
230 of Energy (BETO 2016; Jones et al. 2013). Current operational commercial pyrolysis plants have a
231 much smaller plant size, only around a few hundred tons per day of dry biomass (Lee Enterprises
232 Consulting 2020). CO₂ transport and storage would be much more expensive at this scale. This
233 makes it unlikely that a developer would choose a small pyrolysis plant as an NNBF project.

234 To maximize the carbon removal potential of pyrolysis to liquid fuels, we assume CO₂ is captured
235 from the off gas of non-condensable gases (NCG) combustion as well as off gas from steam
236 reforming of aqueous phase bio-oil. The storage factor was calculated as 0.494 t CO₂ stored per dry
237 ton biomass input based on a process carbon balance (Li et al. 2017). There is also storable biomass
238 carbon in the biochar, which can be sequestered above ground as a soil amendment. How much of the
239 biochar carbon is stored and for how long depends on the use of the biochar. As a soil amendment the
240 majority of carbon is likely to remain sequestered for over 100 years. We have not included the
241 stored carbon from biochar here, instead focusing on geologically stored CO₂. However, including a
242 stored biochar component would tend to decrease the apparent transport costs per unit of CO₂
243 removed.

244
245 The storage factor for biomass combustion to electricity was derived from the mass balance reported
246 in Jin et al. (Jin, Larson, and Celik 2009). Since the modeled combustion facility uses air to combust
247 the biomass, the flue gas contains a significant fraction of nitrogen that must be separated from the
248 CO₂ prior to sequestration. In this case, the CO₂ in the flue gas was assumed to be captured via an
249 amine system (Cansolv) at 90% efficiency (Zoelle et al. 2015). Other process configurations, such as
250 oxy-combustion or indirect combustion of biomass, could result in CO₂-containing streams that could
251 be captured by other technologies not considered here.

252
253 The storage factor for biomass gasification to hydrogen was derived from the mass balance reported
254 in Larson, et al. The water-gas shift process to produce hydrogen can be operated to convert nearly
255 all of the carbon in the biomass feedstock ultimately into CO₂; the bulk of this CO₂ is removed from
256 the hydrogen by a refrigerated methanol (Rectisol) process, and is high enough purity after drying for
257 direct sequestration without adding additional capture units.

258
259 Finally, the storage factor for biomass gasification to renewable natural gas was derived by
260 estimating the fraction of CO₂ in the gas stream before methanation, based on the composition of the
261 CO₂-containing syngas emitted from the gasifier units in Larson et al. By mass balance, the
262 hydrogen-to-CO ratio in the syngas was adjusted via water-gas-shift to maximize the amount of
263 methane produced, which increased the fraction of CO₂ in the gas stream. The CO₂ is removed prior
264 to methanation by a refrigerated methanol process.

266 **2.5 Example projects**

267 To illustrate the transport cost calculation, we select three plausible project configurations from
 268 California as case studies. Their locations are illustrated in Figure 3. In Baker et al, we found that the
 269 most favorable geologic storage locations in the state were in the Bay Delta region, especially in San
 270 Joaquin County in the center of the state, and in the southern central region in Kern County, an area
 271 of historic and ongoing oil production. These are marked approximately by the purple ovals in Figure
 272 3. They are not the only potential storage areas in the state, but were identified as the most favorable
 273 based on available data.

274 Some of the largest sources of biomass include the forested counties in the north, such as Siskiyou
 275 County, for potential fire clearing and sawmill residue, Los Angeles County for municipal solid
 276 waste, and Central Valley counties like Fresno for agricultural residues. Each area is highlighted in
 277 yellow. Using these three example counties as origin areas for the biomass, we propose three project
 278 scenarios. First, we select a pyrolysis to liquid fuel scenario for Siskiyou County because the relative
 279 smaller size of the plant is a good match to supply in the county. It is also remote from population
 280 centers, which makes liquid fuels, which are more easily transported than hydrogen or natural gas, a
 281 good choice of product.

282 For Fresno County, gasification of agricultural residue to methane is attractive because the methane
 283 is easily sold as renewable natural gas to the local grid. Moreover, a similar scenario has been studied
 284 and found to be profitable (GTI 2019). Finally, Los Angeles has a large supply of municipal waste
 285 amenable to gasification and is a potential demand center for hydrogen, either from light duty
 286 vehicles or from heavy duty vehicles associated with the port and other freight. These three project
 287 types and three source locations form the basis of the example scenarios.

288 The transport distance for each scenario depends on the mode. We calculate the road distance to the
 289 nearest storage site as the distance between the centroids of the origin and destination counties, as
 290 determined by the Open Source Routing Engine and Open Street Maps (OSRM contributors 2019).
 291 The rail distance is the shortest route over existing rail lines that passes near the centroid of the origin
 292 county and connects to the nearest storage region. Pipeline routes are selected to follow existing
 293 major natural gas pipelines, also passing near the centroid of the source and connecting to the nearest
 294 storage area. Rail and pipeline routes are shown in Figure 3.

295 For each scenario, the average local trucking distance is based on the size of the biomass source area:

$$296 d_{local} = \frac{1}{2} \sqrt{A}$$

297 where A is the area of the origin county. This approximates the average distance between random
 298 points within the area (Talwalker 2016). The distance from the storage site to a rail station is based
 299 roughly on the size of the promising storage regions relative to the major rail line. The plant sizes and
 300 CO₂ storage factors are taken from Table 3.

301 **2.6 Total transport cost**

302 The transport cost of a project can be estimated by the sum of costs for each leg of the carbon chain,

303 adjusted by the quantity of CO₂ stored. We calculate the costs for the example projects as follows and
 304 suggest that these formulae can be applied generally. We define the unit cost, U , as the cost in \$/t-km
 305 for the mode and product in subscript; for example $U_{truck,BM}$ is the cost of trucking biomass per t-km.
 306 For rail and pipeline, U depends on distance and flowrate.

307 For the biomass by truck scenario, where the conversion facility is located near the storage site:

$$308 \quad T = \frac{dU_{truck,BM}}{(1 - W_c)f_{CO2}} + d_{spur}U_{pipeline}$$

309 where T is the total cost in \$/t-CO₂ stored, d is the distance between biomass pick up and the
 310 conversion plant (typically the longest part of the chain), and d_{spur} is the length of the short pipeline
 311 from the plant to the injection site. W_c is the water content of the biomass and f_{CO2} is the storage
 312 factor for the type of plant.

313 For biomass by rail:

$$314 \quad T = \frac{d_{local}U_{truck,BM} + dU_{rail,BM}}{(1 - W_c)f_{CO2}} + d_{spur}U_{pipeline}$$

315 CO₂ by truck:

$$316 \quad T = \frac{d_{local}U_{truck,BM}}{(1 - W_c)f_{CO2}} + dU_{truck,CO2}$$

317 CO₂ by rail:

$$318 \quad T = \frac{d_{local}U_{truck,BM}}{(1 - W_c)f_{CO2}} + d_{spur,1}U_{pipeline} + dU_{rail,CO} + d_{spur,2}U_{pipeline}$$

319 Where $d_{spur,1}$ is the length of the pipeline at the origin station and $d_{spur,2}$ is the length at the destination
 320 station.

321 For CO₂ by pipeline:

$$322 \quad T = \frac{d_{local}U_{truck,BM}}{(1 - W_c)f_{CO2}} + dU_{pipeline}$$

323 These equations are used to calculate the total transport cost for the three example scenarios shown in
 324 Table 4. For the CO₂ by rail scenario, we assume that the plant is built near existing rail so that
 325 $d_{spur,1} = 0$, but this need not be the case generally.

326 3 Results

327 The cost of biomass transport by truck and rail is shown in Figure 3. We can see that rail is
 328 dramatically less expensive at longer distances. Depending on the project and incentives, biomass
 329 could be transported hundreds of kilometers by rail at a reasonable cost. However, trucking has a
 330 potential advantage at short distances. For example if biomass is being collected from forests over a
 331 large area or many farms in a region, most will not be immediately accessible to rail, so there is a
 332 consolidation step by truck. Depending on the average distance between biomass sources and the rail
 333 station, direct trucking may have an advantage. With an average truck trip of 30 km to the rail station

334 (reasonable for a biomass-dense area like our example counties in California), trucks are preferred for
 335 a primary distance of about 40 km or less.

336 The results for transporting CO₂ are shown in Figure 4. In this case, we look at the dependence of the
 337 unit cost on CO₂ flowrate, which has a strong effect on pipeline cost and a slight effect on rail cost.
 338 This figure shows results for a distance of 200 km, where rail is always preferred to trucking if it is
 339 available. At a flowrate of about 1 Mt/yr and above, a pipeline is clearly preferred to rail, and below
 340 about 0.3 Mt/yr, rail is clearly the lower cost option. In between those values, the specifics of the
 341 project would be needed to determine the best option. These trends are insensitive to distance except
 342 at very short distances, where trucking might be preferred to rail for the same reason described above
 343 for Figure 3.

344 Figures 3 and 4 describe the trends for a segment of the transport chain where either biomass or CO₂
 345 must be moved. However, if the site of the NNBF or BECCS plant can be freely selected, then we
 346 would like to know whether we should, on the one hand, site the plant near biomass sources and
 347 transport CO₂ to the storage site, or on the other hand site the plant near CO₂ storage and transport
 348 the biomass. In a biofuel or biomass combustion project without CCS, this isn't a meaningful choice:
 349 the products are easier to transport than biomass and so the plant should be located as close to
 350 biomass sources as possible. This consideration also leads to smaller optimum plant sizes. However,
 351 with CO₂ transport and storage and their associated economies of scale, the question is more
 352 complicated.

353 The best choice of plant location depends on the plant size and on the conversion technology being
 354 used: specifically, the ratio of CO₂ produced to biomass input. Figure 5 shows the unit costs of the
 355 five different modes for a range of the CO₂ storage factor. Triangles under the x-axis mark the values
 356 of the factor for the BECCS and NNBF plants listed in Table 3. These factors are not universal; a
 357 project developer could always choose to capture less CO₂ (or in some case slightly more), but the
 358 values are constrained by the thermodynamics and stoichiometry of the products and input biomass.

359 For low storage factors, represented by pyrolysis to liquid fuels, transport of CO₂ is favored over
 360 transport of biomass across modes. However, the total volume of CO₂ is low enough that CO₂ by rail
 361 competes with a CO₂ pipeline. At a low enough factor, rail is clearly favored because the volume of
 362 CO₂ is not enough to make the capital investment in a pipeline worthwhile. However, this depends on
 363 the plant size. This figure is calculated for a fixed biomass input of 1 Mt/yr (dry basis). A larger plant
 364 would tend to favor a pipeline even at the smaller storage factors, while a smaller plant would favor
 365 rail even at higher storage factors. Only the pipeline cost is sensitive to plant size in this way, the
 366 relative costs of other modes don't change much with plant size.

367 At high storage factors, represented by a gasification to hydrogen project or combustion to electricity,
 368 it becomes less expensive to transport biomass by truck or rail than CO₂ by the same mode. The
 369 overall volume of CO₂ is large enough that a pipeline is still the lowest-cost option, overall, but this
 370 result is sensitive to the plant size. Even at 1 Mt/yr biomass, which is small compared to the expected
 371 optimal size of a gasification plant, but large compared to almost all existing combustion plants,
 372 biomass by rail is marginally competitive with a CO₂ pipeline. If constructing a pipeline is not
 373 possible due to practical or legal restrictions, biomass by rail appears to be a viable alternative,
 374 allowing a developer to bridge hundreds of kilometers of distance between biomass source and
 375 geologic storage site for about \$10/t of CO₂ stored. This is a modest price compared to the likely cost
 376 of capture and to the cost of alternative carbon removal technologies, like direct air capture.

377 At an intermediate carbon storage factor, such as one achieved by gasification followed by
 378 methanation to make renewable natural gas, CO₂ transport by rail and biomass transport by rail are
 379 roughly equal cost. CO₂ transport by pipeline is lower cost than both, though again this would change
 380 for a significantly smaller plant.

381 These results suppose that the CO₂ pipeline is dedicated to a single plant. A shared CO₂ pipeline
 382 would quickly reduce transport costs and favor the pipeline mode. Indeed, the distance of interest in a
 383 project is quite possibly the distance to a shared CO₂ trunk line rather than a storage site. For
 384 example, a trunk line which unites the flows of four hydrogen projects of the benchmark size
 385 (combined 10 Mt/yr) could move that CO₂ over 1000 km for \$10/t (model average). Geographic
 386 opportunities are significantly expanded this way, but a shared CO₂ pipeline also poses challenges of
 387 coordination and capacity planning.

388 The results so far are meant to reveal the general features of the transport problem and mostly apply
 389 to the longest segment of the transport chain. To understand the relative importance and the
 390 approximate costs of the other segments, we will look at several example projects. The total transport
 391 cost can't be calculated without reference to local distances, proximity to rail, and specifics of the
 392 conversion plant. However, we can get some insight by looking at several plausible example projects.
 393 Based on our previous study of carbon removal in California, we chose the three counties (of 58 in
 394 the state) that have the largest supplies of forest residue, agricultural residue, and municipal solid
 395 waste, respectively. We propose three projects to convert this biomass and store CO₂ in the nearest of
 396 two promising geologic formations. Locations of the projects and proposed routes are shown in
 397 Figure 3.

398 The calculated distances for components of the five transport scenarios are shown in Table 4 with
 399 other characteristics of the example projects. The variation in distance from one mode to the other is
 400 at most 44% (rail distance vs road distance for the Los Angeles project), but other values are more
 401 clustered. The Siskiyou pyrolysis project is by far the most challenging from a transport perspective:
 402 it covers more than twice the distance and the lower CO₂ flowrate makes a pipeline relatively
 403 expensive on a unit basis.

404 Figure 6 shows the estimated total transport costs for each of the three example projects via each of
 405 five modes. Overall, we can see that transport costs are highest for the example of forest residue
 406 pyrolysis to liquid fuel. Aside from the longer distance, this is a result of the technology: pyrolysis to
 407 liquid fuel moves relatively a lot of biomass per ton of CO₂ stored because more of the carbon ends
 408 up in the fuel. The smaller plant size also means higher unit costs for pipeline transport. However,
 409 this technology produces the most valuable co-product (gasoline-equivalent liquid fuel), which might
 410 make it economically attractive. The least-cost transport mode for this example is CO₂ by rail, which
 411 is viable because the origin and destination counties are served by a major active freight line. The
 412 estimated total cost is \$47/t-CO₂, which is split between trucking biomass from the forest roadside to
 413 the plant (\$20/t-CO₂) and moving the resulting CO₂ 530 km by rail (\$26/t). The short pipeline
 414 between the rail station and storage site adds about \$2/t.

415 For generating methane (renewable natural gas), we gasify agricultural residue from Fresno County
 416 and store the process CO₂ in nearby Kern County. The lowest cost mode here is a pipeline, giving a
 417 total cost of \$12/t-CO₂. That is dominated by trucking of biomass to the plant in Fresno (\$8/t-CO₂),
 418 with an additional \$4/t for the pipeline.

419 The final example is producing hydrogen from municipal solid waste from Los Angeles and again
 420 storing the CO₂ in Kern County. Transport costs are lowest for this example because the storage
 421 factor for the hydrogen pathway is so high. A pipeline is the lowest-cost mode at \$7/t-CO₂. Biomass
 422 by rail has a similar unit cost, but because the rail route in the example is somewhat longer, the total
 423 cost for biomass by rail is \$11/t-CO₂. The latter option gives the developer the opportunity to site the
 424 plant in Kern County rather than Los Angeles, which would likely have construction cost advantages,
 425 though it may add to transport cost for the hydrogen. The pipeline mode cost is evenly split between
 426 local trucking of the waste and the pipeline itself.

427 4 Conclusions

428 We have assessed the transport costs for carbon removal projects based on biomass conversion with
 429 carbon capture and storage in the United States. We used publicly-available cost data and techno-
 430 economic analyses from the literature to compare transport modes and calculate total transport costs
 431 for several example projects. Overall, we find that biomass sources and CO₂ storage sites can be
 432 connected across several hundred kilometers for costs in the range of \$10—30/t-CO₂ if the developer
 433 has at least some flexibility in choice of transport mode and type of plant. Reasonable costs can be
 434 achieved via rail if a pipeline is not possible, but much longer distances can be spanned if shared CO₂
 435 pipelines are used.

436 Transport costs are highest for liquid fuel projects and lowest for hydrogen production and large
 437 electric plants. This is due to the higher ratio of CO₂ stored per unit biomass in the latter as well as
 438 the generally larger plant sizes. Also for these projects with high CO₂ storage ratios, transport of
 439 biomass by rail becomes a competitive alternative to CO₂ transport by pipeline. For small projects or
 440 very low carbon storage factors, CO₂ transport by rail is preferred over constructing a pipeline. For
 441 low flowrates and distances less than a few tens of km, trucking may be competitive with rail and
 442 pipelines. When rail and pipeline access are not practical, trucking is a viable alternative but does run
 443 a higher cost.

444 Our analysis suggests that developers or policymakers who hesitate on carbon removal projects
 445 because of the perceived difficulty of building pipelines should strongly consider rail as either a
 446 permanent or intermediate alternative. Even large projects can operate on existing infrastructure at a
 447 reasonable cost of transport. However, policymakers designing incentives should expect transport
 448 costs of up to a few tens of dollars per ton-CO₂ until a shared pipeline system is constructed.

449

450 5 Conflict of Interest

451 The authors declare that the research was conducted in the absence of any commercial or financial
 452 relationships that could be construed as a potential conflict of interest.

453 6 Author Contributions

454 J.S. conducted analysis and contributed the bulk of text for this paper. S.P. and W.L. each conducted
 455 analysis on biomass conversion technologies and contributed text and strategic direction. H.G. and
 456 S.B. contributed assessment of biomass characteristics and availability. S.B. and R.A. contributed
 457 conceptual model design and strategic direction.

458 7 Funding

459 This study was made possible by support of the Livermore Laboratory Foundation and the
 460 ClimateWorks Foundation.

461 This document may contain research results that are experimental in nature, and neither the United
 462 States Government, any agency thereof, Lawrence Livermore National Security, LLC, nor any of its
 463 employees makes any warranty, express or implied, or assumes any legal liability or responsibility
 464 for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
 465 disclosed, or represents that its use would not infringe privately owned rights. Reference to any
 466 specific commercial product, process, or service by trade name, trademark, manufacturer, or
 467 otherwise does not constitute or imply an endorsement or recommendation by the U.S. Government
 468 or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein
 469 do not necessarily reflect those of the U.S. Government or Lawrence Livermore National Security,
 470 LLC and will not be used for advertising or product endorsement purposes.

471 **8 Acknowledgments**

472 We acknowledge valuable insights and past contributions from our many coauthors on the Getting to
 473 Neutral Report (Baker et al., 2020), as well as Matthew Langholtz at Oak Ridge National Laboratory.

474 **Data Availability Statement**

475 Data used in this study are publicly available as cited, except for several factors which are included in
 476 tables in the text. Calculated data underlying the figures are available from the authors upon
 477 reasonable request.

478

479 **Table 1: Typical collection costs and water content for major categories of waste biomass.**

	Representative collection cost (\$/t dry basis)	Average moisture content (mass basis)
Sawmill residue	0 (already collected)	30% (Jones et al. 2013)
Forest fire management	50 (Baker et al. 2020)	30% (Jones et al. 2013)
Shrub & chaparral fire management	80 (Langholtz, Stokes, and Eaton 2016)	30% (Jones et al. 2013)
Agricultural residue	0–60 (Langholtz, Stokes, and Eaton 2016)	25% (Breunig et al. 2018)
Municipal solid waste	<0 (already collected; may pay disposal fee)	10% (Breunig et al. 2018)

480

481 **Table 2: Unit costs for truck and rail transport**

	Biomass transport cost	Cryogenic CO₂ transport cost
Truck	0.101 \$/t-km	0.111 \$/t-km
Rail	0.044 \$/t-km	0.044 \$/t-km + 2 \$/t

482

483 **Table 3: CO₂ storage factors and representative plant sizes for some NNBF and BECCS**
 484 **projects**

Project type	Storage factor (t CO ₂ stored per t biomass input, dry basis)	Typical plant size (Mt/yr biomass, dry basis)
Biomass combustion to electricity	1.55	1.49
Biomass pyrolysis to liquid fuel	0.494	0.657
Biomass gasification to renewable natural gas	1.01	1.49
Biomass gasification to hydrogen	1.65	1.49

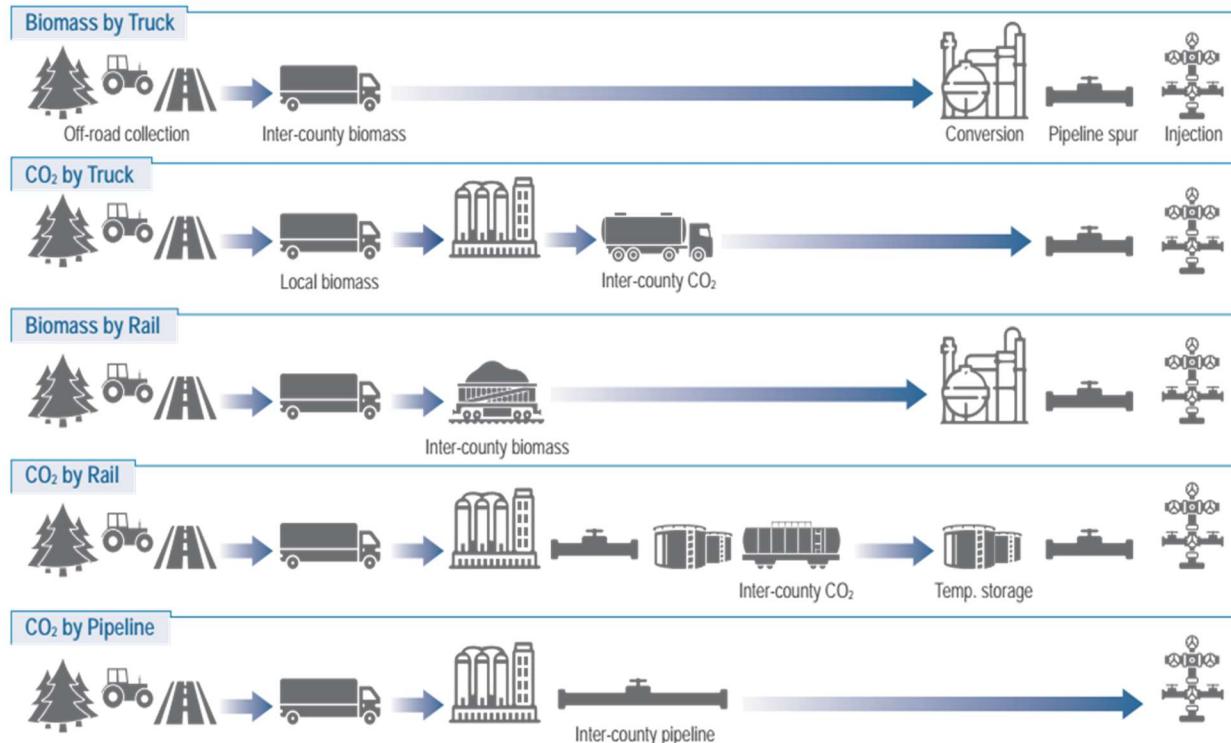
485

486

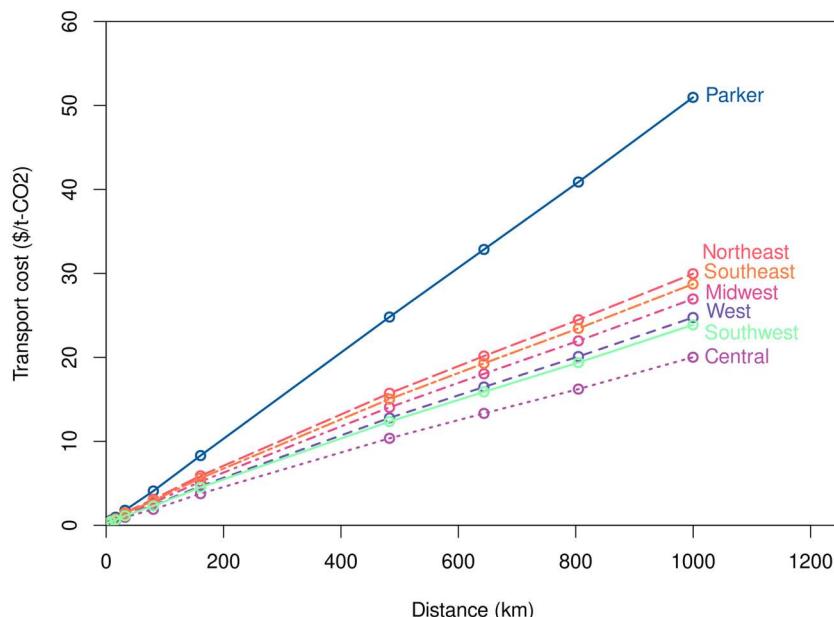
487

488

489

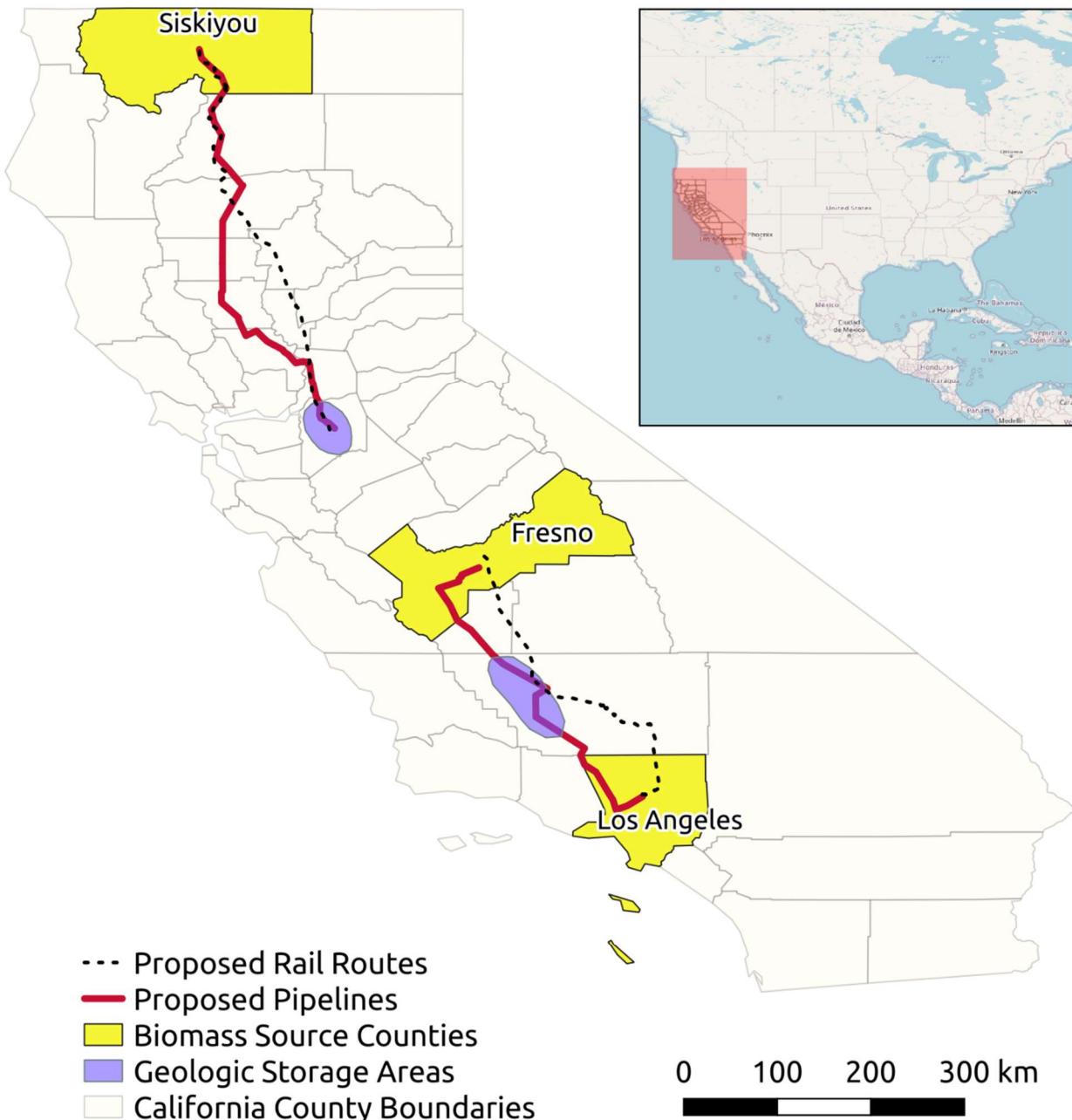

490

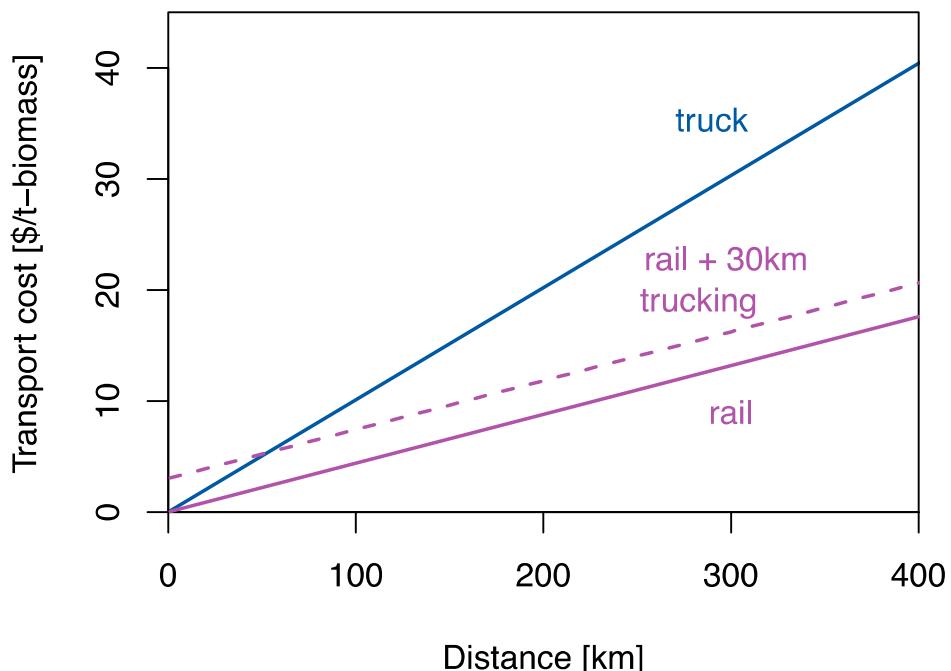
491


492 **Table 4: Transport characteristics for three example NNBF projects.**

Scenario	Siskiyou forest biomass pyrolysis to liquid fuel	Fresno agricultural residue gasification to methane	Los Angeles municipal solid waste gasification to hydrogen
Average local trucking distance (km)	67	62	51
Road distance to nearest storage (km)	480	175	174
Rail distance to nearest storage (km)	529	145	251
Pipeline distance to nearest storage (km)	514	135	174
Storage site distance to plant or rail (km)	20	20	30
Biomass flow (Mt/yr, wet basis)	1.0	2.2	1.8
CO ₂ flow (Mt/yr)	0.36	1.5	2.7

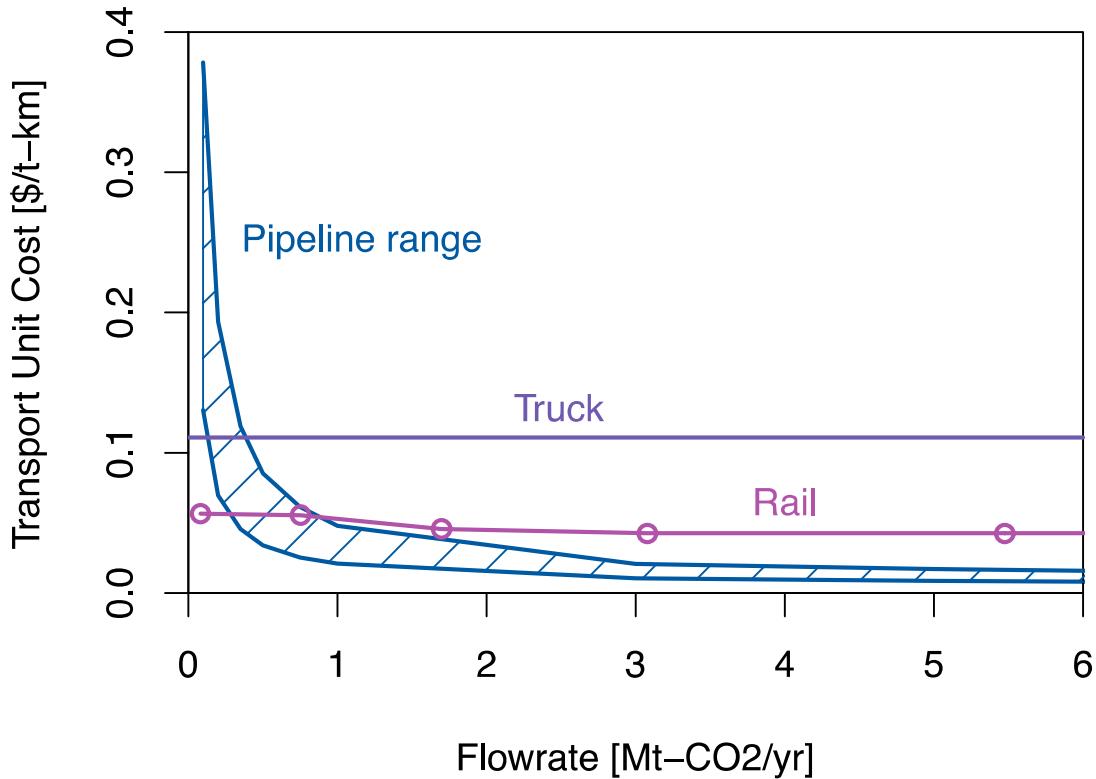
493


Figure 1: Possible transport configurations for Net Negative Biofuels projects. Inter-county refers to the longer leg of the sequences, while local refers to transport of tens of kilometers.

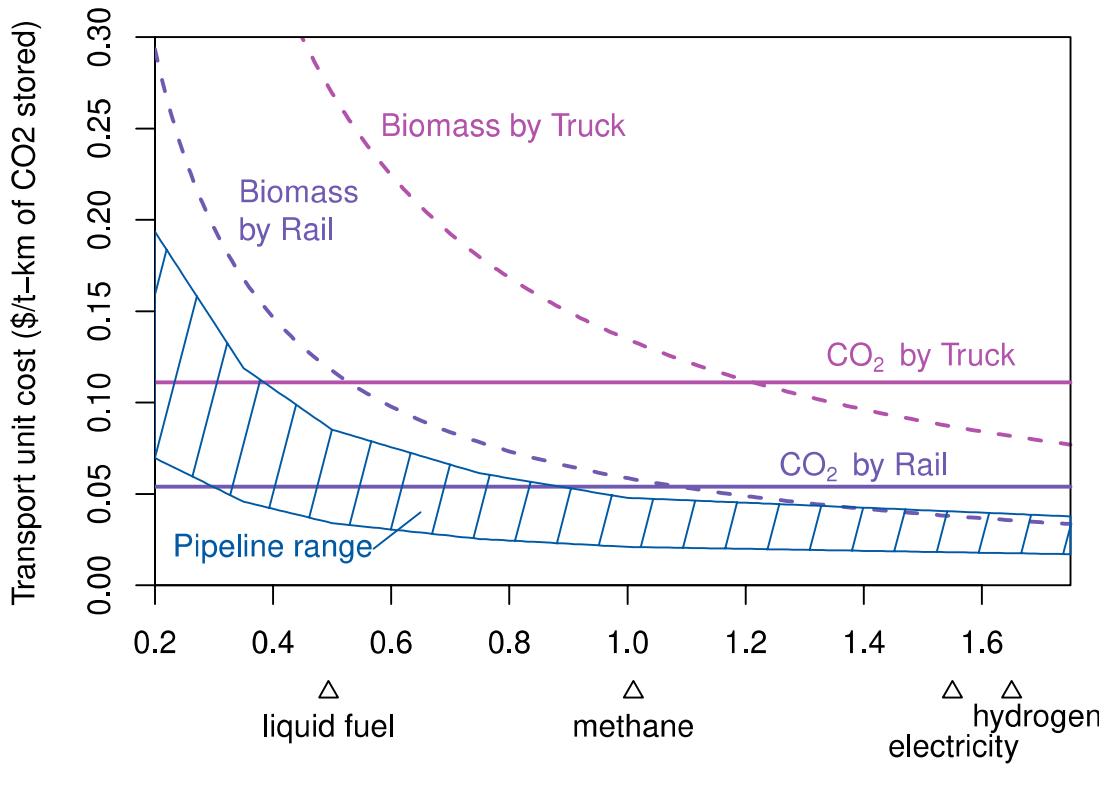

494

495 **Figure 2: Cost of CO₂ transport by pipeline in the United States by model and region for a flow of 1 Mt/yr in 2014 dollars. “Parker” represents the model with the Parker, 2004 variant, and**
 496

497 the other lines show results for the McCoy and Rubin, 2008 variant for the respective regions
498 of the U.S.



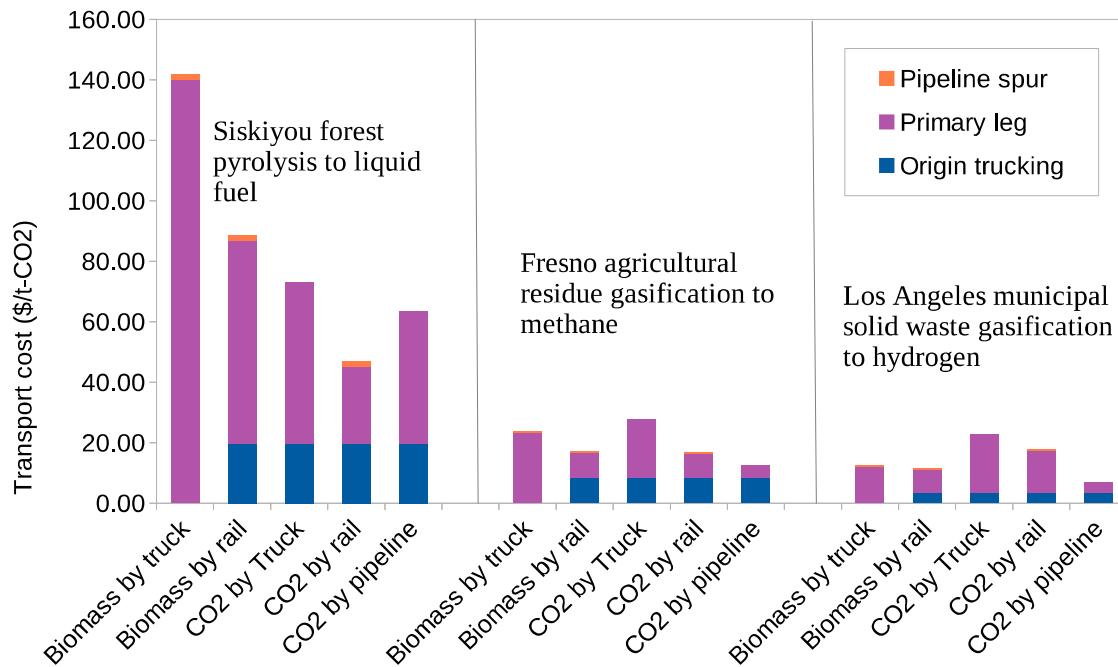
499
500 **Figure 3: Map of example NNBF project locations showing biomass source areas, storage sites,**
501 **and proposed rail and pipeline routes.**


502

503 **Figure 4: Transport cost of biomass by truck and rail as a function of distance. The dashed line**
504 **represents a scenario combining consolidation of collected biomass to a rail station via truck**
505 **(average trip of 30 km) followed by transport by rail for the distance indicated.**

506
507 **Figure 5: Comparison of transport costs of CO₂ by truck, rail, and pipeline as a function of**
508 **flowrate. Costs are calculated for a distance of 200 km.**

509



510

CO₂ storage factor (t CO₂ / t biomass, dry basis)

511 **Figure 6: Comparison of transport costs by mode as a function of the CO₂ storage efficiency of**
 512 **the project. Costs are calculated for a biomass input of 1 Mt/yr, dry basis, and 25% water**
 513 **content. Triangles below the x-axis indicate the CO₂ storage factors for several potential**

514 project types, as shown in Table 3. Costs reflect the long leg of transport only and neglect local
 515 collection and pipeline spurs.

516
 517 **Figure 7: Transport costs by mode for three example projects. Distance and plant size vary by**
 518 **each project, as summarized in Table 4.**

519

520 2 References

521 Baik, Ejeong, Daniel L. Sanchez, Peter A. Turner, Katharine J. Mach, Christopher B. Field, and Sally
 522 M. Benson. 2018. “Geospatial Analysis of Near-Term Potential for Carbon-Negative
 523 Bioenergy in the United States.” *Proceedings of the National Academy of Sciences* 115 (13):
 524 3290–95. <https://doi.org/10.1073/pnas.1720338115>.

525 Baker, Sarah E., Joshua K. Stolaroff, George Peridas, Simon H. Pang, Hannah M. Goldstein, Felicia
 526 R. Lucci, Wenqin Li, et al. 2020. “Getting to Neutral: Options for Negative Carbon Emissions
 527 in California.” LLNL-TR-796100. Lawrence Livermore National Laboratory.

528 BETO. 2016. “Energy Department Announces \$11.3 Million Available for Mega-Bio: Bioproducts to
 529 Enable Biofuels.” Energy.Gov. February 8, 2016.
 530 <https://www.energy.gov/eere/bioenergy/articles/energy-department-announces-113-million-available-mega-bio-bioproducts>.

532 Biery, Mary Ellen. 2018. “Profit Margins for Trucking Companies on the Rise.” American Trucker.
 533 2018. <https://www.trucker.com/business/profit-margins-trucking-companies-rise>.

534 Breunig, Hanna Marie, Tyler Huntington, Ling Jin, Alastair Robinson, and Corinne Donahue Scown.
 535 2018. “Temporal and Geographic Drivers of Biomass Residues in California.” *Resources,*
 536 *Conservation and Recycling* 139 (December): 287–97.
 537 <https://doi.org/10.1016/j.resconrec.2018.08.022>.

538 Compass Int. 2017. "2017 Railroad Engineering & Construction Cost Benchmarks." Compass
 539 International Inc. 2017. <https://compassinternational.net/railroad-engineering-construction-cost-benchmarks/>.

541 Consoli, Christopher. 2019. "Bioenergy and Carbon Capture and Storage." Melbourne, Asutralia:
 542 Global CCS Institute.

543 Creutzig, Felix, N. H. Ravindranath, Göran Berndes, Simon Bolwig, Ryan Bright, Francesco
 544 Cherubini, Helena Chum, et al. 2015. "Bioenergy and Climate Change Mitigation: An
 545 Assessment." *GCB Bioenergy* 7 (5): 916–44. <https://doi.org/10.1111/gcbb.12205>.

546 GAO. 2011. "Surface Freight Transportation A Comparison of the Costs of Road, Rail, and
 547 Waterways Freight Shipments That Are Not Passed on to Consumers." GAO-11-134. United
 548 States Government Accountability Office.

549 Gao, Lanyu, Mengxiang Fang, Hailong Li, and Jens Hetland. 2011. "Cost Analysis of CO2
 550 Transportation: Case Study in China." *Elsevier* 4: 5974–81.
 551 <https://doi.org/10.1016/j.egypro.2011.02.600>.

552 GTI. 2019. "Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes." Gas Technologies
 553 Institute. <https://www.gti.energy/wp-content/uploads/2019/02/Low-Carbon-Renewable-Natural-Gas-RNG-from-Wood-Wastes-Final-Report-Feb2019.pdf>.

555 Helena Chum, Andre Faaij, José Moreira, Göran Berndes, Parveen Dhamija, Hongmin Dong, Benoît
 556 Gabrielle, et al. 2011. "Bioenergy." In *IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation*. Cambridge, UK: Cambridge University Press.
 558 <https://www.ipcc.ch/report/renewable-energy-sources-and-climate-change-mitigation/>.

559 Hooper, Alan, and Dan Murray. 2018. "An Analysis of the Operational Costs of Trucking: 2018
 560 Update." ATRI.

561 ITJ. 2019. "CO2 Transport by Rail Reduces Greenhouse Gas Emissions." *International Transport Journal*, September 12, 2019.
 563 <https://www.transportjournal.com/en/home/news/artikeldetail/co2-transport-by-rail-reduces-greenhouse-gas-emissions.html>.

565 Jin, Haiming, Eric D. Larson, and Fuat E. Celik. 2009. "Performance and Cost Analysis of Future, Commercially Mature Gasification-Based Electric Power Generation from Switchgrass." *Biofuels, Bioproducts and Biorefining* 3 (2): 142–73. <https://doi.org/10.1002/bbb.138>.

568 Jones, Susanne, Pimphan Meyer, Lesley Snowden-Swan, Asanga Padmaperuma, Eric Tan, Abhijit
 569 Dutta, Jacob Jacobson, and Kara Cafferty. 2013. "Process Design and Economics for the
 570 Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and
 571 Hydrotreating Bio-Oil Pathway." PNNL-23053. Pacific Northwest National Laboratory.

572 Langholtz, M.H., B.J. Stokes, and L.M. Eaton. 2016. "2016 Billion-Ton Report: Advancing
 573 Domestic Resources for a Thriving Bioeconomy Volume 1: Economic Availability of
 574 Feedstocks."

575 Lee Enterprises Consulting. 2020. "Pyrolysis Oil - Commercial Markets Are a Reality." *Lee Enterprises Consulting, Inc.* (blog). July 6, 2020. <https://lee-enterprises.com/pyrolysis-oil-commercial-markets-are-a-reality/>.

578 Li, Wenqin, Qi Dang, Ryan Smith, Robert C. Brown, and Mark M. Wright. 2017. "Techno-Economic Analysis of the Stabilization of Bio-Oil Fractions for Insertion into Petroleum

580 Refineries.” Research-article. American Chemical Society. World. January 4, 2017.
581 <https://doi.org/10.1021/acssuschemeng.6b02222>.

582 Masson-Delmotte, V., P. Zhai, H.O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, et al. 2018.
583 “Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of
584 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emissions Pathways,
585 in the Context of Strengthening the Global Response to the Threat of Climate Change,
586 Sustainable Development, and Efforts to Eradicate Poverty.” Edited by M.I. Gomis, E.
587 Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. <Https://www.ipcc.ch/sr15/>.

588 McCoy, Sean T., and Edward S. Rubin. 2008. “An Engineering-Economic Model of Pipeline
589 Transport of CO₂ with Application to Carbon Capture and Storage.” *International Journal of*
590 *Greenhouse Gas Control* 2 (2): 219–29. [https://doi.org/10.1016/S1750-5836\(07\)00119-3](https://doi.org/10.1016/S1750-5836(07)00119-3).

591 Mintz, Marianne, Chris Saricks, and Anant Vyas. 2015. “Coal-by-Rail: A Business-as-Usual
592 Reference Case.” ANL/ESD-15/6. Chicago: Argonne National Laboratory.

593 Minx, Jan C, William F Lamb, Max W Callaghan, Sabine Fuss, Jerome Hilaire, Felix Creutzig,
594 Thorben Amann, et al. 2018. “Negative Emissions- Part 1: Research Landscape and
595 Synthesis.” *IOP Publishing Ltd* 13 (6): 1–29. <https://doi.org/10.1088/1748-9326/aabf9b>.

596 National Academies of Sciences, Engineering. 2019. *Negative Emissions Technologies and Reliable*
597 *Sequestration: A Research Agenda (2019)*. <https://doi.org/10.17226/25259>.

598 National Research Council. 2010. “Technologies and Approaches to Reducing the Fuel Consumption
599 of Medium- and Heavy-Duty Vehicles.” Washington D.C.: The National Academies Press.

600 NETL. 2018. “FE/NETL CO₂ Transport Cost Model: Description and User’s Manual.” Manual
601 DOE/NETL-2018/1877. National Energy Technology Laboratory.

602 OSRM contributors. 2019. “Open Source Routing Machine.” OSRM Open Source Routing Machine.
603 2019. <http://project-osrm.org/>.

604 Parker, Nathan. 2004. “Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen
605 Pipeline Costs.” UCD-ITS-RR-04-35. Davis, CA, USA: Institute of transportation Studies.
606 <https://escholarship.org/uc/item/2gk0j8kq>.

607 Prater, Marvin, and Daniel Jr. O’Neil. 2014. “Rail Tariff Rates for Grain by Shipment Size and
608 Distance Shipped.” United States Department of Agriculture.

609 Roussanaly, Simon, Geir Skaugen, Ailo Aasen, Jana Jakobsen, and Ladislav Vesely. 2017. “Techno-
610 Economic Evaluation of CO₂ Transport from a Lignite-Fired IGCC Plant in the Czech
611 Republic.” *International Journal of Greenhouse Gas Control* 65 (October): 235–50.
612 <https://doi.org/10.1016/j.ijggc.2017.08.022>.

613 Talwalker, Presh. 2016. “Distance Between Two Random Points In A Square – Sunday Puzzle.”
614 *Mind Your Decisions* (blog). July 3, 2016.
615 <https://mindyourdecisions.com/blog/2016/07/03/distance-between-two-random-points-in-a->
616 [square-sunday-puzzle/](https://mindyourdecisions.com/blog/2016/07/03/distance-between-two-random-points-in-a-square-sunday-puzzle/).

617 Wallace, Matthew, Lessly Goudarzi, and Robert Wallace. 2015. “A Review of the CO₂ Pipeline
618 Infrastructure in the U.S.” DOE/NETL-2014/1681. Pittsburgh, PA: National Energy
619 Technology Laboratory.
620 <https://www.energy.gov/sites/prod/files/2015/04/f22/QER%20Analysis%20->
621 [%20A%20Review%20of%20the%20CO2%20Pipeline%20Infrastructure%20in%20the%20U](https://www.energy.gov/sites/prod/files/2015/04/f22/QER%20Analysis%20-)
622 [.S 0.pdf.](https://www.energy.gov/sites/prod/files/2015/04/f22/QER%20Analysis%20-)

623 Zoelle, Alexander, Dale Keairns, Lora L. Pinkerton, Marc J. Turner, Mark Woods, Norma Kuehn,
624 Vasant Shah, and Vincent Chou. 2015. "Cost and Performance Baseline for Fossil Energy
625 Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3."
626 Technical Report DOE/NETL-2015/1723. United States: National Energy Technology
627 Laboratory. [https://www.osti.gov/biblio/1480987-cost-performance-baseline-fossil-energy-](https://www.osti.gov/biblio/1480987-cost-performance-baseline-fossil-energy-plants-volume-bituminous-coal-pc-natural-gas-electricity-revision)
628 <plants-volume-bituminous-coal-pc-natural-gas-electricity-revision>.

629