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NNSA Mission Relevance

• Nonproliferation applications: source verification and search 
operations

• Need for a compact, cost-effective fast neutron imager

Nonproliferation
NNSA works to prevent nuclear weapon proliferation and reduce the threat of 
nuclear and radiological terrorism around the world. The agency endeavors to 
prevent the development of nuclear weapons and the spread of materials or 
knowledge needed to create them.

Monzano Alarm and Nuclear Material Consolidation 
Project

https://en.wikipedia.org/wiki/Multiple_i
ndependently_targetable_reentry_veh
icle
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Presentation Overview
• System Comparisons

• cTEI Mask Designs

• Detector Setups

• Theoretical Models
   and Results

• System Status

Tungsten Mask Element

Light Tight Box

Mask Bed

PLA Mask Element

Adapter to 
Rotary Table

Detection Crystal
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System Comparisons
CONFIDANTE (Sandia) MATADOR (Michigan) lanTErn (Michigan)

Outer Diameter: 51.4 cm
 Inner Diameter:  ~25 cm

Outer Diameter: 30.635 cm
 Inner Diameter:       ~12 cm

Outer Diameter: 66.6 cm
 Inner Diameter: 56.6 cm
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Motivation
• 1D, man-portable, dual particle cTEI imaging system is desirable for 

nuclear nonproliferation
• Overall Goal: Retain image quality when transitioning from a large to 

small diameter coded mask.

Thin Mask   Thick Mask

Large Diameter

Small Diameter
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• Infill of PLA is user specified with the use of 3D printing
• For fixed mass, maintaining attenuation with increased collimation

Variable Density Mask (Neutrons)

• Goal: Improve neutron 
image quality, smaller FOV

Legend
Detected Neutron

Blocked Neutron
PLA 100% Infill

PLA X% Infill
Detector
Tungsten

x

y > x
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Three Layered Mask (Gamma Rays)
• Addition of an outer ring of tungsten
• Goal: Increase gamma ray collimation, decrease admittance through 

closed mask elements

Legend
Detected Gamma

Blocked Gamma
Atten. Detected Gamma

Atten. Blocked Gamma
PLA

Detector
Tungsten



8

2020 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC)

jkuchta@umich.edu

Hollow Mask (Gamma Rays)
• Addition of tungsten on side walls of each open element
• Goal: Ensure that all gamma rays in front of a closed element can 

interact with tungsten

Legend
Detected Gamma

Blocked Gamma
Atten. Detected Gamma

Atten. Blocked Gamma
PLA

Detector
Tungsten
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Michigan Detector Setup
• 16x16 array of 4mm x 4mm SensL J-Series SiPMs
• Summing board and power board from Sandia National Laboratories
• Goal: Allow for ease of crystal swapping

3D printed polycarbonate 
light tight box Cross section of light tight box

Secured Screw

Crystal Holder

SiPM Array

Power Board

Summing Board

Secured Screw

17 cm

11.25 cm
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Sandia Detector Setup

3D printed light tight box Cross section of light tight box

1” SiPM Array

Summing Board

1.5” Stilbene Crystal Room for Foam Compression

• 4x4 array of 6mm x 6mm Hamamatsu SiPMs
• Goal: Summing board and crystal specific design for light tight box. 

Compact design for minimal radiation scatter

4.91 cm
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Mask Test Bed
• Design of a mask bed for testing of several unconventional cTEI masks
• Goal: Allow for even and odd numbered mask patterns (can have 

URAs as well as mask-antimask patterns)
42
21 (URA)
14
7 (URA)
6 (URA)
3 (URA)
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Mask Pattern Design
• Including the detector response instead of ideal coded aperture
• Goal: Create a pattern that produces a delta function for the point 

spread function 

Point Spread Function 
(� ⨂� )⨂(� ⨂� ) 

Using a URA (ideal coded aperture):
(� ⨂� )�=������ ���������

Generate mask patterns to find one where
(� ⨂� )�≈������ ���������

to make the PSF closer to a delta function.

Point Spread Function Term Rearranging
(� ⨂� )⨂(� ⨂� ) = (� ⨂� )⨂(� ⨂� ). 

There is not a URA for a 42 element mask, so a mask must be created and 
compared to the URA 40, URA 43 and MURA 41.

Detector Response
Mask Pattern
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Design Summary
• Unconventional Mask Designs

• Variable Density Mask – neutron collimation and attenuation
• Three Layered Mask – gamma ray collimation (closed element attenuation)
• Hollow Mask – gamma ray collimation (decreased closed element escape)

• Light Tight Box
• Minimal scatter should be achievable with compact, 3D printed designs

• Mask Test Bed
• Ability to test several designs, patterns and pixel pitches

• Mask Pattern Design
• Creation of a coded mask pattern with respect to the detector response to 

improve image quality
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Theoretical Modeling Results
• Simple back projection (SBP) of the two layered mask compared to the 

three layered mask with a 41 MURA for 2 MeV neutrons and gamma rays

FWHM = 39.6o   26.5o FWHM = 39.7o   26.2o
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Theoretical Modeling Conclusion
• Simple back projection image reconstruction shows greater 

modulation for both neutrons and gamma rays with the addition of 
the outer tungsten layer, more prominent for gamma rays

• Neutrons see a thicker low-Z mask and should have more 
attenuation, which is reflected in the lower FWHM in the SBP

• Gamma rays see two high-Z layers separated by the thickness of the 
PLA and more non-central peaks are present as the number of mask 
elements is increased
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Current Status
• Assembling the three layered mask with a 21 element URA pattern
• Goal: Test the verified mask pattern (URA 21) then develop a mask-

antimask pattern or an image reconstruction optimized pattern, each 
with 42 elements
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