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Background: Additive Manufactured Metal Lattices

Additive Manufacturing enables producing lattice meta-
materials

1. Laser powder bed fusion enables making 316SS lattices
e Start with a 3D model
* Printer melts powder together 1 layer at a time.
* Slowly build up the part

2. Lattice metamaterials can have unique properties ORI L,
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A Process-Structure-Property Dataset for Lattices

Printed 98 Lattice
48 gyroids and 48 octets (FCC)
Purposefully varied the laser power and scan ¢
Changes the physical process of melting
Changes the lattice properties.

Deformation Work as a Function of AM Process Parameters
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The ridiculous proposition

Initial image
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prediction How much
energy will it
absorb
when crushed?

Method 1: Traditional expert-guided structure-property correlations

Method 2: Automated machine learning algorithm
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Method 1: Structure-Property relationships guided by human
experts



Method 1: The traditional expert-guided
method to predict mechanical properties

Base Material Constitutive Properties
Shape & topolo p Explicit Direct
Numerical Simulation
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Hierarchical representations of shape

Constitutive model:
Yield criterion; flow rule; hardening law
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Method 1: requires laboratory measurements of structure | (@&,

Expert guided assumption: surface roughness and strut/wall
thickness are the primary factors influencing crush energy
absorption.

Extract strut width
OR estimate with
density and Surface
Roughness
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Correlate feature dimensions with properties
Gyroid Lattice

Octet Lattice
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Neither surface roughness
nor strut/wall thickness
correlated very well with
deformation response
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Method 2: Property correlations revealed by machine
learning
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Meaningful Structure
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Deep convolutional neural network: image-based
classification or regression

224 X224 X3 224x224x64

l'l‘%x 112x 128
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@ convolution+ReLLU
@ max pooling
| fully connected+ReLU

| softmax
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Method 2: Machine learning source data

Non-traditional source data: camera images of the as-printed

lattices
Oblique view Top-down height map Top-down image
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Challenge with an ML approach

Very little data! R
48 octet data points Lo o ANA N

43 gyroid data points (5 gyroids didn't survive the printing VaY’
process and can’t be tested) AT, v e

Every octet lattice image available.

Solution: Subdivide images into representative
subimages
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Biased sampling!
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ML Model and Setup

Use Stratified K-fold testing.
Subdivide the data into classes or quantiles.

Perform normal k-fold testing, but the test data must equally sample all
classes.

Data Augmentation
Cut each image into 48 subimages

Do the normal data augmentation tricks (flipping LR [not up-down], warping, zooming,
cropping, skewing, lighting changes)

Input Image Deep Learning Layers
Model: ResNet 1F —
echnology TR / |/ |/ S
s fast.ai library (wrapper around pytorch :j"" ' ‘ Energy
fast.ai y (wrapp pytorch) S

Scikit-learn for stratified k-fold.
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Results h

Oblique view Top-down height map Top-down image
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Why did this work? Q="
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1) sufficient training data
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2) careful sampling

3) source data has representative features
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Interpretability
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Take-home messages

1. Complex structure-property relationships can be
developed by a trained machine learning algorithm
instead of by expert-guided modeling.

2. Non-traditional source datasets may have
sufficiently encoded features that correlate to the
underlying structural parameters governing behavior. e em—

3. After a ML correlation has been developed, the e N
causation may be explainable by analyzing the E€.. 8 ..
intermediate transfer functions (hidden layers). faﬂ A

. o e gQ.

4. Such approaches may serve as fast, efficient B R

product screening tools.
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More information

Email: blboyce@sandia.gov

Read the paper:
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Future Works

We redid the entire experiment by printing 48 more octet lattices and we were able to
replicate the results.

ML for lattice design (inverse problem)

Current Talk ML Property

Future Work Target Property ML ﬁ }

Combining physics with ML to predict lattice properties with CT
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BIG SCIENCE

AT THE NANOSCALE

CINT is a user facility providing cutting-
edge nanoscience and nanotechnology
capabilities to the research community.

Access to our facilities and scientific
expertise is FREE for non-proprietary
research.

Research areas:

 Quantum Materials Systems

 Nanophotonics and Optical Nanomaterials

« In-Situ Characterization and
Nanomechanics

« Soft, Biological, and Composite
Nanomaterials

To learn more and
apply to use the facilities, visit:
https://cint.lanl.gov
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