

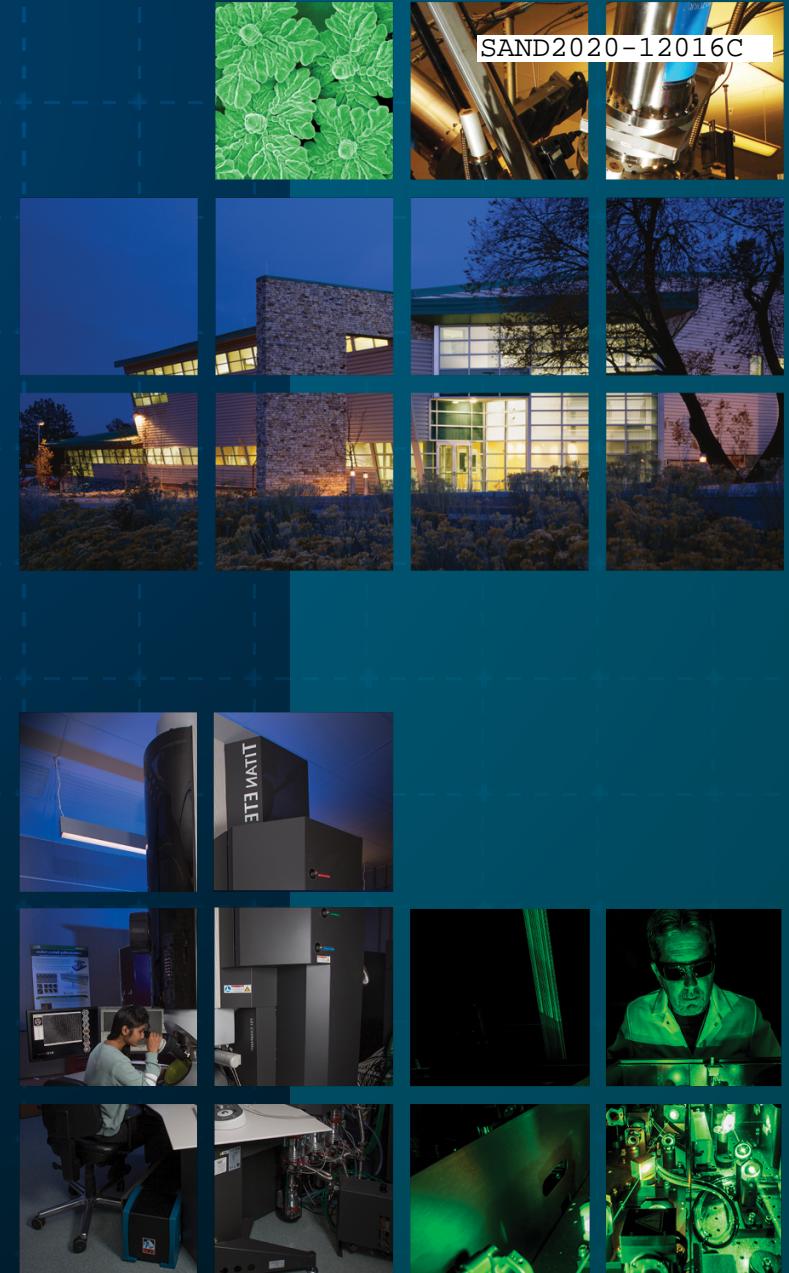
Deep Convolutional Neural Networks as a Rapid Screening Tool for Complex Additively Manufactured Structures

PRESENTED BY

Anthony Garland, Benjamin C.
White, Bradley H. Jared, Michael
Heiden, Emily Donahue, Brad L.
Boyce

Sandia
National
Laboratories

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

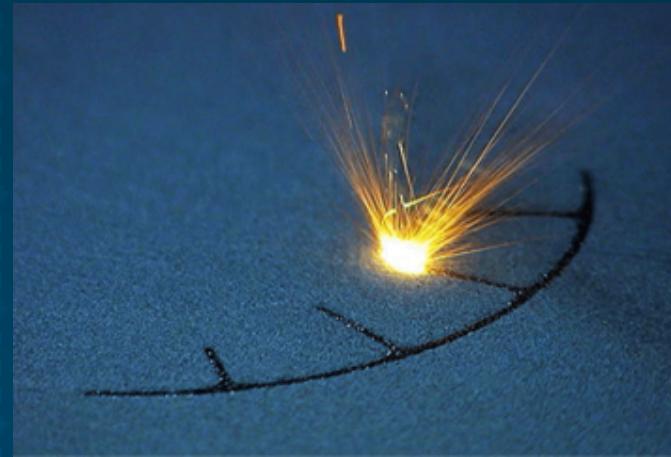
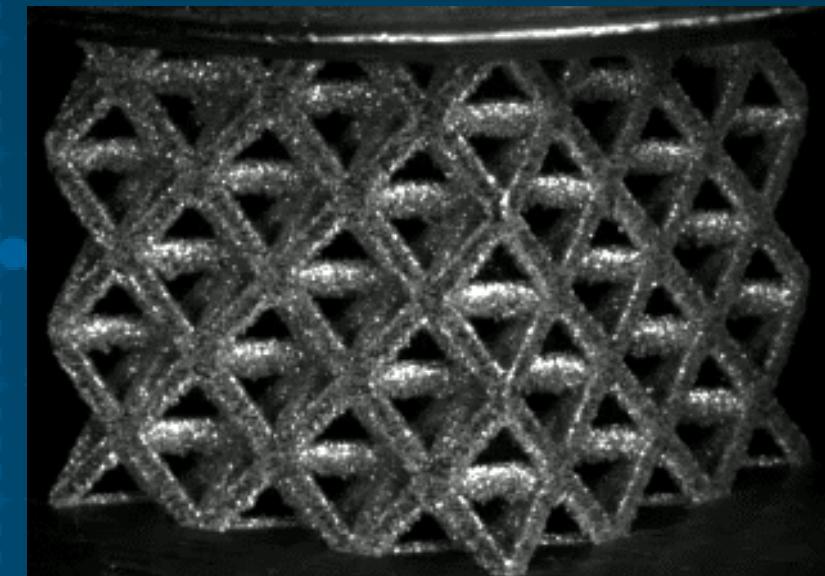


SAND2020-12016C

Background: Additive Manufactured Metal Lattices

Additive Manufacturing enables producing lattice metamaterials

1. Laser powder bed fusion enables making 316SS lattices
 - Start with a 3D model
 - Printer melts powder together 1 layer at a time.
 - Slowly build up the part
2. Lattice metamaterials can have unique properties
 - a) High strength to weight ratio (i.e. light weight)
 - b) High energy absorption during crush.
 - c) Shock mitigation
 - d) Vibration attenuation

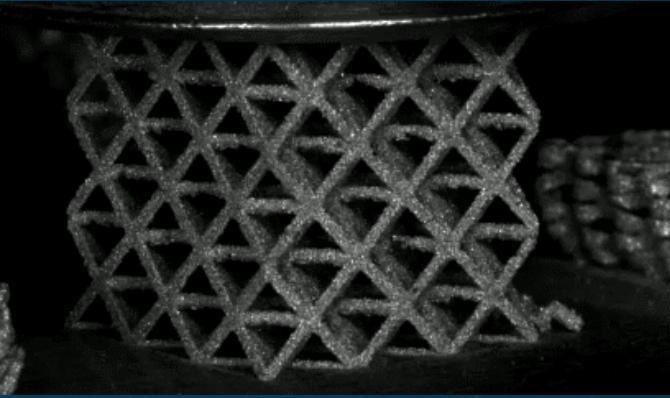
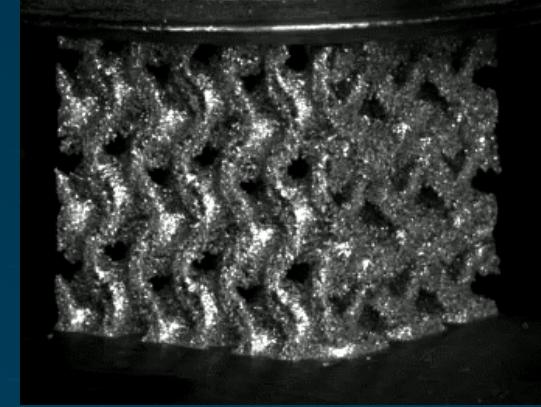


A Process-Structure-Property Dataset for Lattices

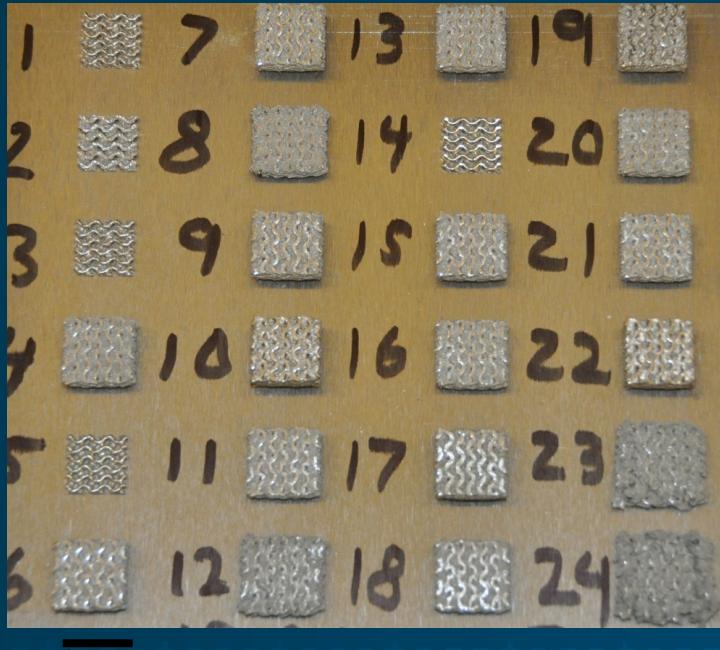
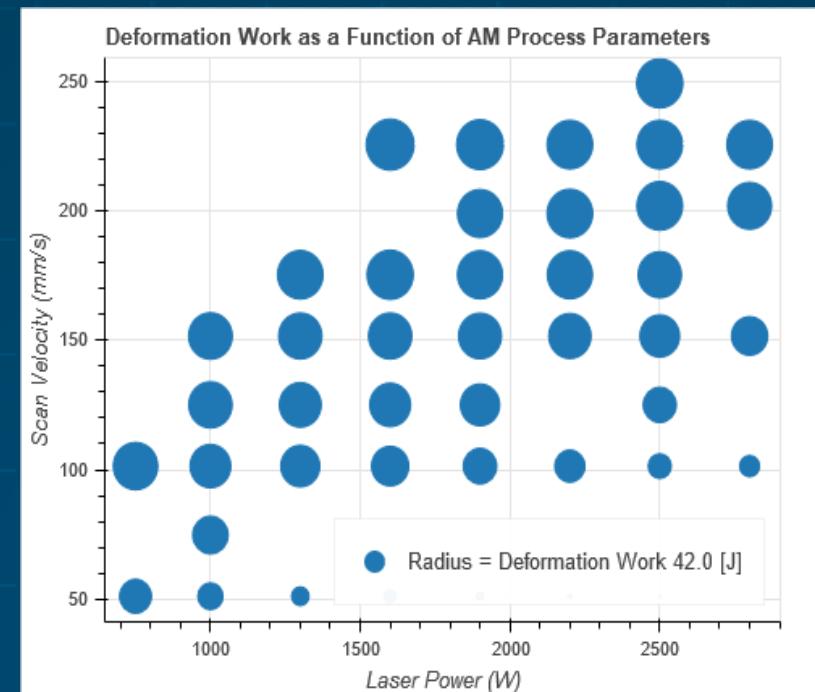
Printed 98 Lattice

- 48 gyroids and 48 octets (FCC)
- Purposefully varied the laser power and scan speed

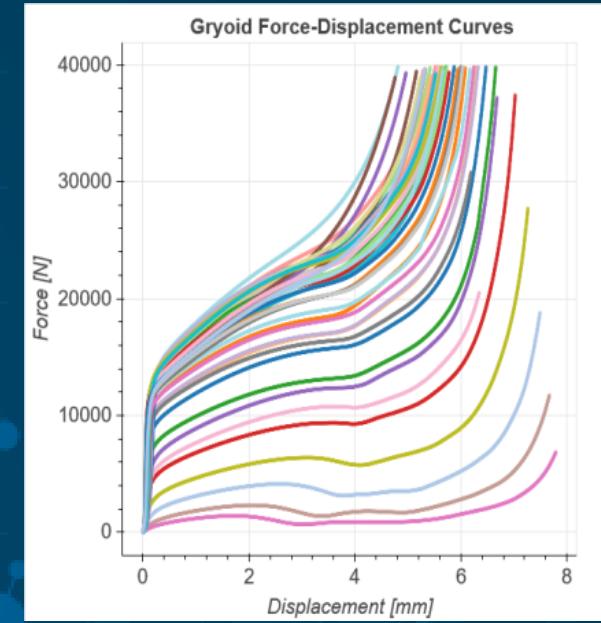
1. Changes the physical process of melting
2. Changes the lattice properties.



24 crushed lattices

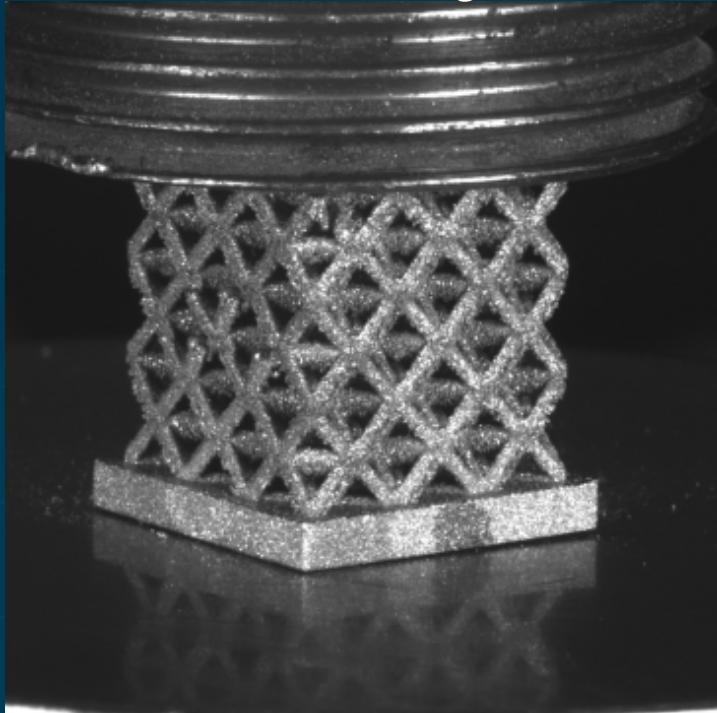


Crush Energy as a function of process parameters.



The ridiculous proposition

Initial image

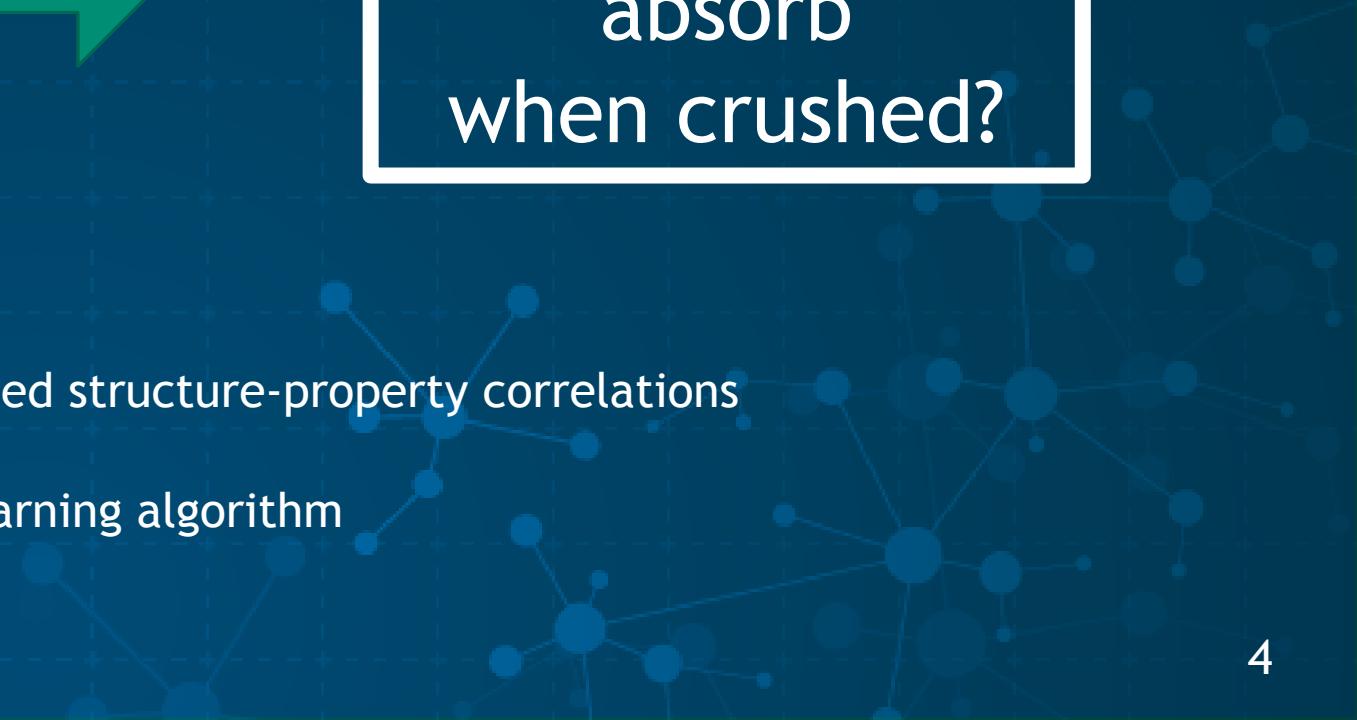


prediction

How much
energy will it
absorb
when crushed?

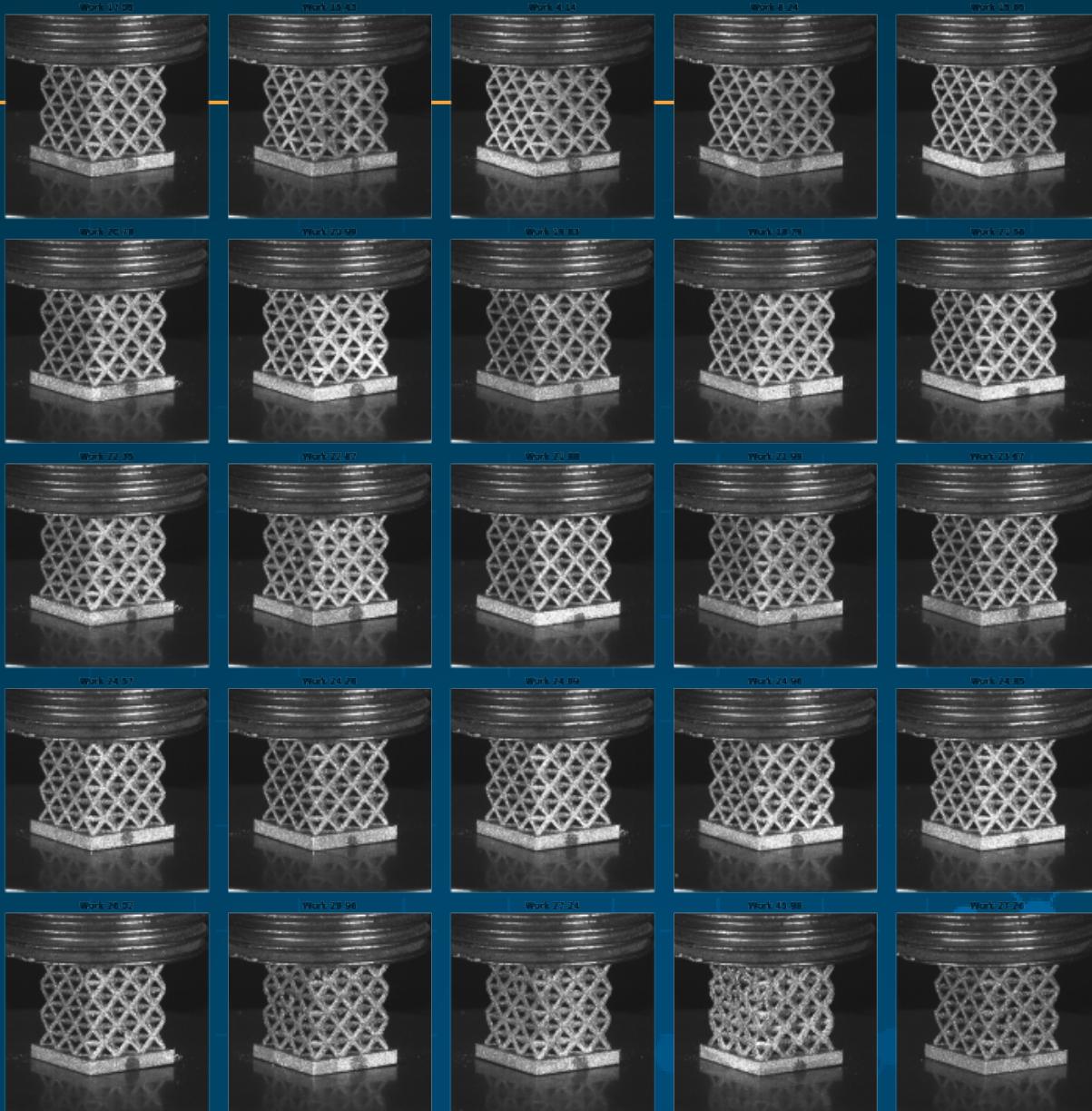
Method 1: Traditional expert-guided structure-property correlations

Method 2: Automated machine learning algorithm



The ridiculous proposition

Laser Scan Speed

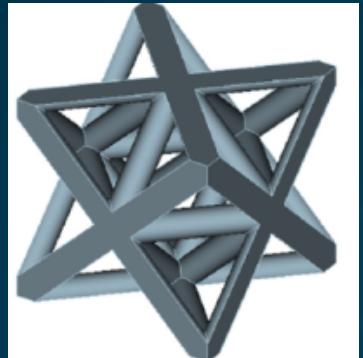


Laser Power

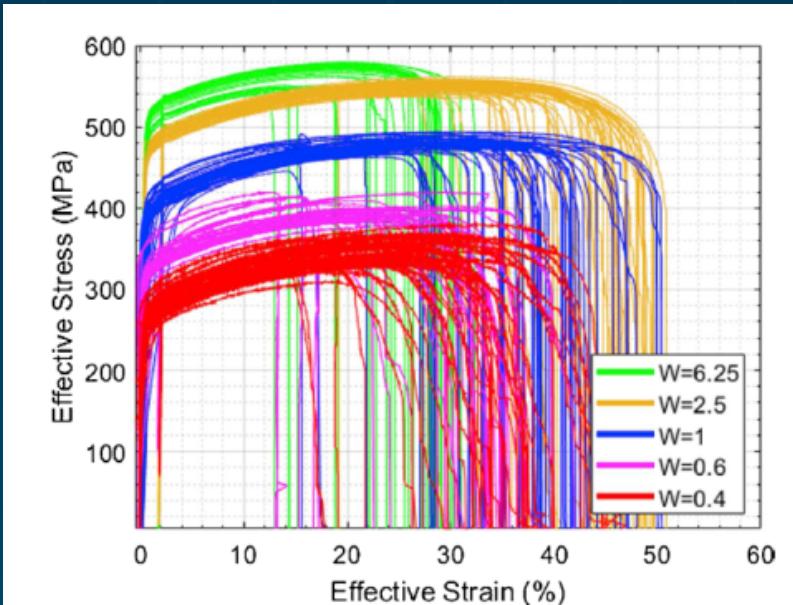
Method 1: Structure-Property relationships guided by human experts

Method 1: The traditional **expert-guided** method to predict mechanical properties

Shape & topology



Base Material Constitutive Properties



Hierarchical representations of shape

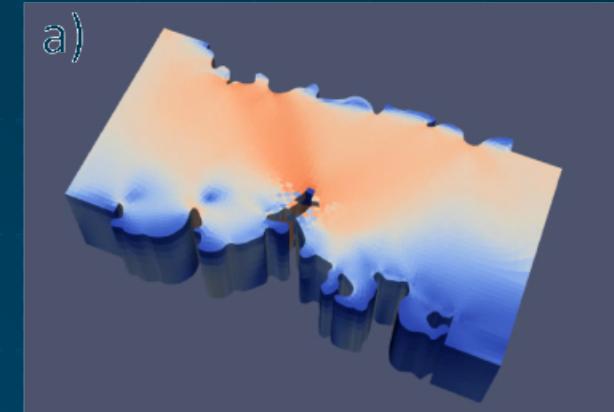
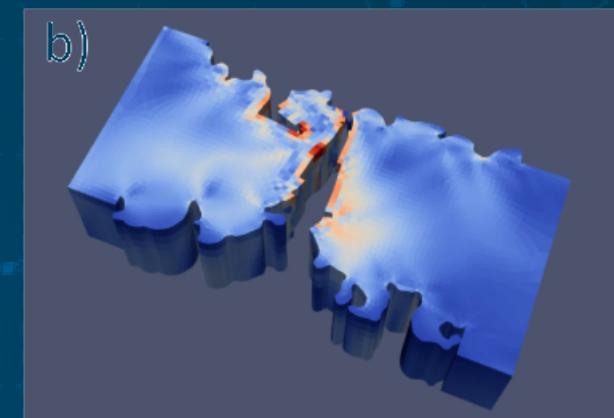


Constitutive model:
Yield criterion; flow rule; hardening law

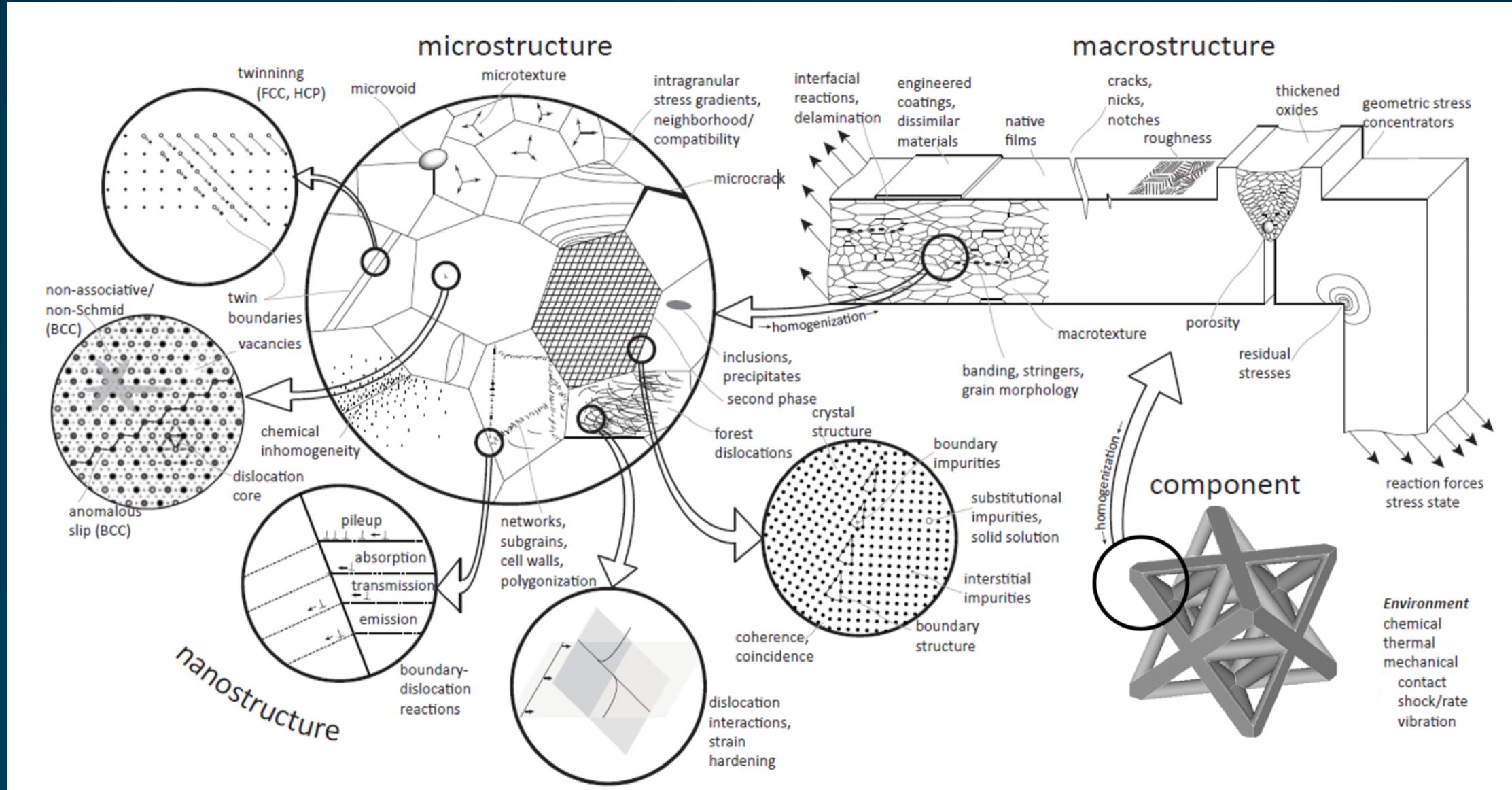
$$\varepsilon = \frac{\sigma}{E} \left\{ 1 + \alpha \left(\frac{\sigma}{Y} \right)^{n-1} \right\}$$

Ramberg-Osgood

Explicit Direct Numerical Simulation

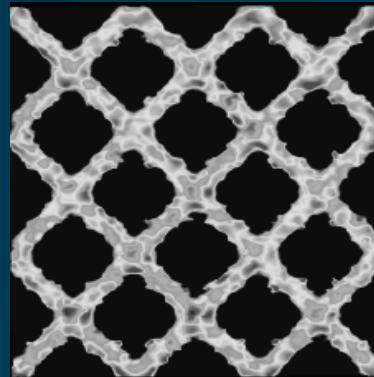


Pandora's Box... what do we need to capture explicitly?



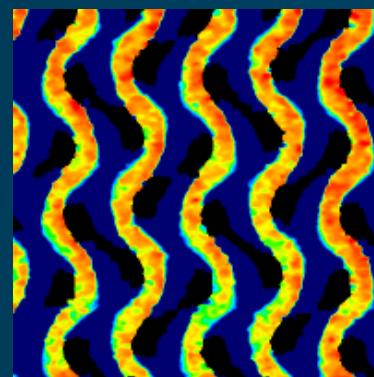
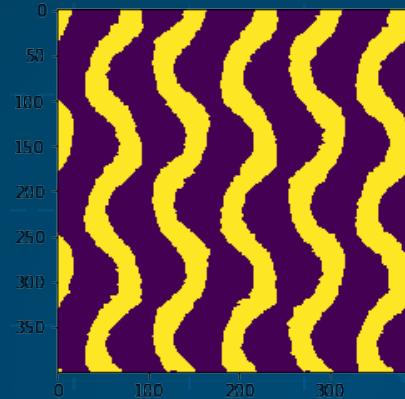
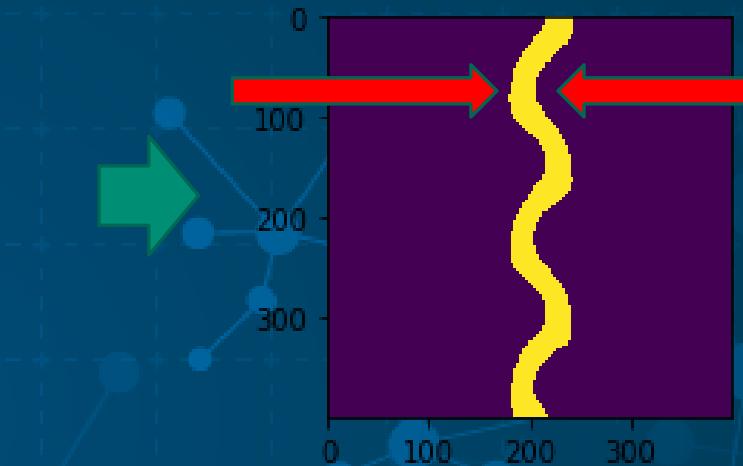
Method 1: requires laboratory measurements of structure

Expert guided assumption: surface roughness and strut/wall thickness are the primary factors influencing crush energy absorption.



Extract strut width
OR estimate with
density and Surface
Roughness

Measure Width

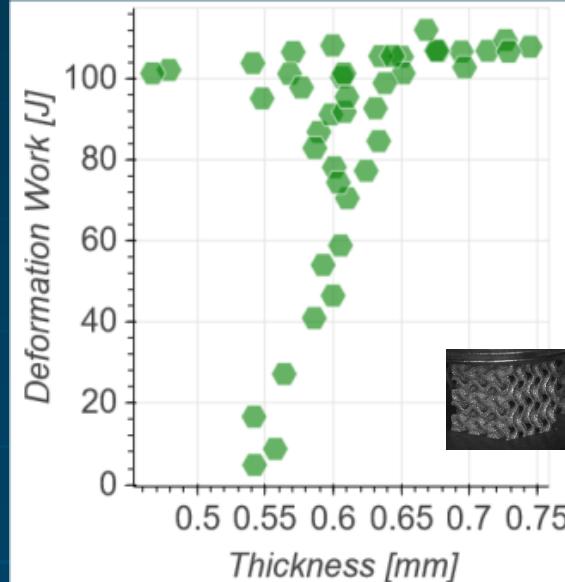


Correlate feature dimensions with properties

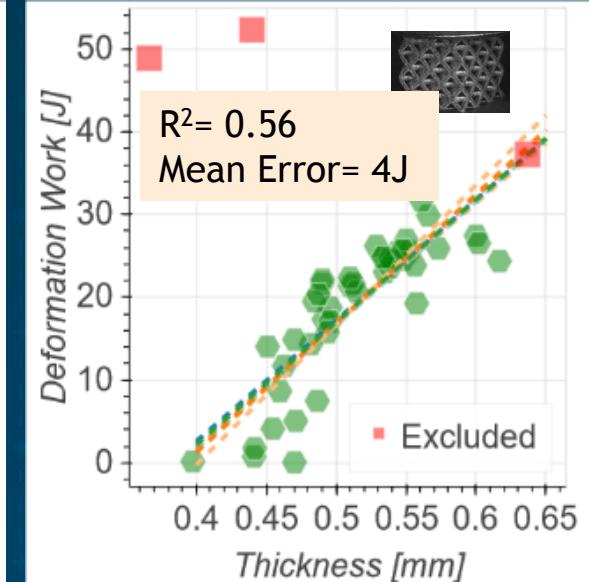
Neither surface roughness nor strut/wall thickness correlated very well with deformation response

Thickness Effect

Gyroid Lattice

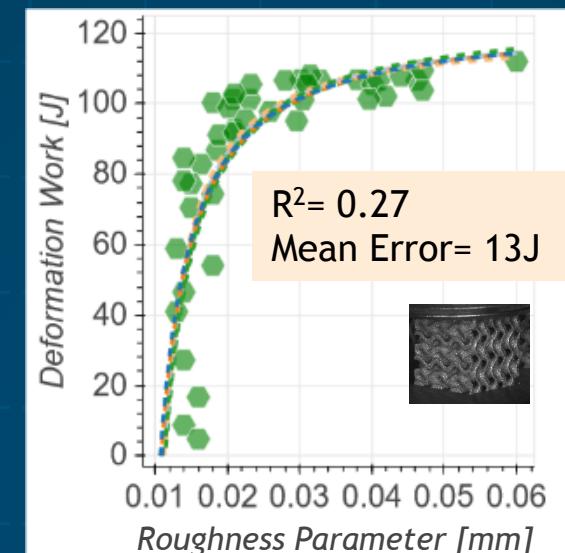


Octet Lattice

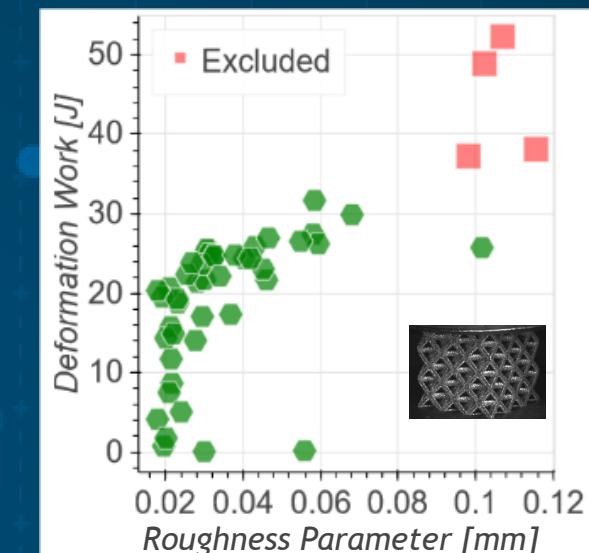


Roughness Effect

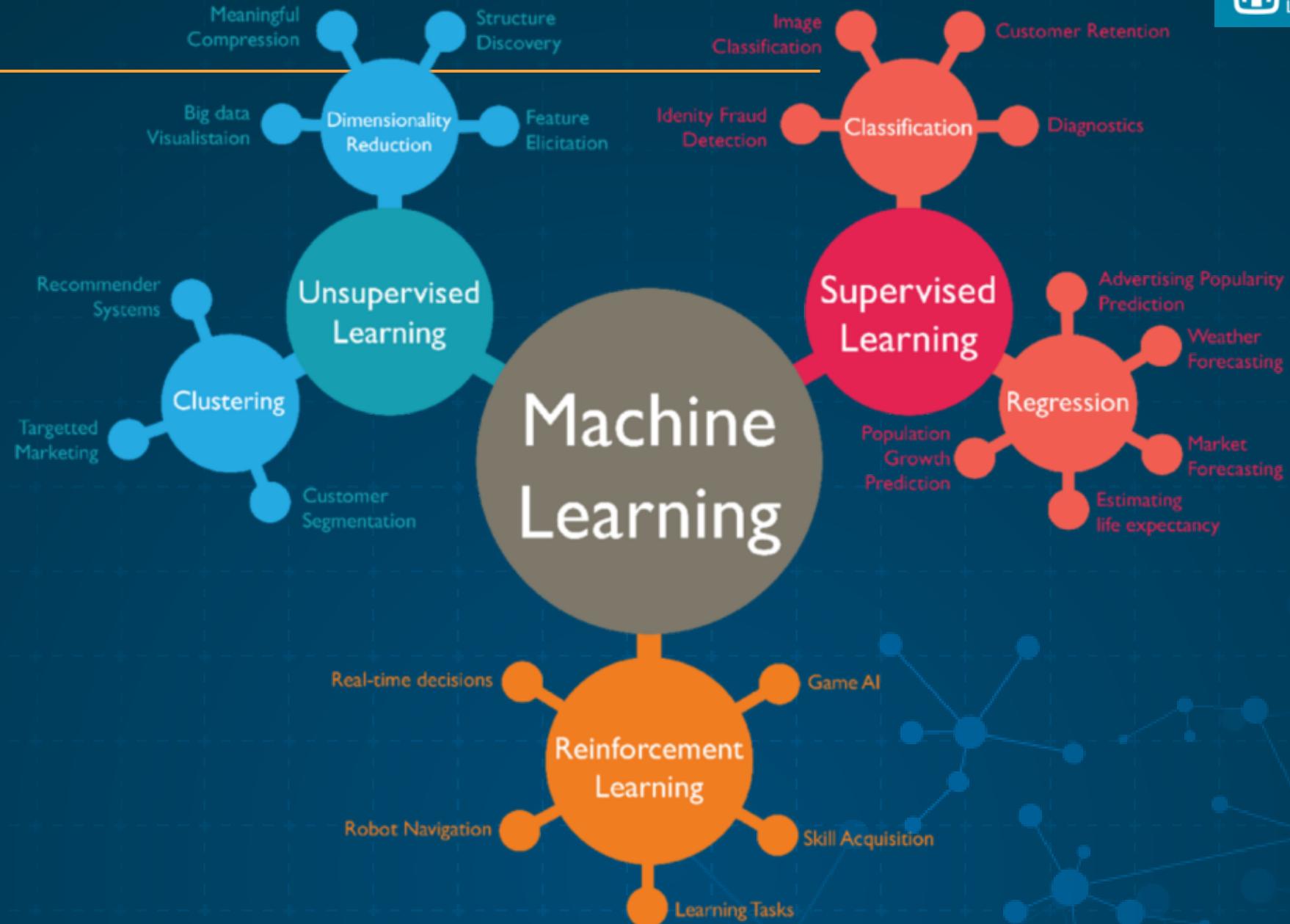
$R^2 = 0.27$
Mean Error = 13J



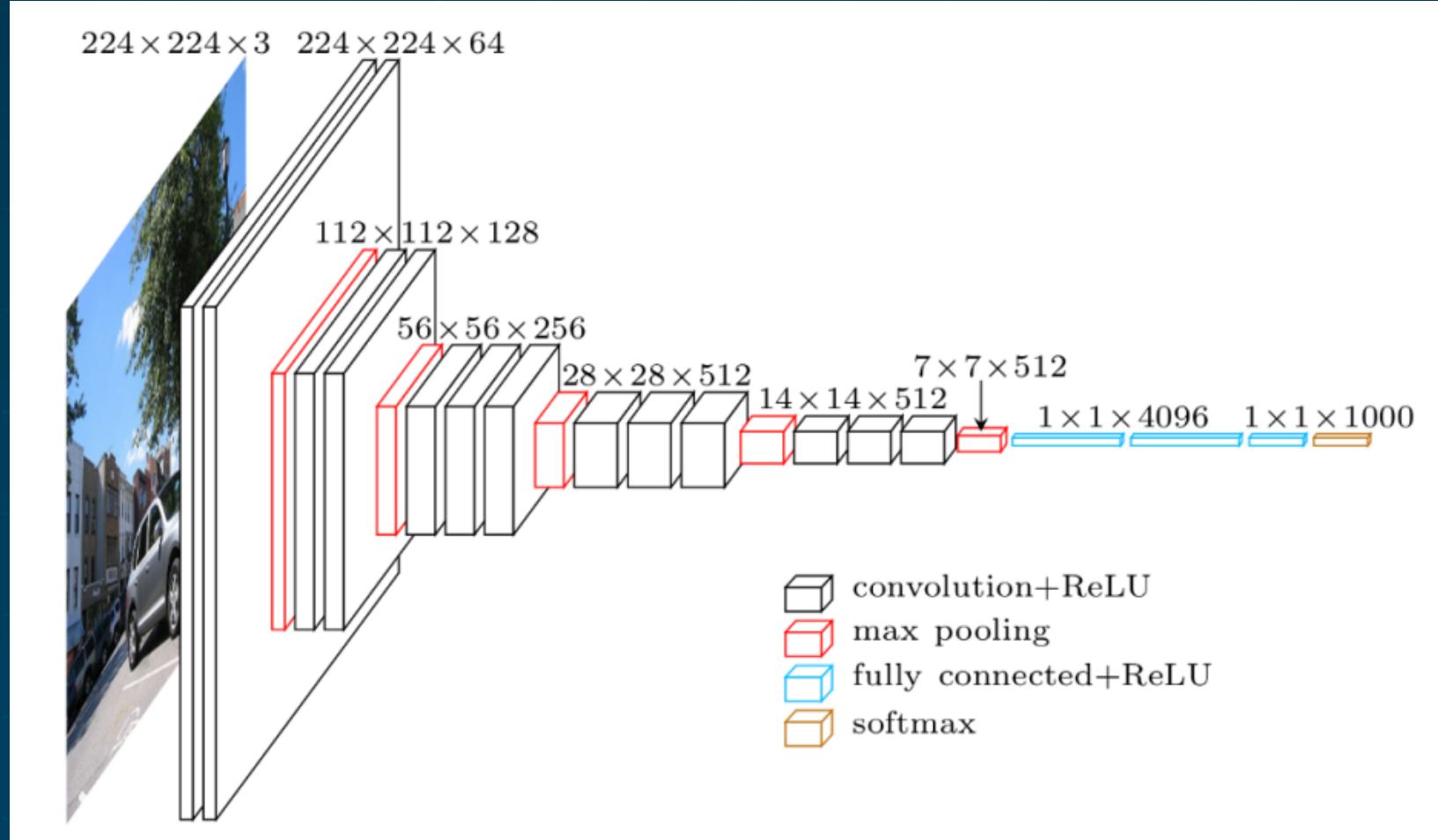
Excluded



Method 2: Property correlations revealed by machine learning

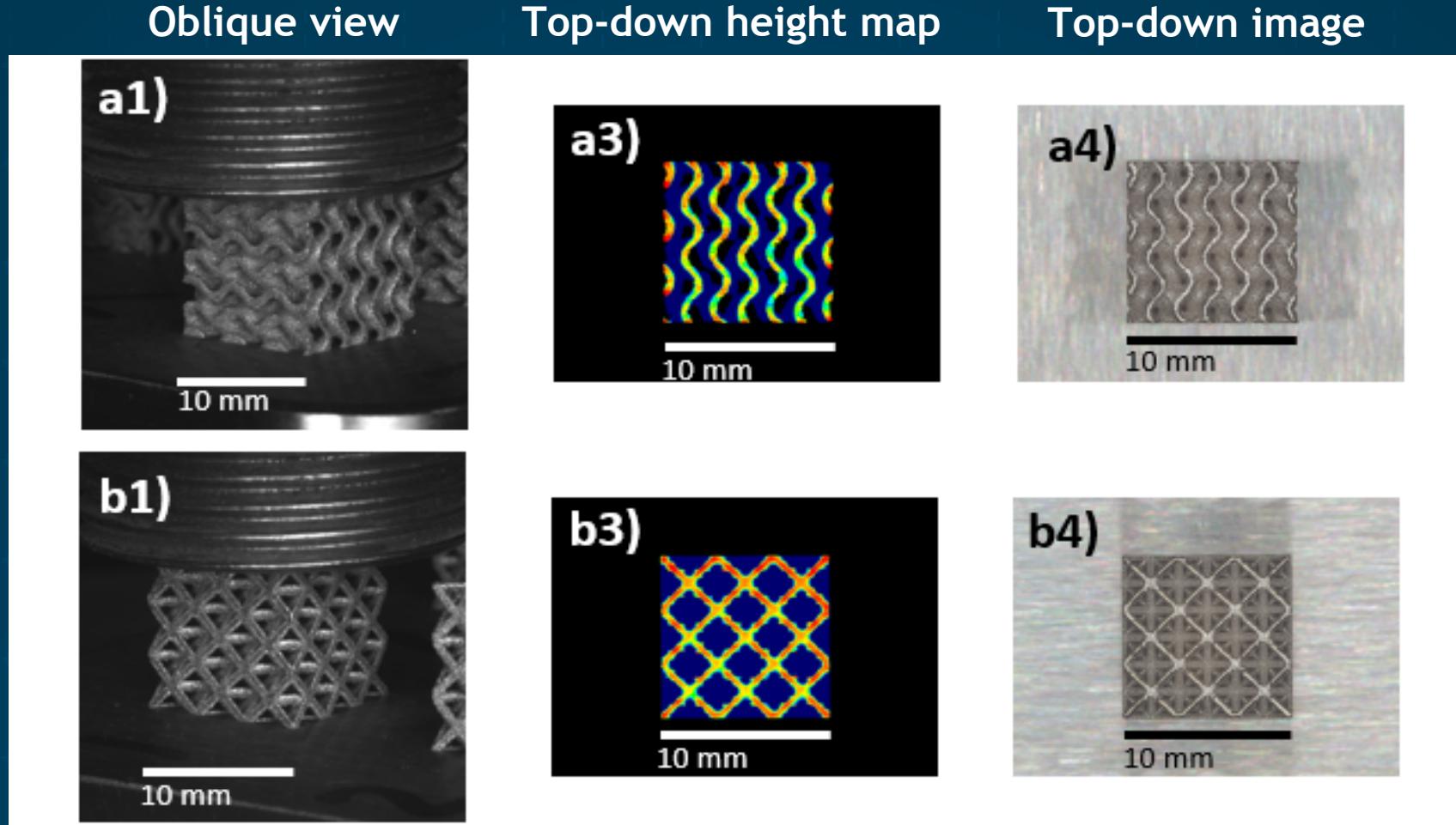


Deep convolutional neural network: image-based classification or regression



Method 2: Machine learning source data

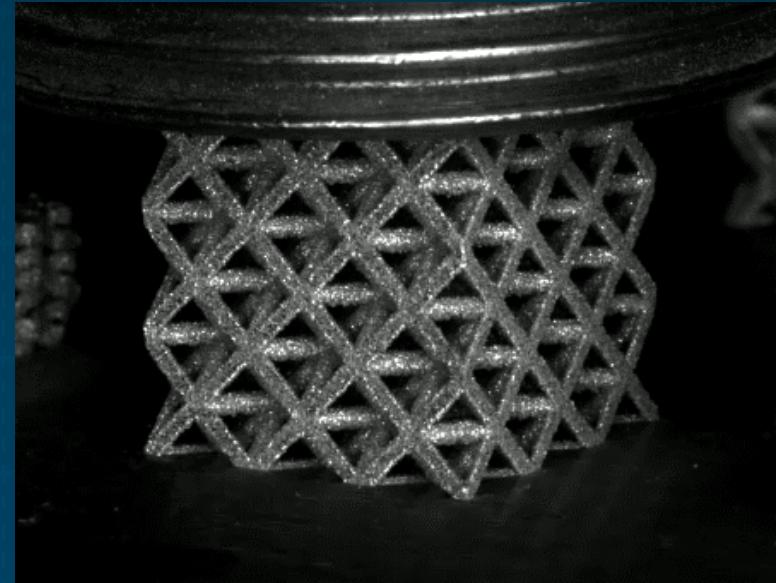
Non-traditional source data: camera images of the as-printed lattices



Challenge with an ML approach

Very little data!

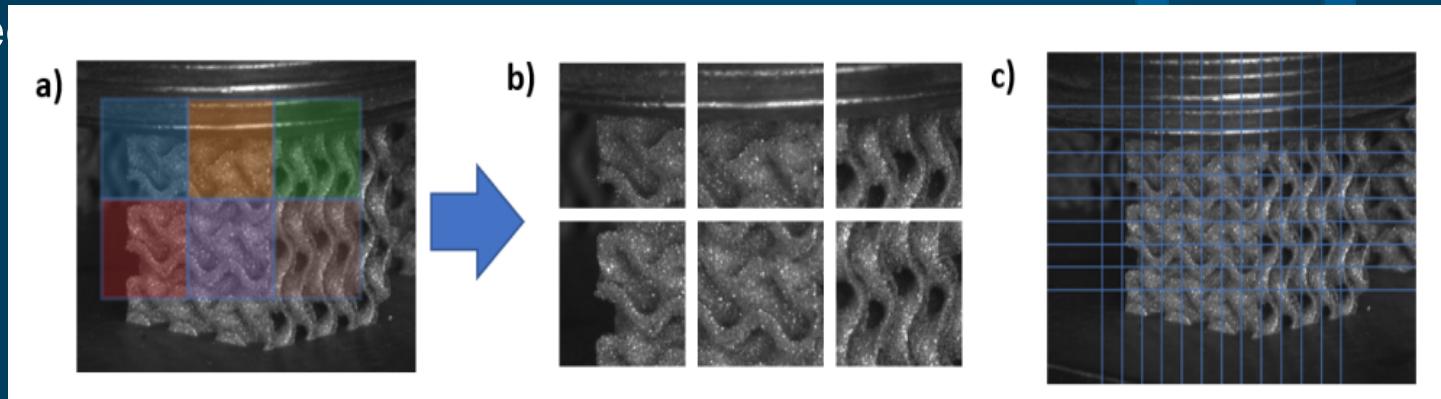
1. 48 octet data points
2. 43 gyroid data points (5 gyroids didn't survive the printing process and can't be tested)



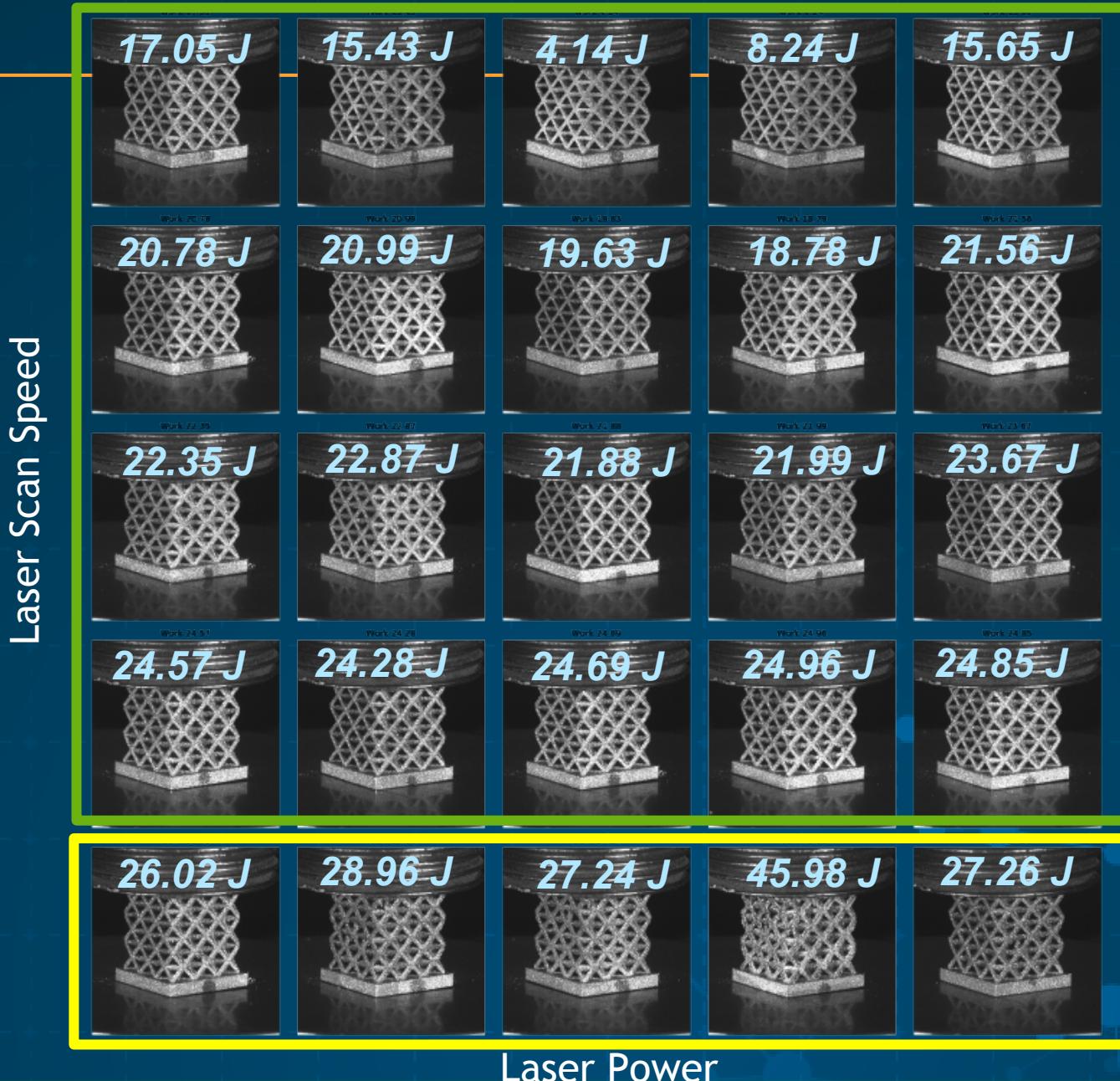
Every octet lattice image available.

Solution: Subdivide images into representative subimages

Works, be-



Biased sampling!



Stratified k-fold sampling



1. Use Stratified K-fold testing.
 - Subdivide the data into classes or quantiles.
 - Perform normal k-fold testing, but the test data must equally sample all classes.

2. Data Augmentation

- Cut each image into 48 subimages
- Do the normal data augmentation tricks (flipping LR [not up-down], warping, zooming, cropping, skewing, lighting changes)

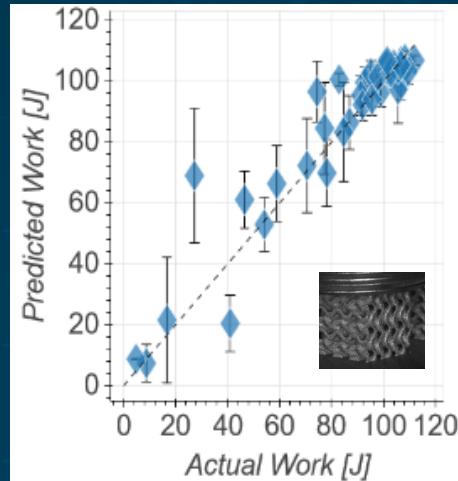
3. Model: ResNet 16 Technology

fast.ai library (wrapper around pytorch)

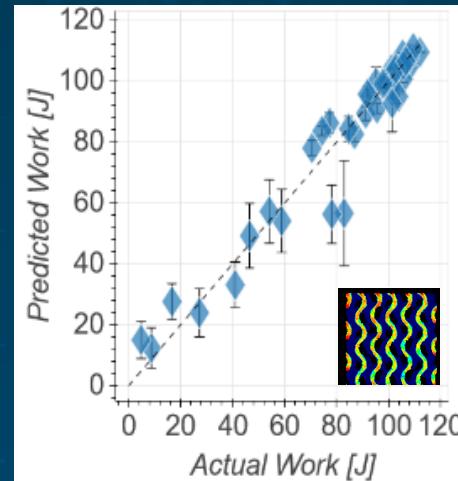
Scikit-learn for stratified k-fold.

Results

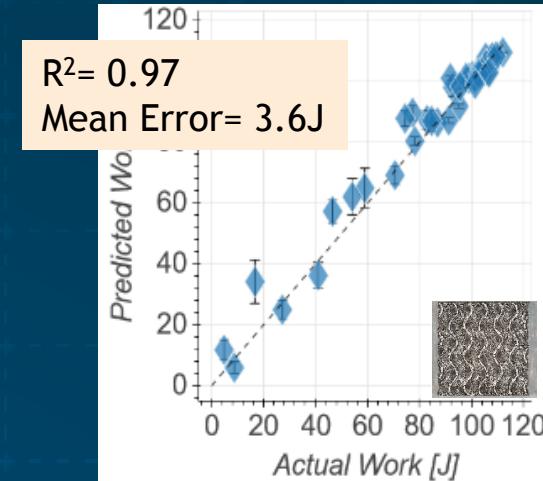
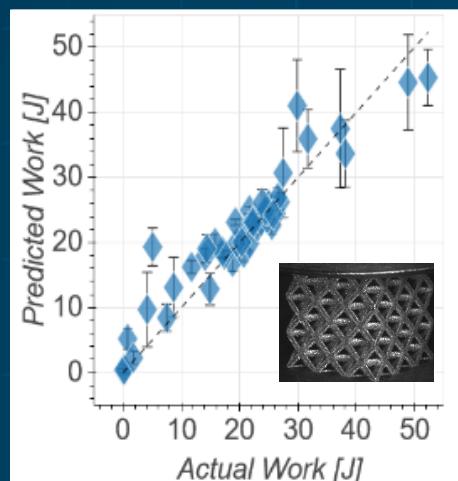
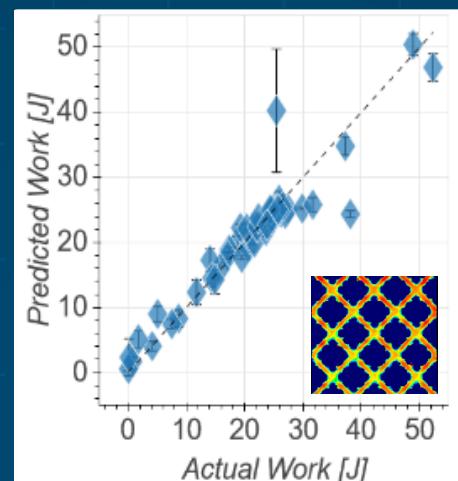
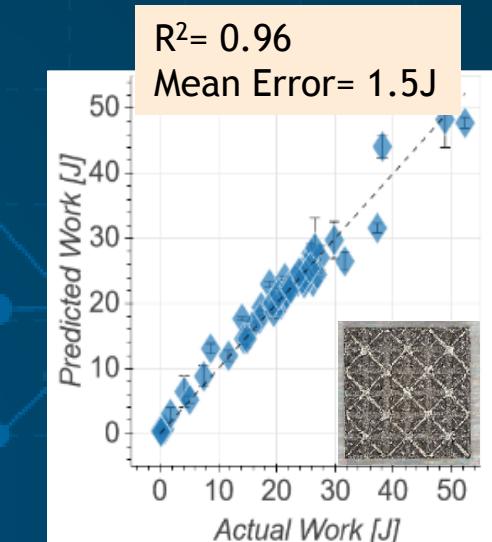
Oblique view



Top-down height map

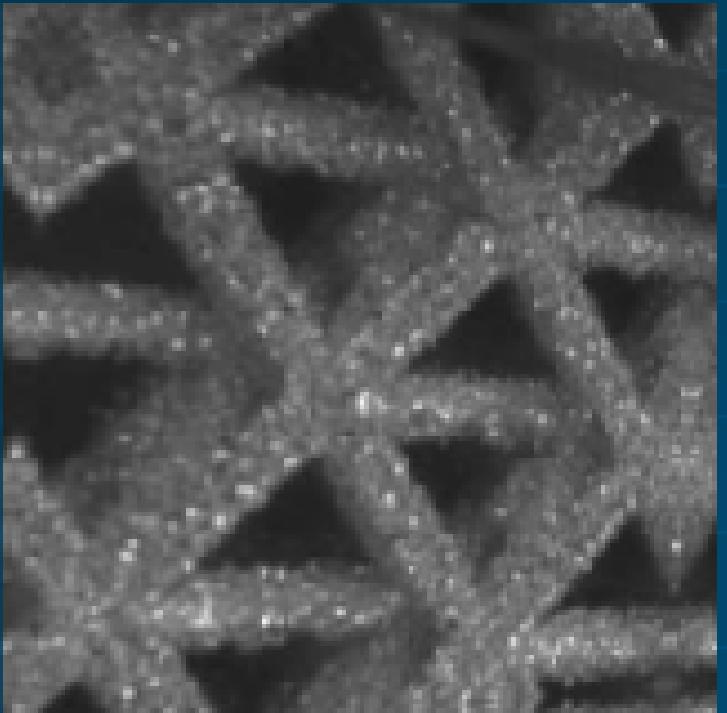


Top-down image

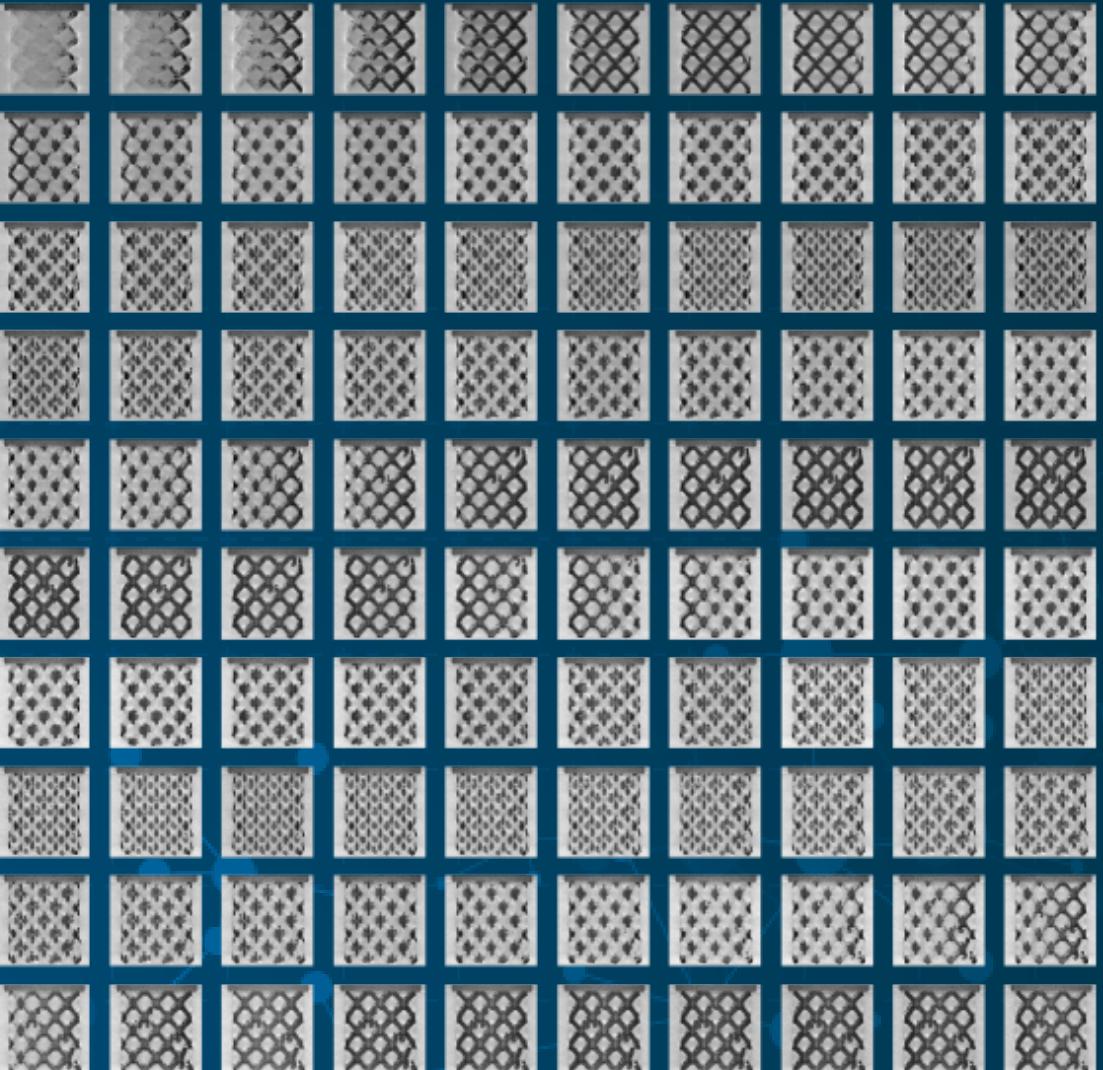


Why did this work?

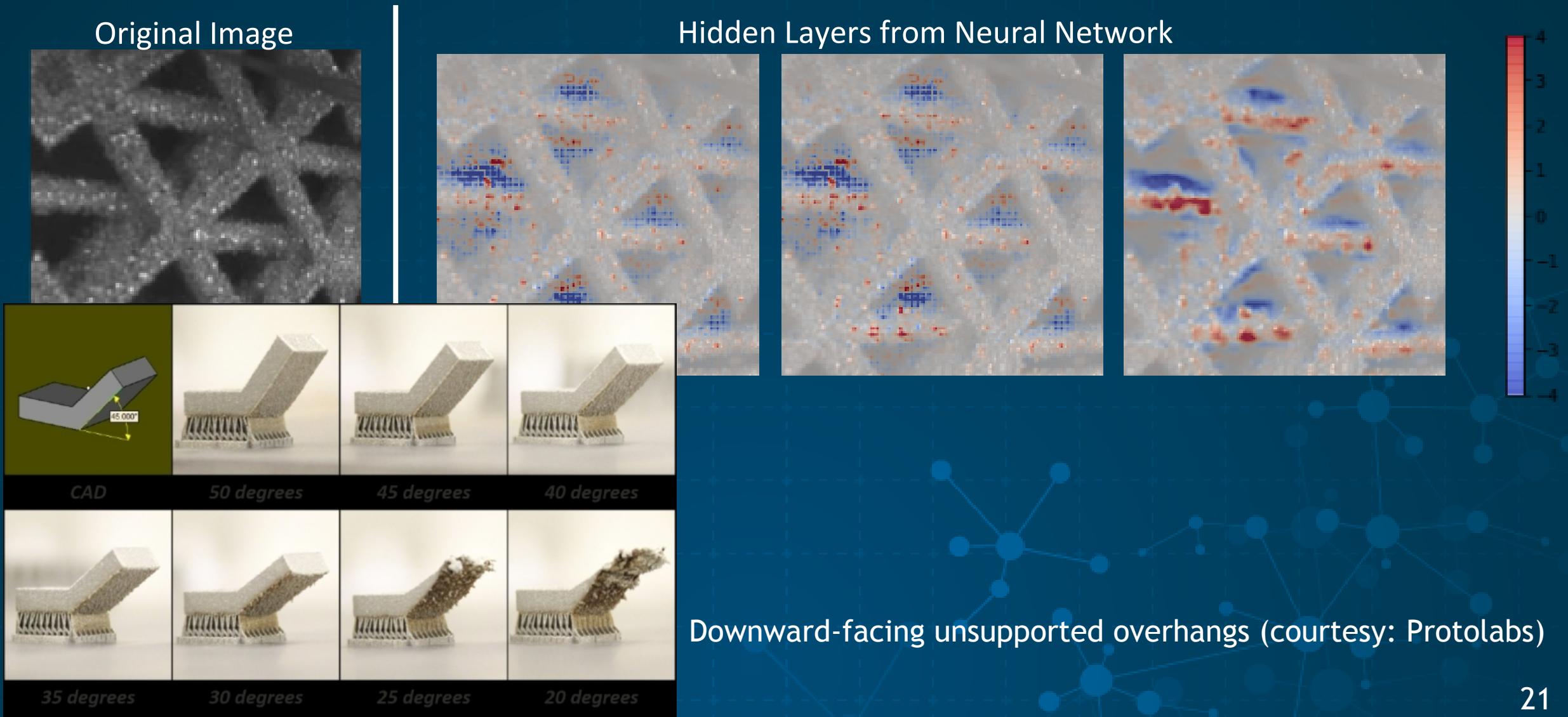
- 1) sufficient training data
- 2) careful sampling
- 3) source data has representative features



*Surface roughness
Strut diameter
Broken struts
What else???*

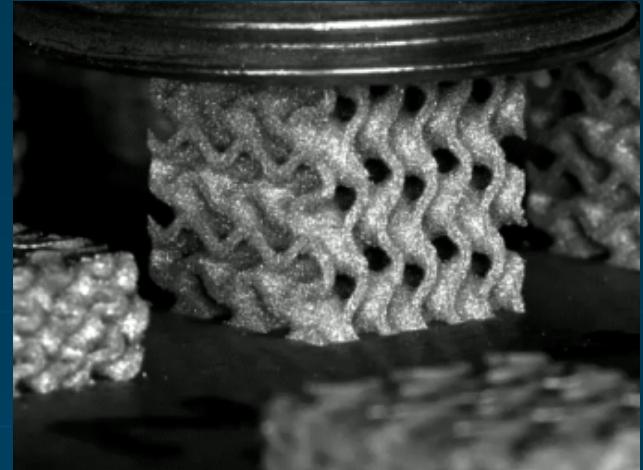
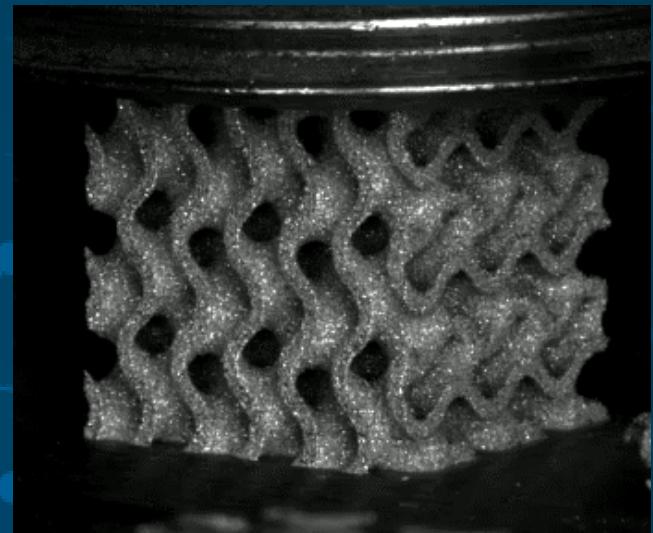


Interpretability



Take-home messages

1. **Complex structure-property relationships** can be developed by a trained machine learning algorithm instead of by expert-guided modeling.
2. **Non-traditional source datasets** may have sufficiently encoded features that correlate to the underlying structural parameters governing behavior.
3. After a ML correlation has been developed, the **causation** may be explainable by analyzing the intermediate transfer functions (hidden layers).
4. Such approaches may serve as **fast, efficient product screening tools**.



More information

Email: blboyce@sandia.gov

Read the paper:

Additive Manufacturing 35 (2020) 101217

Contents lists available at [ScienceDirect](#)

Additive Manufacturing

journal homepage: www.elsevier.com/locate/addma

 ELSEVIER

Research Paper

Deep Convolutional Neural Networks as a Rapid Screening Tool for Complex Additively Manufactured Structures

Anthony P. Garland^a, Benjamin C. White^a, Bradley H. Jared^a, Michael Heiden^a, Emily Donahue^b, Brad L. Boyce^{a,*}

^a Materials, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185-0889, Mexico
^b Computer Science, Sandia National Laboratories, Albuquerque, NM, 87185-0889, Mexico

ABSTRACT

Additively manufactured metamaterials such as lattices offer unique physical properties such as high specific strengths and stiffnesses. However, additively manufactured parts, including lattices, exhibit a higher variability in their mechanical properties than wrought materials, placing more stringent demands on inspection, part quality verification, and product qualification. Previous research on anomaly detection has primarily focused on using in-situ monitoring of the additive manufacturing process or post-process (ex-situ) x-ray computed tomography. In this work, we show that convolutional neural networks (CNN), a machine learning algorithm, can directly predict the energy required to compressively deform gyroid and octet truss metamaterials using only optical images. Using the tiled nature of engineered lattices, the relatively small data set (43 to 48 lattices) can be augmented by systematically subdividing the original image into many smaller sub-images. During testing of the CNN, the prediction from these sub-images can be combined using an ensemble-like technique to predict the deformation work of the entire lattice. This approach provides a fast and inexpensive screening tool for predicting properties of 3D printed lattices. Importantly, this artificial intelligence strategy goes beyond 'inspection', since it accurately estimates product performance metrics, not just the existence of defects.

1. Introduction

Additive manufacturing (AM) enables fabrication of complex free-form shapes including engineered lattices, such as gyroids and octet trusses, that are not possible or very difficult to fabricate with other traditional manufacturing methods [1]. Lattices are typically employed for two distinct purposes: (1) as support or "infill" to facilitate printability of cavities, overhangs, and suspended features, or (2) as structural qualification requirements [21].

The successful use of structural lattices is directly related to the ability to assure that the properties and shape of the printed lattice meet design requirements. To qualify AM parts, it is necessary to confirm that the component meets predefined physical performance requirements. A prerequisite for qualification is measuring part properties directly or by using a model to relate a secondary measured property to the true properties of interest. Measurements could include inspecting the final

1. We redid the entire experiment by printing 48 more octet lattices and we were able to replicate the results.
2. ML for lattice design (inverse problem)

BIG SCIENCE AT THE NANOSCALE

CINT is a user facility providing cutting-edge nanoscience and nanotechnology capabilities to the research community.

Access to our facilities and scientific expertise is **FREE** for non-proprietary research.

Research areas:

- Quantum Materials Systems
- Nanophotonics and Optical Nanomaterials
- ***In-Situ Characterization and Nanomechanics***
- Soft, Biological, and Composite Nanomaterials

To learn more and apply to use the facilities, visit:
<https://cint.lanl.gov>

