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Background: Additive Manufactured  Metal Lattices

Additive Manufacturing enables producing lattice meta-
materials

1. Laser powder bed fusion enables making 316SS lattices 
• Start with a 3D model
• Printer melts powder together 1 layer at a time. 
• Slowly build up the part

2. Lattice metamaterials can have unique properties
a) High strength to weight ratio (i.e. light weight)
b) High energy absorption during crush. 
c) Shock mitigation
d) Vibration attenuation
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A Process-Structure-Property Dataset for Lattices

Printed 98 Lattice
• 48 gyroids and 48 octets (FCC)
•  Purposefully varied the laser power and scan speed
1.  Changes the physical process of melting 
2.  Changes the lattice properties. 

10 mm

24 crushed lattices
Crush Energy as a function of 

process parameters. 
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The ridiculous proposition

How much 
energy will it 

absorb
when crushed?

Method 1:  Traditional expert-guided structure-property correlations

Method 2:  Automated machine learning algorithm

Initial image

prediction
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The ridiculous proposition
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Method 1: Structure-Property relationships guided by human 
experts
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Method 1: The traditional expert-guided 
method to predict mechanical properties

Shape & topology Base Material Constitutive Properties

Hierarchical representations of shape

Explicit Direct 
Numerical Simulation

Constitutive model:
Yield criterion; flow rule; hardening law

Ramberg-Osgood
A.M. Roach et al, Additive Manufacturing, 2020 



8

Pandora’s Box…  what do we need to capture explicitly?
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Method 1:  requires laboratory measurements of structure

 Expert guided assumption:  surface roughness and strut/wall 
thickness are the primary factors influencing crush energy 
absorption.

Measure Width

Extract strut width
OR estimate with 

density and Surface 
Roughness
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Correlate feature dimensions with properties

Neither surface roughness 
nor strut/wall thickness 
correlated very well with 
deformation response

Gyroid Lattice Octet Lattice
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Roughness Parameter [mm] Roughness Parameter [mm]

R2= 0.27
Mean Error= 13J

R2= 0.56
Mean Error= 4J
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Method 2: Property correlations revealed by machine 
learning
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Deep convolutional neural network: image-based
classification or regression
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Method 2: Machine learning source data

 Non-traditional source data: camera images of the as-printed 
lattices

Oblique view Top-down height map Top-down image
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Challenge with an ML approach

 Very little data!

1. 48 octet data points

2. 43 gyroid data points (5 gyroids didn’t survive the printing 
process and can’t be tested)

Solution: Subdivide images into representative 
subimages

Works, because lattice are made up of repeating unit cells!

Every octet lattice image available. 
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Laser Power

17.05 J 15.43 J 4.14 J 8.24 J 15.65 J

20.78 J 20.99 J 19.63 J 18.78 J 21.56 J

22.35 J 22.87 J 21.88 J 21.99 J 23.67 J

24.57 J 24.28 J 24.69 J 24.96 J 24.85 J

26.02 J 28.96 J 27.24 J 45.98 J 27.26 J

Train

Test

Biased sampling!
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Stratified k-fold sampling
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Laser Power

17.05 J 15.43 J 4.14 J 8.24 J 15.65 J

20.78 J 20.99 J 19.63 J 18.78 J 21.56 J

22.35 J 22.87 J 21.88 J 21.99 J 23.67 J

24.57 J 24.28 J 24.69 J 24.96 J 24.85 J

26.02 J 28.96 J 27.24 J 45.98 J 27.26 J

TrainTest
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ML Model and Setup

1. Use Stratified K-fold testing. 
◦ Subdivide the data into classes or quantiles. 
◦ Perform normal k-fold testing, but the test data must equally sample all 

classes. 

2. Data Augmentation
◦ Cut each image into 48 subimages
◦ Do the normal data augmentation tricks (flipping LR [not up-down], warping, zooming, 

cropping, skewing, lighting changes)

3. Model: ResNet 16
Input Image Deep Learning Layers 

Technology
 fast.ai library (wrapper around pytorch)

 Scikit-learn for stratified k-fold.
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Results

R2= 0.97
Mean Error= 3.6J

R2= 0.96
Mean Error= 1.5J

Oblique view Top-down height map Top-down image
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Why did this work?

 1) sufficient training data

 2) careful sampling 

 3) source data has representative features

Surface roughness
Strut diameter
Broken struts
What else???
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Interpretability

Hidden Layers from Neural NetworkOriginal Image

Downward-facing unsupported overhangs (courtesy: Protolabs)
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Take-home messages

1. Complex structure-property relationships can be 
developed by a trained machine learning algorithm 
instead of by expert-guided modeling.

2. Non-traditional source datasets may have 
sufficiently encoded features that correlate to the 
underlying structural parameters governing behavior.

3. After a ML correlation has been developed, the 
causation may be explainable by analyzing the 
intermediate transfer functions (hidden layers).

4. Such approaches may serve as fast, efficient 
product screening tools.
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More information

 Email: blboyce@sandia.gov

 Read the paper:
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Future Works

1. We redid the entire experiment by printing 48 more octet lattices and we were able to 
replicate the results.

2. ML for lattice design (inverse problem)

3.  Combining physics with ML to predict lattice properties with CT

ML Property

Target Property

Current Talk

Future Work ML
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CINT is a user facility providing cutting-
edge nanoscience and nanotechnology 
capabilities to the research community.

Access to our facilities and scientific 
expertise is FREE for non-proprietary 
research.

Research areas:
• Quantum Materials Systems
• Nanophotonics and Optical Nanomaterials
• In-Situ Characterization and 

Nanomechanics
• Soft, Biological, and Composite 

Nanomaterials

To learn more and
apply to use the facilities, visit:

https://cint.lanl.gov


