SAND2020- 11993PE

Achieving Performance on

Next-Generation Hardware
with PIC Codes

EMPIRE

Presented By

Matthew Bettencourt

— - = = @kNeReY MISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solut of Sandia

LLC, awh olly owne d ubsidial ry fH ywell
International Inc f the U.S. Department of
E gy N l Nuclear Security

1 Administratiol d ontract DE-NA0003525.

2 1 Qutline

Walk down memory lane
o What is "next generation” mean

> Why do | care — my argument is that you should or will

What are the hard parts of "next generation” computing
> We have to reconsider what’s important

How we have worked to design EMPIRE for this platforms
o Specific instances

Results

Summary

3 1 Walk Down Memory Lane

\
3

First, I'll say it, I've been in HPC for a long while — yeah, I iy € (;

‘;;-':_,...-.-
~ GET OFF MY LAWN!

Pre-1990 fastest computers were vector supercomputer
> Cray T90

Back in the 90’s we were in a pretty famous parallel computing war
o Early in that decade Cray and vector machines ruled the days

> Around the middle of the decade lots of parallel computing languages
> MPI won, PVM stuck around for a surprisingly long time
o OpenMP starting in the 90s and is also around today, more on it later

We all know what happened next
o MPI ruled for the next 20ish years, and still does today, but it is not sufficient (MP1+X)

The shift then was computing power through more, less powerful, computers
o Every rank had their own memory and their own compute resources

o Clear memory ownership models existed

+ 1 Top 500 -

The top supercomputing systems are tracked at http://top500.org
o Starting producing lists in 1993

o Judged by a synthetic benchmark — LinPack
> Top 500 today often becomes workhorse in 3 years

Notable favorites or disasters
o First one the CM5 1993

o ASCI Red — Cray XT3 1997-2000

> Pretty much what we have today

o Roadrunner — 2008-2009

o Titan — 2012
o First GPU system

o Summit — 2019

I'd argue
o Since 2000 almost all of the commodity systems look like the CM5

Currently 6 of the top 10 machines are GPU based
o Greater than 90% of Summit comes from the accelerators

Announced future machines slated for the top will have an acceler®

I I Em B

s | What is a Next Generation Platform

Next Generation Platforms (NGP) is a buzz word which has changed throughout the
computing era
o |t is a platform which looks different than current technology

Today NGP means something like
> An accelerator like a GPGPU
> A ton of concurrency
o Limited instruction sets
> Single program counter

Equally important
o Different programming models !
> OpenMP — Cuda — HIP — ROCm :j

What comes along with this
> New exciting ways to shoot yourself in your foot

il om = 2963902

« I Why Would | (you) Care?

(Q) All the standard machines run my legacy code, why would | care?

(A) If today’s machines give you the turn around that you need and you’ll never want more
you shouldn’t care

(Q) Look at road runner, it was a waste of time to port codes to that as it was here and gone?

(A) Seven years ago when machines like Titan were bleeding edge, GPU’s were not a sure
thing. However, future systems will have similar or different offload models than Summit.

(Q) Won’t compilers save us?
(A) You mean like they did for auto-parallelism???

(Q) Won't libraries save us

(A) They'll help
o COPA Co-design center for Particle Applications
o https://www.exascaleproject.org/ecp-co-design-center-looks-particle-based-applications-exascale/
o Trilinos for solvers

https://www.exascaleproject.org/ecp-co-design-center-looks-particle-based-applications-exascale/

What Makes Next Gen
Hard?

Characteristics of PIC

ATS-2V100; Blob

e Srangies. Lineas sobve. H .
Plasma simulations, like everything, have a wide range of time scales - | "a_
o Explicit and implicit methods allow you to only step over so much é‘ F— e :
> Unlike many disciplines, PIC requires order of a million steps 5 s g " y Nl
There are only 86400 seconds in a day 7 .
o |If you have to complete millions of steps, you will need many steps/second e .
o Any small, constant slowdown will kill your scaling - :

R SR
Weak. Strong, and algorithmic scaling is typically how we measure scaling for codes e

o “Strolryg s”c):aling - Double the number of “cores” achieve X% speed up (Matt’s def 33% faster you still
scaling

> 46 more compute core for a 10x speedup
o Weak scaling holds the work constant per core and increases c«
o Algorithmic is theoretical and what weak should be measured ag

Almost all weak scaling plots for time accurate codes are lie” ™ 48
o Like the one to the upper right that | make

> Most make the problem bigger in number of mesh elements
> Hold number of steps the same

True weak scaling
> Halve the mesh length, halve the timestep 16x the number of compute units
o As you weak scale, you are also strong scaling at the same time — looks bad typically
o Requires explanation, will be taken out of context, and you’ll be the laughing stock somewhere...

Scaling and Performance

Analysists don’t care about scaling, they want a given quality answer in a given time
> Algorithmic performance most important — skipping that topic

o Weaklf_ scgling is an anti-performance measure. Want a perfectly weak scaling code on the full
machine”

> Insert sleep(100000); in your time loop, done!
o If your multigrid solver weak scales better than NlogN, it has performance problems!

o Obviously that is a bad idea, but single node performance is much more important than weak scaling
> Removing the line that says sleep(100000); in your time loop — that’s single node performance in a nutshell

o Strong scaling is somewhere in the middle
> Bad single node performance simplifies strong scaling
> Perfect strong scaling codes are easy, switch to double double double quad math....

Matt’'s interpretation of Amdahl’'s law
> As you improve your code’s single node performance, it will scale worse —or--
o |If you find a way to do the math much faster, all you’ll be left with is overhead

NGPs FLOPs are free, on device memory transfer is nearly free
o Off device transfer is expensive
o MPI is more expensive
> Allocations are expensive

In the NGP world we will focus on an MPI+X solution
- How do we design performance given X

Differences in Next Generation — Scalar Performance

Performant codes for today’s architectures are optimized for cache us~7s-»
> Memory latency is a critical bottleneck

res lnttw:l
= phph

NGP has all the current latency issues, but deeper memory hierarchie w
o Take a GPGPU

r-1I| - R}ll P."Il

> More hierarchies on the card
o Transfers off the cards — Like the old days with using disk space as RAM
> Launch overhead — 10 microseconds to do 1 or 1million x=x+y;

Multigrid is the fastest ways to precondition Poisson’s equation in terms of complexity -
NlogN
> And on a yesterdays hardware, it most likely is

Smoothers are non-trivial — Gauss Seidel and ILU for example

o High concurrency mean coloring — launch overhead will kill you and you might not saturate the
GPU

Coarse meshes are small, that’s the logN
o Coarse meshes don’t saturate the card
> Well, let’'s do a direct solve earlier — LU decomp is hard on GPGPUs

| T LY N Y L B T B L | LY Y o LY | T Y Y .Y VY aY e Y i

What Has EMPIRE Done to
be Performant?

2 I What is EMPIRE?

EMPIRE
EMPIRE is a “new” code started in 2015 as part of the DoE’s Hybrid
ATDM program element

> It was initially created to determine can we build a next generation Fluid
plasma code, using components in Trilinos to achieve a performant
portable code

o Has the lofty goal of solving plasma problems across a large range of
density ranges on unstructured meshes

Electromagnetics

Trilinos

EMPIRE-PIC is used for low density plasma simulations
o Largest scale calculation to date — 21B elements 1T particles Kokkos

Built to be scalable from the start Time: 0.000 ns

Electrostatic and Electromagnetic Maxwell solvers
DSMC and MCC collisional models

Has an over-decomposition based load-balancing

Simulation in the lower right of the Z-machine power flow
> Made by David Sirajuddin

i3 I What is X in MPI1+X for EMPIRE

[V T T T)
E
-
z

Stated previously we are designing for platforms which we know lots to little aF

> Going to a MPI+X model. MPI for all the cross node parallelism and X for all the on node
parallelism

Here it ig...

1

Current platforms X is Cuda or OpenMP, but many more are co
> We are using Kokkos to abstract X to a single interface

o Kokkos inserts optimizations for the specific backends

> Kokkos is working with the C++ standards committee to get progran
models into the C++ standard

=
e

[

! T 3 v
o £ B FE

Multi-Core Many-Core APU CPU + GPU

One programming model to program to code to simplifies code mainten
- EMPIRE has no backend specific code in it

Lot’s of good Kokkos info here
o https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-L ecture-Series

o https://github.com/kokkos/kokkos/wiki

https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

14+ 1 Where Does the Time Go?

We have synthetic and real benchmarks which we have tested
o Time split between linear solve, particle update and diagnostics
o Particle update roughly 150M particles/second/GPU and strong scales

o Linear solve roughly 2M unknows/second/GPU and doesn’t strong scale
o |nsufficient unknowns to scale well

> Diagnostics a small cost for all the problem currently

ATS-20V100; Blob

ke, Time per Time Step [s]
| |

mmmmmmmmmmmmmmm

R

Number of Nodes

EMPIRE was tested and compared against our legacy code (EMPHASIS-64) on a real

problem
o Medium size problem on Astra — SNL’s Arm cluster with 640 nodes
o EMPIRE ran with more particles

EMPHASIS-64bit | EMPIRE______| Improvement __

Total time 20928 7286 2.9x
stepping

Linear Solve 6434 5018 1.3x
Particle Update 7308 1472 5.0x

Diagnostics 4195 451 9.3x

+F

oF

s 1 How Did We Get Here?

EMPIRE is drastically faster than our legacy code EMPHASIS — why, they have the same
algorithms?

> Focusing on what matters — Single node performance

o All of this is specifically for particles but true for diagnostics and solvers

Data models are critical
o While NGP have faster memory access, one still has to be careful

> AoS and SoA used to be the question people would argue over — EMPIRE uses SoSoAoS

SoSoAoS

o Core structure is filled with DEQue like structures, one each for velocity, position, types,
> Allows an routine to only access what it needs

o The DEQue like structure is a stack of arrays where fixed sizes arrays can be pushed/popped
> Allows for constant time memory growth/reduction
> Access uses shift operators — cheap contiguous access

o The arrays hold a single component (position) for a chunk of particles

Particles are marked for deletion and then removed later
o Contiguous memory access for better performance

Atomic operations are available for parallel lock free addition and deletion of particles

Memory pools are used for all temporaries and recycled — allocations are slow

Good Data Structures Need Good Algorithms

Let’s explore one part of the particle update — Boris acceleration

> Loop through particles gather E/B from the mesh to a temporary on the particle and then apply

F=mA

> Good data structures mean you only need to bring in solver data, position, velocity and type
info

> Sorting the particles will yield good memory reuse 40

> Only load the element data once for all the particles within the element

~

Sorting is expensive = 30

> Thrust offers a good sort with order N cost, often viewed as the gold stand
o Thrust would take element and type arrays and determine where a particle lives in the Est 20
> Then we would move the data in parallel into a temporary and then back

xecutio

> Only moves the data twice versus logN in something like quicksort

> The cost of the sort was more than offset by the particle push gains Wik

o The sort was still expensive
> Develop a custom sort which was much faster than Thrust 0

> This allows us to sort more often and improve performance in other functTcB“f‘}%der -X2 Haswell

Wash, Rinse, Repeat
o Explore every kernel - Develop kernel performance test, optimize, insert

A

%

NStandard Sort
7 Custom Sort

|
KNL V100

7 I Summary

Ranking importance of performance
o Algorithmic — Single node — Strong scaling — Weak scaling

We need to rethink scaling and performance
o Scaling without single node performance has been the mantra for a long time

> Single node performance is key
o Strong scaling is hard for codes that have good single node performance

o Weak scaling is only useful for estimating runtime for big runs, but is mostly pointless
> More of a hardware metric or an idiot check if your code is reasonable

Single node performance is key (I know | said that above)

Understanding data structures is critical for single node performance
o Have | mentioned that it is key?

Libraries can be good for performance and portability
o Libraries, even the best, can really slow down your code or prevent other optimizations

