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Metamaterials and
Gradient-based Methods
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Metamaterials and Gradient-Based Methods

 Acoustic metamaterials are useful in a wide variety of 
applications
◦ Can de difficult to manufacture (e.g., pentamode)
◦ May have a large number of parameters (potentially thousands to 

millions), presenting challenges for global search-based optimization

 Gradient (adjoint) based optimization allows for 
sensitivity computations independent of number of 
design variables
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Sierra/SD Structural 
Dynamics Code
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Overview of Sierra Mechanics

 Massively parallel, coupled multiphysics 
simulations

 Physics modules
◦ Structural dynamics
◦ Solid mechanics
◦ Fluids
◦ Thermal

 Geometry and meshing tools
 Funded by Department of Energy

◦ Advanced Simulation and Computing Program

 Available for federal government use
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Sierra/SD Structural Acoustics Capabilities7



Example Sierra/SD Simulation: Orion Capsule8



Theoretical Framework for 
Optimization
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Design Optimization in Sierra/SD

 Inverse solution types via Sierra/SD linked to Rapid Optimization Library 
(ROL)
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PDE-Constrained Optimization11
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Discrete Equations for Inverse Problem12
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Frequency-Domain Material or Force Optimization

 Equations of motion
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 Mass and stiffness matrices

 Force vector  Gradients with respect to unknown 
material properties or unknown forces 
can be determined analytically



Optimization Process

 Optimality conditions
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 PDE and Objective



Example Problems
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Example 1: Split-Ring Resonator for Vibration 
Isolation

 Single material sample with embedded split-ring resonators
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Example 1: Single-Frequency Results (2.1 kHz)

 Substantial reduction in displacement at right end when masses are optimized
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 Initial guess: uniform 
material
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Example 1: Multi-Frequency Results (1.1-4.1 kHz)18
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Example 1: 3D Printing Optimized Mass 
Resonators

 Multi-material additive manufacturing enables optimized mass 
distributions
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Example 2: Two-phase Design to Minimize 
Scattering

 Time-harmonic plane wave (kHz range) incident on cylindrical scatterer
 Scattered pressure formulation
                                     in fluid,                           in scatterer
 Two-phase surrounding layer: printable material either present or absent
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Example 2: Single-Frequency Optimization

 No annulus: scattering from cylinder alone
 Initial guess: uniform material properties in 
surrounding layer

 Optimized solution: scattered pressure objective 
function reduced by ~4 orders of magnitude versus 
initial guess
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Example 2: Multi-Frequency Optimization

 Operators for multi-frequency optimization problems straightforward to 
modify
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Example 2: Multi-Frequency Optimization Results

 Two frequencies (kHz range) differing by ~10%
 Same annulus design for both frequencies (simultaneous optimization)
 Scattered pressure for initial guess (uniform properties in layer):
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Example 2: Multi-Frequency Optimization Results

 Two frequencies (kHz range) differing by ~10%
 Same annulus design for both frequencies (simultaneous optimization)
 Scattered pressure objective reduced by ~3 orders of magnitude for 
optimized solution (non-uniform properties in layer):
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Example 2: Design for Two Frequencies

 Material distribution in annulus for two-
frequency optimization

 Dark green = printable material

 Light green = no material

 Much of the optimized design contains 
material “in-between”, presenting 
manufacturing difficulties
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Example 3: Optimized Channels to Minimize 
Scattering

 Time-harmonic plane wave incident on 
rigid cylindrical scatterer

 Surrounding annulus is also rigid, but 
has channels carved out

 Material in each channel is unknown, 
but impedance matches that in the 
surrounding medium
◦ Facilitates transmission into each 

channel
◦ Allows for optimization of sound speed 

OR density, with the other being derived 
(fewer unknowns)

◦ Optimized sound speed serves as a 
proxy for optimized path length (e.g., 
coiled space)

 Multiple frequencies and multiple 
directions
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Example 3: One Frequency, One Direction

 Scattered pressure objective function reduced by ~4 orders of magnitude
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Example 3: One Frequency, Three Directions

 Incident plane waves at 0, 45, 90 degrees
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Example 3: One Frequency, Various Directions

 Optimized sound speeds more uniform for three directions than for one 
direction
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Example 3: Three Frequencies, Three Directions30

 Scattered pressure  Channel sound speeds



 All designs obtained with the 
same initial guess

 Noticeable reduction of scattered 
pressure at frequencies 
prescribed in optimization

 Boost in scattered pressure field 
at other frequencies within the 
band

 More frequencies makes 
optimization problem harder to 
solve due to non-convexity
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Example 3: Sound Speed vs Channel Length

 Scattered pressure identical between sound speed and channel length 
optimization
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Conclusions and Future 
Work
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Conclusions and Future Work

 Conclusions
◦ Gradient-based optimization can help determine ideal material 

properties
◦ Large number of tunable parameters does not substantially increase difficulty
◦ Not as necessary to rely on physical intuition for a good design

◦ Printable designs can be achieved with additive manufacturing 
techniques

 Future Work
◦ Shape optimization (parametrized or arbitrary) for scattering reduction
◦ Designs with less acoustic contrast between annulus and surrounding 

medium
◦ Techniques to improve optimization convexity

◦ Force optimization with constraints across frequencies (i.e., different frequencies not 
independent)

◦ Modified error in constitutive equations (MECE)

34



Acknowledgments

 Funding
◦ Laboratory Directed Research & Development (LDRD) at Sandia 

National Laboratories (SNL)

 Coworkers at SNL
◦ Tim Walsh
◦ Chandler Smith
◦ Greg Bunting
◦ Scott Miller

 Collaborators
◦ Wilkins Aquino and Clay Sanders (Duke University)
◦ Mike Haberman and Sam Parker (UT Austin)

35



Questions?36


