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Abstract

This paper compares the accuracy of two methods to
identify a linear representation of a power system: the
traditional Eigensystem Realization Algorithm (ERA)
and the Loewner Interpolation Method (LIM). ERA is
based on time domain data obtained using exponential
chirp probing signals and LIM system identification
method is based on frequency domain data obtained
using sinusoidal probing signals. The ERA and
LIM methods are evaluated with the noise produced
by the nonlinear characteristics of the system, these
characteristics are caused by increasing the amplitude
of the applied probing signal. The test systems used
are: the two-area Kundur system and a reduced
order representation of the Northeastern portion of the
North American Eastern Interconnection. The results
show that the LIM method provides a more accurate
identification than the ERA method.

1. Introduction

System identification methods estimate a linear
model from measurement data of an actual system.
Traditionally, some of the most important indicators
of system identification methods are the accuracy of
the estimated models as well as how immune to noise
the methods are. For this comparison, the frequency
response obtained with the small signal analysis (SSA)
of the complete model of the system is used, the lack
of an adequate complete model due to the various
uncertainties of a system have motivated the comparison
using different identification methods [1]. Classical
methods use the impulse/pulse time domain response
of the system [2], or assume that the transient response
after a perturbation can be represented as unit impulse
response. However, sometimes the measurements
used to identify the model do not contain enough
dynamic information because the applied pulse may not
sufficiently excite the range of modes to be identified.
Thus to improve the identification made with the
Eigensystem Realization Algorithm (ERA) in [3] the
system is modulated with an exponential chirp signal,
this type of signal better excites the modes of interest,

providing better selectivity to the identification.
The ERA method was initially developed in the

aerospace community [4] but it has been successfully
adapted and it is widely used in the power systems
community [5, 6].

The Loewner Interpolation Method (LIM) was
presented in [7] as a frequency-domain method to
compute Frequency Dependent Network Equivalents
(FDNEs) for electromagnetic transient (EMT)
simulations. This method was first proposed by
Antoulas et al. in [8] to generalize the identification
problem, by fitting a descriptor system using sampling
data from the transfer matrix of an actual system. The
method has shown considerable advantages to modeling
time domain macro-models from tabulated impedance,
admittance or scattering parameters of Multiple-Input,
Multiple Output (MIMO) systems [9, 10]. Furthermore,
the LIM was recently used in [11] as an alternative for
power system identification and model order reduction.
However, that effort did not indicate the performance
of the LIM method when noise is present in the
measurements. This noise can be caused when the
amplitude of the probing signal activates a limit in the
nonlinear characteristics of the system. Therefore, in
this article, the identification is carried out by gradually
increasing the amplitude of the probing signal until
the nonlinear characteristics of the system components
are activated, then the system model is identified using
ERA and LIM with similar criteria, and to evaluate
which of these methods is more immune to noise.

On the other hand, in [11] large sets of modulation
frequencies and extremely long simulation times are
required. This paper shows how by grouping
measurements using different modulated inputs, the
accuracy of the identified linear system is considerably
improved. This method allows for reducing the set of
frequencies as well as the simulation times.

This paper is organized as follows. Section 2
summarizes ERA for system identification. Section 3
details the methodology of identification using LIM.
Section 4 shows the results of using these system
identification methods in two test power systems.
Finally, Conclusions and Future Work are presented in
Section 5.
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2. The Eigensystem Realization
Algorithm

The ERA approach was introduced in [4] and is
briefly explained in this section. Section 2.1 presents
the formulation to identify the linear system model
with a single input model. Section 2.2 presents the
the extension of this formulation to identify the linear
system model with a multiple input and multiple output
model (MIMO). Section 2.3 describes the modulation of
the inputs to obtain the impulse response and Section 2.4
presents the algorithm used for identification with ERA.

2.1. Identification of Linear Models of SISO
Systems with ERA

The ERA system identification approach requires
input and output data from the system. The
output data usually is obtained from time-domain
simulations or actual measurements taken from the
system. Assuming a noiseless discrete-time input signal
(u(0), u(1), · · · , u(N)) that yields a zero-state response
it is possible to generate the output signal as [4, 12]:

y(0) = Du(0)

y(1) = CBu(0) + Du(1)

y(2) = CABu(0) + CBu(1) + Du(2)

...

y(N − 1) = CAN−1Bu(0) + · · ·+ CBu(N − 1) + Du(N − 1)

(1)

where matrices A, B, C, and D are known as the
Markov parameters for the realization, and are assumed
as unknown [12]. Such output sequence is generalized
by

y(k) =CAk−1B (2)

Since the Markov parameters also define the linear
time-invariant state-space model in discrete-time

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k),
(3)

then, the state vector in discrete-time is inferred by
multiplying by C−1 the output sequence y(k) in (2) and
assuming D = 0, which results in

x(k) =Ak−1B (4)

Now, if the output sequence is defined by a Hankel
representation, then we respectively have for k and k+1

H(k) =

   
y(k) y(k + 1) · · · y(k +N)

y(k + 1) y(k + 2) · · · y(k +N + 1)
...

...
. . .

...
y(k +N) y(k +N + 1) · · · y(k + 2N)

   (5)

and

H(k + 1) =


y(k + 1) y(k + 2) · · · y(k +N + 1)
y(k + 2) y(k + 3) · · · y(k +N + 2)

...
...

. . .
...

y(k +N + 1) y(k +N + 2) · · · y(k + 2N + 1)

 (6)

which in terms of the generalized output sequence is
given by

H(k) =


CAk−1B CAkB · · · CAk−1+nB

CAkB CAk+1B · · · CAk+nB
...

...
. . .

...
CAk−1+nB CAk+nB · · · CAk−1+2nB

 (7)

The generalized Hankel representation (7) in matrix
form then becomes

H(k) =


C

CA
...

CAn


︸ ︷︷ ︸

ξ

Ak−1[B AB · · ·AnB] (8)

where ξ in (8) stands for the observability and the term
Ak−1B represents the controllability. If only k = 1 and
k = 2 are taken into account in (8), then we have

H(1) = ξB

H(2) = ξAB
(9)

Finally, it is possible to estimate the Markov
parameters from (9) by means of the Singular Value
Decomposition (SVD) applied to H(1) ∈ RN×N and
its truncation up to the rth singular value (with r < N ),
ensuring a full range for the system and is given by.

Σrl=1σl
ΣNl=1σl

≤ Eera (10)

where l = 1, 2, 3, ...N. ∀r ≤ N and Eera is the
energy criterion which is user-defined, r is the order
of the truncated system, and σ refers to the N singular
values of the system. This can be written as H(1) =
PS1/2S1/2QT , which derives that ξ = PS1/2 and
B = S1/2QT in (9), leading to estimate the discrete
system matrices as:

A = S−1/2PTH(2)QS−1/2

B = S1/2QT

C = PS1/2

D = y(0)

(11)



2.2. Identification of Linear Models of MIMO
Systems with ERA

For multiple outputs channels, the matrix Yi ∈
Rp×m is shaped by m column arrays corresponding to
single channels as follows

Yi = [y{1} y{2} · · · y{i} · · · y{m}] (12)

where the ith column is represented by y{i} =
[y1 y2 · · · yp]

T . Similar to (1), the input/output
measurement pairs to an known input allow to express
the output sequence for multiple channels as

Y0 = D̃

Y1 = C̃B̃

Y2 = C̃ÃB̃

...

YN−1 = C̃ÃN−1B̃

(13)

It is worth noting that (13) follows the same
sequence than (2) for the Markov parameters of multiple
channels termed as Ã, B̃, C̃, and D̃. Thereby, the
Hankel matrix can be also stated for multiple output
channels as H̃(k) = ξ̃Ãk−1B̃. Afterwards, the block
Hankel matrix in (5) becomes as

H̃(k) =


Yk Yk+1 · · · Yk+N

Yk+1 Yk+2 · · · Yk+N+1

...
...

. . .
...

Yk+N Yk+N+1 · · · Yk+2N

 (14)

By assuming k = 1 and k = 2 into (14), the Hankel
matrices H̃(1) and H̃(2) can be derived as in (9).

Now, B̃ can be obtained from H̃(1) ∈ Rp(N)×m(N),

and Ã is derived from H̃(2) ∈ Rp(N)×m(N), its
truncation up to the rth singular value (with r < N ),
ensuring a full range for the system and is given by (10).
Therefore, the Markov parameters for multiple output
channels have the following form:

Ã = S̃−1/2P̃T H̃(2)Q̃S̃−1/2

B̃ = S̃1/2Q̃T

C̃ = P̃S̃1/2

D̃ = Y0

(15)

After the Markov parameters in (3) are estimated
in discrete time, the continuous-time state-space model
can be readily obtained by using simple matrix

transformations1. In this work this transformation is
performed using the d2c Matlab function.

2.3. Modulating the Inputs of the System with
Probing Signals

This work uses a frequency sweep function to
excite the inputs of the system. This signal would
be the input signal used by the ERA approach. The
probing signal selected to modulate the inputs and excite
the system dynamics is an exponential chirp function
defined by [13]

ui(t) = αi sin

(
2πfs(r

t
f − 1)

ln(rf )

)
(16)

with

rf =

(
fe
fs

)1/T

(17)

where αi is the amplitude, T is the duration, rf is the
rate of frequency, fs and fe are, respectively, the starting
and ending frequencies.

The output signals required by the ERA approach
were generated using time-domain simulations when
the inputs of the system were modulated by chirp
signals. Afterwards, Fourier spectral analysis is applied
using fft to inputs F (ui(t)) and outputs, F (y′q,i(t)),
resulting in the frequency response Ui(ω) and Y ′q,i(ω),
respectively.

Finally, a time output sequence per signal correlated
with the ith input is obtained taking the inverse Fourier
transform of the impulse response as [13]

yq,i(t) = F−1

(
Y ′q,i(ω)

Ui(ω)

)
(18)

Filters can be used to reduce the signal’s noise.

2.4. Algorithm to Identification with ERA

The responses of the system outputs y′q,i resulting
from the modulation in the input ui with the exponential
chirp function, are needed to perform the ERA system
identification using Algorithm 1. The steps in this
approach are: (i) Modulating the Inputs to obtain
impulse response; (ii) Hankel matrix assembling; and
(iii) Right-order selection and model extraction [13].

1For example the relationship between discrete and continuous
matrices is Adiscrete = eAcontinuousTs , where Ts is the sampling
time.



Algorithm 1 Identification with ERA
(i) Modulating the Inputs to obtain impulse response.
for i = 1 : m do

Ui(w)← F (ui)
for q = 1 : p do

Y ′q,i(w)← F (y′q,i)

yq,i(t)← F−1(Yq,i(w)/Ui(w))
end for

end for
(ii) Hankel matrix assembling.
H̃(1), H̃(2)← yq,i(t)
(iii) Right-order selection and model extraction.
P̃, S̃, Q̃← svd(H̃(1)), Eera
Ã, B̃, C̃, D̃← P̃, S̃, Q̃

3. The Loewner Interpolation Method

The Loewner Frequency Interpolation method uses
frequency-domain data to obtain the realization of the
system. This method for system identification uses
modulation of selected inputs and the measurement of
selected outputs. This data is used to fill the Loewner
matrices, which are used to interpolate the frequency
data and obtain the set of matrices A,B,C,D.

Let H(sk) be the transfer function at the kth

frequency that represents a MIMO system defined as

H(sk) =
Y(sk)

U(sk)
(19)

where Y(sk) and U(sk) refer to the outputs and inputs
of the system, respectively. The Loewner’s process
starts by getting the frequency data H(sk). This
is accomplished by measuring the frequency-response
when several inputs of the system are modulated at the
kth frequency sk. Considering a selected frequency
range in the interval [smin, smax], it is possible to obtain
a linear representation in this range. This representation
that ensures a minimal realization representing the
dynamics of the system is given by [9, 11, 14].

Erẋ(t) = Arx(t) + Bru(t)

y(t) = Crx(t) + Dru(t)
(20)

The interpolation process for system identification
consist in three stages summarized as: (i) data
assembling, (ii) data grouping and interpolations (iv)
right-order selection and model extraction.

3.1. Probing Signals for Input Modulation
and Extraction of Frequency Response

To obtain the frequency response H(sk), the system
should be excited with some low-level time-domain
linear inputs. Sinusoidal test signals are set up as
reference of the form ui = α sin(2πfkt + ϕ0), where i
is the index of the selected inputs to modulate, α is the
amplitude of the modulation signal and in practice tend
to be small, fk is the frequency of interest, and ϕ0 is the
phase of the input signals. The system is modulated one
input at a time for every frequency point proposed in the
selected frequency range.

A transfer function H(sk) is constructed with the
maximum frequency component of each output F (yq,i)
given by ŷq,i + βq,i sin (2πfkt+ θq,i) + ηq,i as well
as by the maximum frequency component of each
input F (ui) given by αi sin (2πfkt+ φi). Then, the
output measurements and the input probing signals are
correlated by

H(sk) =
βq,i
αi

ej(θq,i−φi) (21)

where the tensor H(sk) ∈ Rp×m×Γ and sk = j2πfk.

3.2. Data Grouping and Interpolation

Because the frequency-domain data is available in
the form [sk,H(sk)], the method requires dividing
it into two different sub-groups and enabling the
interpolation among them. Thus, the actual data are
appended with their complex conjugates at the negative
frequencies, resulting 2Γ sample points:

[sk,H(sk)] ∪ [−sk,HH(sk)]→ [sl,H(sl)] (22)

where (.)H denotes the complex conjugate and 1 6 l 6
2Γ. Then, the data is divided as follows

[sl,H(sl)]→ [λi,H(λi)], [µj ,H(µj)] (23)

where [λi,H(λi)] and [µj ,H(µj)] are termed the left
and right data, , ∀i, j = 1, 2, . . . ,Γ. Despite there are
different forms to group the data, the recent literature
focuses on two different approaches [8, 10, 15]: Vector
Format Tangential Interpolation (VFTI) and Matrix
Format Tangential Interpolation (MFTI). Choosing the
MFTI approach, the frequencies are divided into odd
and even, shaping right data as,

λ2i−1 = s2i−1

λ2i = s2i−1

(24)



and, the left data are as

µ2i−1 = s2i

µ2i = s2i

(25)

where i = 1, 2, . . . ,Γ/2. Note that the values
associated with H(sk) are also divided following the
same relationship as the frequency points sk.

The frequency interpolation is obtained by
employing the Loewner matrices to make use of
the result of the data grouping and directionality stages.
In this way, the matrix Loewner L, shifted Loewner
matrix σL, together with matrices F and W, can be
defined following the principles of the Loewner method
in [9] and taking into account the input and output
parametric matrices of the system. Thus, these Loewner
matrices are assembled as

Lj,i =


H(µ1)−H(λ1)

µ1−λ1
· · · H(µ1)−H(λi)

µ1−λi

...
. . .

...
H(µj)−H(λ1)

µj−λ1
· · · H(µj)−H(λi)

µj−λi

 (26)

σLj,i =


µ1H(µ1)−λ1H(λ1)

µ1−λ1
· · · µ1H(µ1)−λiH(λi)

µ1−λi

...
. . .

...
µjH(µj)−λ1H(λ1)

µj−λ1
· · · µjH(µj)−λiH(λi)

µj−λi

 (27)

F =
[
H(µ1)T , · · · ,H(µj)

T , · · · ,H(µN )T
]T

(28)

W =
[
H(λ1), · · · ,H(λi), · · · ,H(λN )

]
(29)

where [L, σL] ∈ Cp(Γ)×m(Γ), F ∈ Cp(Γ)×m, and
W ∈ Cp×m(Γ). Given that matrices (26) - (29) are
complex and they are fitting a real model, they have to be
transformed to the real form by means of the similarity
transformation [9], as follows:

LRe = G∗LG, σLRe = G∗σLG
FRe = G∗F, WRe = WG

(30)

where G ∈ CΓ×Γ is a block diagonal matrix formed by
several sub-matrices Υ, given by

Υ =
1√
2

[
I −jI
I jI

]
(31)

where I ∈ Rti×ti is the identity matrix.

3.3. Right-order Selection and Model
Extraction

Since the realization of the system is not unique,
the method needs to guarantee the minimal realization.
This refers to the smallest possible order m of the
system [10], that ensures a correct identification of the
system along the frequency range of concern. The
rth order is determined by performing a singular value
decomposition (SVD) on the Loewner matrix pencil, as
follows

xLRe − σLRe = ΛΣΨ∗ (32)

where x ∈ {λi}∪{µi}, and λi, µi /∈ eig(σLRe,LRe), Σ
is the diagonal matrix that contains the singular values
of the system, Λ and Ψ are orthonormal matrices, and
()∗ refers to the complex conjugated transpose [8, 9].

The order r for the identified system is given by,

Σrt=1σl

Σp×Γ
t=1 σl

≤ Elim (33)

where t = 1, 2, 3, ...(p× Γ). ∀r ≤ (p× Γ) and Elim is
the energy criterion which is user-defined, r is the order
of the system, and σ refers to the p × Γ singular values
of the system.

Subsequently, the model extraction in time-domain
is carried out by reducing the columns of the matrices
[Λ,Ψ], and considering the order obtained as r, allowing
to get matrices of the rth order [Λr,Ψr], whose columns
are used as projectors to extract the regular part of the
system, as follows

E′r =− Λ∗rLReΨr

A′r =− Λ∗rσLReΨr

B′r =Λ∗rFRe

C′r =WReΨr

D′r =0

(34)

Finally, the parameters of linear model is given by
Ar = E′

−1
A′, Br = E′

−1
B′, Cr = C′r and Dr = 0.

3.4. Algorithm to Identification with LIM

Obtained the responses of outputs system yq,i,k(t)
resulting from the inputs modulation ui,k(t) with
sinusoidal function. Algorithm 2 show the main steps
of LIM according based on [9], they are: (i) Extraction
of frequency response and assembling; (ii) Grouping
and interpolation; (iii) Right-order selection and system
realization.



Algorithm 2 Identification with LIM
(i) Extraction of frequency response and assembling
for k = 1 : Γ do

sk = j2πfk
for i = 1 : m do

(αi, φi)← max (F (ui));
for q = 1 : p do

(βq,i, θq,i)← max (F (yq,i));
Hq,i,k ← βq,i

αi
ej(θq,i−φi);

end for
end for

end for
(ii) Grouping and interpolation
{sl,H(sl)} ← {sk,H(sk)} ∪

{
−sk,HH(sk)

}
{λi,H(λi)} , {µj ,H(µj)} ← {sl,H(sl)}
L, σL,F,W← {λi,H(λi)} , {µj ,H(µj)}
LRe, σLRe,FRe,WRe ← L, σL,F,W,G
(iii) Right-order selection and model extraction
Λr,Σr,Ψ

T
r ← svd(xLRe − σLRe), Elim

E′r,A
′
r,B
′
r,C
′
r ← LRe, σLRe,FRe,WRe, Λr,Ψ

T
r

Ar,Br,Cr,Dr ← E′r,A
′
r,B
′
r,C
′
r

4. Performance Comparison

This section presents a comparison of the
performance of the methods to identify the parameters
of linear model in power systems, ERA presented in
the Section 2 and LIM presented in 3. The results of
two-area KRK system [16] are presented in Section 4.1
while the results for a system representative of the
Northeastern part of the North American Eastern
Interconnection [17] are presented in Section 4.2.

The data of the transient simulations applying
the probing signals are obtained using the routine
s simu of the software Power System Toolbox (PST)
[18]. As indicated in [13], to use the exponential
chirp modulation, the probing signal has the following
parameters fs = 0.1 to fe = 3.0 Hz and T = 56 s.
Likewise, to use LIM method, this work proposes 68 s
of sinusoidal signals with ten frequencies between 0.1
to 3.0 Hz spaced with (35):

fk =

{
0.10 + 0.25(k − 1), 1 ≤ k ≤ 7
2.00 + 0.50(k − 8), 8 ≤ k ≤ 10

(35)

The accuracy of the identified systems is determined
by comparing them with the ideal linearized system
around an operating point obtained with PST (using
the routine svm mgen), this function performs a small
signal analysis (SSA) of complete equations of the
power system, therefore the parameters A, B, C and
D are considered as a real linear model of the system.

It is important to note that a change in the operating
point of the system changes the parameters of the state
space model, therefore, the probing signal applied to
the inputs of the electrical system should have a short
duration like the one proposed in this work.

4.1. KRK: Two-area, Four-machine System

The KRK system has two local modes and one
inter-area mode; the system used in this work has
48 states, 12 for each generator (6 states for the
synchronous machine, 3 states for the DC exciter and
3 states for the turbine-governor). All generators can be
modulated, the system inputs are the voltage reference
in the DC exciter indicated by (Vr) and the scheduled
mechanical power indicated by (Pm). The outputs of
the system are the rotor speeds indicated by (ω). Fig. 1
shows the inputs of KRK, the exponential chirp and the
set of sinusoidal signals.
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Figure 1. KRK system and modulation signal used.

Using the KRK system, it is evaluated how the
precision of the identified system is maintained against
the noise produced by the nonlinear characteristics
of the system caused by gradually increasing the
magnitude of the probing signal αi. To do this, first
an identification is carried out with ERA and LIM is
obtained with αi = 5% using the Vr input and the ωi
output, then it is increased 4 times 9% until reaching
αi = 41% of the reference value. In Fig. 2 shows
the comparison of the different probing signals and the
magnitude of the Bode plot of the identifications made
to these measurements, in Fig. 2(a) and Fig. 2(b)
shows the output ω1 modulating the input V r1 with
exponential chirp and sinusoidal function, respectively.
Furthermore, in Fig. 2(c) and Fig. 2(d) shows the
magnitude of the Bode of the transfer function ω1/V r1

identified with ERA and LIM, respectively.
For both identification methods the same energy

criteria is used: Eera = Elim = 99%. In order
to clearly analyze the accuracy of each method, Table
1 presents the increase in the root-mean-square error
(RMSE) of the magnitude of the identification in the
frequency band 0.1 to 50 rad/s when the amplitude of
the probing signal is gradually increased.



Table 1. RMSE of KRK system identification by increasing the amplitude of the probing signal.

Method α = 0.05 α = 0.14 α = 0.23 α = 0.32 α = 0.41

ERA 6.63× 10−3 6.81× 10−3 14.99× 10−3 15.51× 10−3 18.37× 10−3

LIM 1.16× 10−3 1.71× 10−3 3.19× 10−3 3.76× 10−3 4.03× 10−3
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(a) ω1 increasing α1 of the
exponential chirp.
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(b) ω1 increasing α1 of the
sinusoidal function.
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(c) Bode ofω1(s)/V r1(s) using
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using LIM method.

Figure 2. KRK accuracy of ERA and LIM methods

by increasing the amplitude of the probing signal.

As can be seen, the LIM method is more
precise despite the noise produced by the nonlinear
characteristics of the system, it can also be observed that
at the amplitudes 0.05 and 0.14 both methods are quite
precise, but with the amplitude of 0.23, 0.32 and 0.41
the ERA method worsens faster than LIM.

On the other hand, the frequency range and
effective simulation time presented captures local and
inter-area modes well but is slightly less accurate than
that performed with a wide set of frequencies and
extremely long simulation times. To improve this
identification, this work presents the improvement in the
identification performance using the multiple grouping
of measurements. In Table 2 shows the size of the
matrices for identification using ERA and LIM in the
KRK system in simple identifications with Vr or Pm and
using grouping of Vr and Pm measurements (multiple).

Table 2. ERA and LIM matrices in KRK system.

Mod. Lr, σLr Fr Wr Order H̃(1), H̃(2) Order
Vr 40× 40 40× 4 4× 40 9 480× 480 12

Pm 480× 480 40× 4 4× 40 13 13× 13 12

Vr+Pm 40× 80 40× 8 4× 80 14 4× 22 22

Fig. 3 shows the eigenvalues of the identified system
for the KRK model. Figs. 3(a) and 3(b) Pm show the
results of using individual measurements, Vr an Pm,
respectively. Fig. 3(c) shows the eigenvalues when the
the two sets of measurements, Vr and Pm are used in the
system identification approach. For this latter case the
inter-area and local modes identified are closer to the
actual values that for any of the cases in Figs. 3(a) and
3(b).

(a) Simple Vr (b) Simple Pm (c) Multiple Vr, Pm

Figure 3. KRK eigenvalues grouping measurements.

In Fig. 4 shows the Bode diagram of identified linear
systems, using single and multiple data, in Fig. 4(a)
shows ω1/V r1 and in Fig. 4(b) shows ω1/Pm1.

To observe the increase in precision in Table 3
presents the RMSE of the identifications made with
multiple measurements, ω1/V r1 with LIM it presents
an error of 1.84 × 10−3, 49 % less than ERA method.
Likewise, for ω1/Pm1 presents an error 1.17× 10−3 is
41% less than ERA method.

4.2. NPCC: 48 Generators and 140 Bus
System

The NPCC power system [17, 19] represents one
of the eight regional reliability organizations that are
part of NERC. The model used of NPCC system has
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Figure 4. KRK precision of ERA and LIM methods

by grouping measurements.

Table 3. Identification accuracy in KRK system.

Transfer function Method Simple Multiple

ω1(s)/V r1(s)
ERA 4.22× 10−3 4.07× 10−3

LIM 6.30× 10−3 1.84× 10−3

ω1(s)/Pm1(s)
ERA 11.18× 10−3 10.08× 10−3

LIM 6.62× 10−3 1.17× 10−3

48 generators and for the identification it is considered
that only 24 generators are enabled to be modulated, and
those can be observed by the green dots in Fig. 5.
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Figure 5. NPCC power system identified.

The NPCC system used in this work has 294
states. 27 of the total number of generators are
represented by four states (transient model) and the
remaining 21 generators are represented by two states
(electromechanical model). For the 24 enabled
generators, there are additional three states for the DC
exciter and three states for the turbine-governor.

Using the NPCC system, it is evaluated how
the accuracy of the identified linear system is
maintained against the noise produced by the nonlinear
characteristics caused by gradually increasing of the

magnitude of the probing signal αi. As in the previous
case, first an identification is carried out with ERA and
LIM is obtained with α1 = 5% using the Vr as the input
and the ω1 as the output, then it is increased 4 times 9%
until reaching αi = 41% of the reference value.

Fig. 6 shows the comparison of magnitude of the
Bode plot of the identifications models with different
values of α1, in Fig. 6(a) and Fig. 6(b) shows the
magnitude of the Bode of the transfer function ω1/V r1

identified with ERA and LIM, respectively.
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Figure 6. NPCC accuracy of ERA and LIM methods

by increasing the amplitude of the probing signal.

For both identification methods the same energy
criteria are used, Eera = Elim = 90%, to clearly
analyze the precision of each method, Table 4 presents
the increase in error (Root-mean square error - RMSE)
of the magnitude of the identification in the frequency
band 0.1 to 50 rad/s when the amplitude of the probing
signal is gradually increased.

As can be seen, the LIM method is more
accurate despite the noise produced by the nonlinear
characteristics of the system with all amplitudes of α1,
but the ERA method only maintains precision with
amplitudes of 0.05 and 0.14, losing precision with
amplitudes 0.23, 0.32 and 0.41.

As in the previous case, the improvement of the
precision of the linear identification of the model is
presented by grouping multiple measurements. In Table
5 shows the size of the matrices for identification
using ERA and LIM in the NPCC system in simple
identifications of 24 inputs (Vr or Pm) and multiple
identification grouping measurements obtaining 48
inputs (Vr and Pm), for all identification methods the
same energy criteria are used, Eera = Elim = 92% and
αi = 0.01.

Fig. 7 shows the eigenvalues of the identified system
with different methods. Figs. 7(a) and 7(b) show
the results for the case of individual measurements,



Table 4. RMSE of NPCC system identification by increasing the amplitude of the probing signal.

Method α = 0.05 α = 0.14 α = 0.23 α = 0.32 α = 0.41

ERA 0.63× 10−3 0.72× 10−3 4.02× 10−3 18.25× 10−3 23.32× 10−3

LIM 0.58× 10−3 0.67× 10−3 1.81× 10−3 2.39× 10−3 2.87× 10−3

Table 5. ERA and LIM matrices in NPCC system.

Mod. Lr, σLr Fr Wr Order H̃(1), H̃(2) Order

Vr 480× 240 480× 24 48× 240 49 9600× 4800 56

Pm 480× 240 480× 24 48× 240 40 9600× 4800 47

Vr+Pm 480× 480 480× 48 48× 480 76 9600× 9600 61

Vr and Pm, respectively. Fig. 7(c) shows the same
result but for the case of multiple measurements Vr and
Pm (together). Note that for all cases the accuracy of
the local and inter-area mode identified is high in the
selected frequency band. However, when combining
the measurements there is a higher density of modes
identified close to in the actual modes (SSA).

(a) Simple Vr (b) Simple Pm (c) Multiple Vr, Pm

Figure 7. NPCC eigenvalues grouping

measurements.

In Fig. 8 shows the Bode diagram of identified linear
systems, using single and multiple data, in Fig. 8(a)
shows ω1/V r1 and in Fig. 8(b) shows ω1/Pm1.

Table 6 presents the RMSE for the identified
systems, ω1/V r1. Using LIM the error obtained is
0.57×10−3, which 53% less than the one obtained with
ERA. Similarly, ω1/Pm1 presents an error 0.54× 10−3

which is 58% less than the value obtained with ERA.

Table 6. Identification accuracy in NPCC system.

Transfer function Method Simple Multiple

ω1(s)/V r1(s)
ERA 1.20× 10−3 1.20× 10−3

LIM 0.95× 10−3 0.57× 10−3

ω1(s)/Pm1(s)
ERA 1.08× 10−3 1.13× 10−3

LIM 1.19× 10−3 0.54× 10−3
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Figure 8. NPCC precision of ERA and LIM

methods by grouping measurements.

5. Conclusions and Future Work

This paper compares the ERA and LIM methods
for estimating linear representation of power systems
in different scenarios. The results of the paper show
that the LIM method has a greater precision than the
ERA method for identifying the linear model of a power
network. This result is held even in the presence of noise
produced by the nonlinear characteristics of the system.
This is mainly due to the fact that the ERA method uses a
frequency sweep signal and has a harder time obtaining
frequency components in the presence of noise. This is
in contrast of the LIM method which uses a more robust
time-invariant signal to extract the frequency response
of the system.

This paper applies the ERA and LIM methods to the
KRK and NPCC test systems for system identification
under different conditions. The results presented
here verify that the LIM method has the advantage
of considerably improving its accuracy by grouping
the measurements (combining modulations of different
inputs). This allows reducing the number of frequencies
used in the identification as well as the time of the
transitory simulations.

Future work includes the use of LIM method with
signals that excite a greater number of modes, such
as cosine or linear chirp, and therefore reduce the
modulation time of the input system which can help
in the the implementation of this method in real time.
Likewise, it is possible to change the method of the



Fast Fourier Transform (FFT) for other more advanced
methods such as the Taylor-Fourier Transform (TFT)
or B-Splines to increase the accuracy in calculating the
frequency components.
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