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* | Magnetized liner inertial fusion relies on three stages to
reach fusion relevant conditions.
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thermal conduction required . .
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Don’t miss Paul Schmit’s MIF review talk on Friday at 8am! YR01.00001
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:» |parameter, but must be measured via nuclear

measurement.
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Our analysis is based on a Bayesian inference which makes
use of NN surrogate for speedup of physics model.

Stage requiring minimal human
input with low impact on results
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Machine learning and Bayesian inference with no human input

Automated Data Featurization Procedure
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* |Experiments show trend consistent with Nernst effect.

Nernst effect:

B-field locked into plasma by warm electrons, so electronic
thermal transport perpendicular to magnetic field will transport

flux.

VUNernst =

BAV . T,
eB

Greater preheat will establish
stronger radial temperature
gradient and applied magnetic
field is axial, so as preheat is
increased, Nernst effect is
expected to become more
significant.
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Increasing preheat
reduces BR. The effect
is more pronounced
when including Nernst
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Note: Preheat error bars (x-axis) are provided by experiment, while BR error bars (y-axis) are inferred from Bayesian analysis
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" | Closing remarks

DL enabled Bayesian inference of BR for MagLIF shots
*Want to develop a database of BR for MagLIF shots to mine for trends

° Already see interesting physics consistent with Nernst effect
*Plans to investigate

>3D nature of plasma -== LASNEX w/ Nernst 60 psi

— ---- LASNEX No Nernst 60 psi
o Instabilities i:'-. + Experiment 60 psi
> Mix ERY
. . . . . 1

> Fill density (already early indications?) 5,
°Impact of uncertainty Lo

. 0.6
> Scaling aspects of Nernst effect : [N
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.« | Experimental data exhibit significant noise which should
be captured in uncertainty of features extracted.

Step 1: collect data Step 2: crop and select
from experiment background ROI
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« | Our Bayesian model incorporates models for most sources
of uncertainty.

> Uncertainty in forward model due to use of surrogate

Ynn(8) =¥(0) + N(0,Zp05s)
> Uncertainty in observed values (DD vyield, DT yield, quantile features)

ijeats = jr'(ﬂ) + N(O, Cov[)_;featsr j;feats])

>Not included:
- Possible systematic uncertainty from model (would need to assess performance of different
models)
- Doesn’t contain uncertainty in NN parameters (in principle possible, but not likely to be
dominant source)



