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ABSTRACT

Deep neural networks (DNNs) were trained to predict nodal cross sections, chi values, and 
assembly discontinuity factors (ADFs) for pressurized water reactor (PWR) 2D pin cell models 
and 2D lattice models to assess the feasibility of using DNNs as nodal parameter generators. 
Separate DNNs were trained for each individual nodal parameter to improve prediction 
accuracy and to transfer learning employed to reduce dataset volume requirements. DNNs 
were found to train and predict well for pin cell and lattice models when provided with 
sufficient data, and the required number of data points required to develop accurate lattice 
DNNs could be significantly reduced through transfer learning using a previously trained pin 
cell DNN.
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1. INTRODUCTION

The Virtual Environment for Reactor Applications (VERA) [1]—which was developed for high-fidelity 
modeling of light-water reactors (LWRs) through the Consortium for Advanced Simulations of Light 
Water Reactors (CASL) [2]—has recently been extended to perform simulations of molten salt reactors 
and other advanced reactors [3–6]. Although VERA can provide high-resolution computations at a 
substantially lower computational cost compared with traditional ultrafine resolution methodologies (e.g., 
Monte Carlo and computational fluid dynamics), it is still too computationally expensive for analyses that 
demand high simulation throughput, such as design optimization or uncertainty quantification.

Historically, this issue has been addressed for LWRs by using reduced order models (ROMs) like the 
traditional two-step procedure [7–9]. However, such high-performant and computationally expedient 
ROMs are not as well-established for the myriad of advanced reactor concepts under active development, 
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and establishing such ROMs can require considerable effort and resources. Given the recent advances in 
artificial neural networks (ANNs) [10–12] and the ability to use tools like VERA to generate high-fidelity 
synthetic training data, the accelerated development of useful high-fidelity high-throughput ROMs could 
be possible.

One such ROM approach currently being considered is illustrated in Fig. 1 (machine learning components 
are labeled with ML). This framework generally follows the more traditional LWR two-step, procedure-
based nodal method, but it modifies the nodal parameter functionalization and pin power reconstruction 
steps to use ANNs.

This paper focuses on the nodal parameter generator (highlighted in yellow in Fig. 1), which is initially 
being developed for pressurized water reactor (PWR) simulations as a proof of principle. The goal of this 
generator is to train deep neural networks (DNNs) to predict nodal parameters for each node in a full-core 
model by using full-core features such as pin-wise thermal hydraulic (TH) conditions, assembly 
enrichments, boron concentrations, and control rod positions as input. This high degree of 
functionalization distinguishes the proposed approach from the more traditional method, in which nodal 
parameters are functionalized with respect to node-average conditions and fitting of data generated on a 
2D lattice-wise basis. As such, ROM accuracy is generally expected to be an improvement over the 
traditional method, and it should require less development effort to address the neighbor effects and 
reflector modeling challenges typically encountered with 2D lattice-based approaches.

Figure 1. Proposed ROM approach

One significant concern of this approach is generating sufficient training data since DNNs are typically 
regarded as data hungry. As shown in Table 1, the number of input features (e.g., pin-wise TH conditions, 
assembly enrichments) and output features (e.g., nodal parameters for each assembly node and axial 
position) quickly expand as the domain is increased, which ultimately translates into a need for more 
training data points and a sharp increase in data generation compute costs.

To address this issue, the transfer learning of smaller domain models such as single 2D pin cells up to 
larger domain models like 2D lattices is considered. The ultimate goal of such a transfer-learning 
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approach is (1) to train primarily on smaller domain models that can easily and quickly generate large 
quantities of low-volume data, such as 2D pin cell models, and (2) to gradually scale the model up to 2D 
lattices, 3D assemblies, and ultimately to 3D full-core models, all while decreasing the number of datasets 
generated for each larger domain model.

This paper presents the current progress in developing these DNNs for 2D pin cell and 2D lattice 
predictions, as well as the efforts being made to address data requirements through transfer learning.

Table I. Comparison of input/output features and simulation computational costs for different 
LWR training domains.

Model Number of 
input features

Number of 
output features

Data generation
compute cost for statepoint

(core hours)
2D pin cell 5 112 5.5e-4
2D lattice 895 112 0.01

3D assembly (TH-coupled) 43,711 6,496 3.2
3D core (TH-coupled) 8,436,031 1,253,728 368

2. GENERATION OF HIGH-FIDELITY NEUTRONICS SYENTHETIC DATA WITH MPACT 
SOLVER

To develop the data-driven DNNs to predict PWR neutronics parameters, a conventional 17 × 17 PWR 
lattice configuration that corresponds to the CASL progression problem 2A was considered [13].The 
VERA neutronics solver MPACT [14] was used to perform high-fidelity 2D single-pin and lattice 
simulations and calculate the relevant nodal parameters: assembly discontinuity factor (ADF), group 
neutron energy fraction (CHI), scattering cross sections (XSS), transport cross section (XSTR), removal 
cross section (XSRM), fission cross section (XSF), nu*fission cross section (NXSF), and kappa*fission 
cross section (KXSF).

Data were generated for 2D pin cell and 2D lattice models, and input features were randomly sampled on 
the bounds summarized in Table II. Because TH-coupled cases could not readily be run for these 2D 
models, fuel temperature, clad temperature, and moderator density were randomly sampled independently 
of one another. Although this does not reflect reality, it may at least allow the DNNs to learn the interplay 
of the independent effects. TH conditions for the 2D lattices were generated by using random curved 
second-order polynomial surfaces with varying numbers of peaks and troughs (1–6) to provide more 
informationally rich samples as opposed to using simple pin-wise random sampling, which neutronically 
produces similar results for each lattice simulation: that is, pin-wise random sampling is less informative 
and is not conducive to allowing DNNs to learn relationships. An example is shown in Fig 3.

For transfer learning, the input features of the 2D pin cell models were unfolded into a 2D lattice input 
feature equivalent. Pin cell features were copied into each 2D lattice fuel cell, assembly enrichment was 
set to the pin enrichment, control rods were assumed to be withdrawn, and guide-tube inner coolant 
densities were set to 0.7 g/cc. Target output features to be predicted were the same for the 2D pin cell and 
2D lattice models, so no special unfolding was required for transfer learning, although this will not be the 
case for larger domain models.
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Figure 2. Example 17 × 17 Temperature Distribution

Table II. Range of input for MPACT.

Variable name Range
Fuels enrichment values 1.8 and 4.9 wt% 235U

Boron 0–2,000 ppm
Control rod position in or out

Fuel temperature 286–1,386.25°C
Cladding temperature 286–357°C

Moderator density 0.66–0.743 
𝑔
𝑐𝑐

3. DNN AND TRANSFER-LEARNING FRAMEWORK DESIGN

Synthetic data generated via MPACT simulations were divided into training and testing datasets in the 
ratio of 0.7:0.3. All analyses and results presented in this work were performed using Python with the 
Keras deep learning package and TensorFlow backend. Several deep and shallow network architectures 
were tested and optimized, with the final architecture comprising 12 layers (hidden + output) apart from 
the input layer. The 12 layers followed a deep-down architecture, with the first layer comprising 211 
neurons, and every layer having half the number of neurons as the previous layer. A separate neural 
network was used for each individual cross section and ADF at different energy groups (i.e., multiple 
single-output networks to cover all parameters). This was used instead of a single mapping between all 
inputs and outputs after spending considerable time attempting single mapping (i.e., multiple-input and 
multiple-output or multitask learning [MTL]). The separate neural networks performed much better than 
single mapping. It is postulated that the different outputs share or are correlated with very different input 
features, and hence the knowledge transfer is ineffective when using MTL as a result of low model 
capacity. Since there is no consensus on the advantages of MTL over the multiple single-output networks 
in general, and the superiority of one method over another is highly problem-specific, selection of the 
approach must be determined via trial and error. If performance were identical in this instance, then MTL 
would be preferred given the large number of outputs predicted and the effort needed to train the 
independent models. Hence, efforts are still being made to arrive at an MTL mapping that performs at the 
desired level of accuracy.
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The rectified linear unit (ReLU) transfer function was used for the hidden layers, and the output layer 
used a linear activation function. Dropout regularization and early stopping was used to improve 
generalization, along with the Adam optimization for error function minimization. Roughly 8,000 data 
points were generated for 2D lattice simulations, and 4,000 data points were generated for 2D pin cell 
simulations. The range-to-margin ratio was high for the dataset, and the accuracy requirement was on the 
order of 10-5. For this reason, instead of using a conventional mean-squared error as the error function, a 
multiplier was used along with the squared error to penalize heavily on the predicted errors for all outputs. 
The multiplier was tested and optimized on the range of 1 to 1,000 to reduce testing error.

For transfer learning, different strategies were investigated, including complete fine-tuning, partial layers 
freezing, and complete freezing of hidden layer weights (except output layers). For the sake of brevity, 
only the results of complete fine-tuning are presented in this work. In this approach, a set of initializer or 
seed weights were generated based on the 2D pin cell dataset. This was accomplished by (1) converting 
the 2D pin cell input features into a lattice pseudo-equivalent (i.e., copying 2D pin cell input features into 
each fuel cell of a 2D lattice while assuming some base conditions for non-fuel cell related features), (2) 
training a DNN to predict the pin cell nodal output using the pseudo-equivalent lattice input features, and 
(3) extracting the resulting weights of the trained DNN. These seed weights are then used as the initial 
weights for 2D lattice training, which are then fine-tuned to reduce the error function on the 2D lattice 
dataset.

It should be noted that though the aforementioned freezing strategies may be useful, they typically are 
most effective when the functionality of each individual layer of the DNN is well understood. In the case 
of convolutional neural networks (CNNs) for image recognition, each layer typically provides specific 
functionality—edge detection, corner detection, etc.—which can be understood through comprehensive 
examination of the developed CNN [15]. As such, one might readily identify which layers should be 
frozen and which should be fine-tuned based on the target application. However, in the present case, the 
DNN is solving a regression model, mapping the relationship between multiple inputs to the relevant 
output, and making it difficult to identify which layers should be frozen. Extensive time was spent testing 
different layer freezing strategies, but the results were at best comparable to a complete fine-tuning.

4. RESULTS AND DISCUSSION

Predicted parameter error was assessed using three measures: direct relative error of the predicted values 
against the reference value, as well as k-eff and nodal power errors determined by comparing reference 
nodal simulations against those using predicted values. When assessing nodal simulation errors, predicted 
values were tested individually with all other nodal parameters set to their reference values excepting the 
singular predicted value to be tested, as well as aggregately (AGGR), in which all predicted nodal values 
are used together.

Error results for non–transfer-learning pin cell predictions and lattice predictions are provided in Fig. 3 
and Fig. 4 respectively. It should be noted that though the pin cell model consists of a single pin, it was 
still split into 4 nodes, so nodal power errors are still assessable. As can be seen for both pin cell and 
lattice cases, the errors are generally small, with k-eff errors less than 100 pcm and nodal power errors 
less than 0.25%.
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Figure 3. Nodal Parameter Prediction Errors of DNN vs. MPACT Reference for 2D Pin Cell

Figure 4. Nodal Parameter Prediction Errors of DNN vs. MPACT Reference for 2D Lattice
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A similar comparison was made in Fig. 5 and Fig. 6 to show the efficacy of improving 2D lattice DNN 
performance via transfer learning from 2D pin cell DNNs for which only ~400 2D lattice data points were 
used to train the lattice models, but one set of DNNs employed transfer learning from the 2D pin cell 
DNNs, and the other did not. As seen in Figure 5, without transfer learning, DNN predictions were quite 
poor given the small dataset size available for training. Nodal power errors were in some cases greater 
than 6%, with k-eff errors exceeding 4,000 pcm. With transfer learning, these errors were greatly reduced, 
with nodal errors being less than 1% and k-eff errors less than 1,000 pcm. This demonstrates that transfer 
learning may be used to substantially improve DNN accuracy, and it could potentially serve as a means 
for greatly reducing the volume of training data required.

Training costs for these models on a DGX box with 1X Tesla V100 GPUs were 18.4 GPU hours for the 
16,000 data point 2D lattice DNN, and 12.1 combined GPU hours for the transfer learning-based 2D 
lattice DNN (combined meaning the training of both the pin cell DNN used for transfer learning and the 
2D lattice DNN). These training costs do not include the multiple iterations of architecture and 
hyperparameter tuning involved in developing the presented models.

Figure 5. 2D Lattice Nodal Parameter Prediction Errors of DNN vs. MPACT Reference 
without Transfer Learning
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Figure 6. 2D Lattice Nodal Parameter Prediction Errors of DNN vs. MPACT Reference 
with Transfer Learning

5. CONCLUSIONS

This work demonstrates the ability of DNNs to predict nodal parameters for both PWR 2D pin cell and 
2D lattice. These DNNs were trained by using synthetic high-fidelity simulations generated by MPACT 
over a range of different TH conditions, boron concentrations, control rod positions, and assembly 
enrichments, and they were able to predict the nodal parameters to a reasonable level of accuracy. 
Furthermore, a transfer-learning framework was developed and validated that could effectively use the 
trained network on a lower domain model (i.e., 2D pin cell) and fine-tune the network to predict the nodal 
parameters for a higher domain model (i.e., 2D lattice). This framework was used to demonstrate the 
viability of transfer learning as a means for reducing the size of higher domain training sets and 
computational training costs.

Future work aims to extend the DNN-based nodal parameter predictions up to 3D assembly domains and 
ultimately 3D cores with TH-coupled training data. Transfer learning will also be further investigated for 
these larger domains to help mitigate large data requirements. Future work will also explore different 
architectures that can effectively be used for MTL by suitably modifying the error function and 
employing advanced tools for accelerated convergence [16] to reduce the number of separate DNNs 
needed, along with embedding physical information [11] into the training process, which could make 
DNNs even more reliable.

Efforts will also be made to perform comparisons against more traditional nodal data functionalization 
methods (e.g., tabular interpolation, polynomial fitting) to assess performance as compared to various 
figures of merit. The computational expenses of generating sufficient training sets for and training of the 
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DNNs presented in this paper are much greater than the equivalent costs associated with typical 
functionalization techniques. However, these typical functionalization techniques are often challenged 
when faced with more than a few input features or when extrapolating beyond the available data [17, 18]. 
DNNs more easily afford a much greater number of degrees of freedom (i.e., pin-wise vs. nodal average 
features), and though their extrapolatable characteristics are still uncertain [19, 20], recent improvements 
in physics-informed deep networks [11, 21, 22, 23] provide evidence of methods for training DNNs to 
extrapolate beyond the domains of its labelled training set.
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