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Abstract—Heating, Ventilation, and Air Conditioning (HVAC)
systems contribute significantly to a building’s energy consump-
tion. In the recent years, there is an increased interest in
developing transactive approaches which could enable auto-
mated and flexible scheduling of HVAC systems based on the
customer demand and the electricity prices decided by the sup-
pliers. Flexible and automated scheduling of the HVAC systems
make it a prime source for participation in residential demand
response or transactive energy systems. Therefore, it is of sig-
nificant interest to identify an optimal strategy to control the
HVAC systems. In this article, reducing the energy cost while
keeping the comfort level acceptable to the users, we argue that
such a control strategy should consider both the energy cost and
user comfort simultaneously. Accordingly, we develop the con-
trol strategy through the solution of an optimization problem that
balances between the energy cost and consumer’s dissatisfaction.
This optimization enables us to solve a decision-making problem
through first price prediction and then choosing HVAC temper-
ature settings throughout the day based on the predicted price,
history of the price and HVAC settings, and outside temperature.
More specifically, we formulate the control design as a Markov
decision process (MDP) using deep neural networks and use
Deep Deterministic Policy Gradients (DDPG)-based deep rein-
forcement learning algorithm to find the optimal control strategy
for HVAC systems that balances between electricity cost and user
comfort.

Index Terms—Transactive energy, reinforcement learning,
HVAC.

I. INTRODUCTION

INCREASE in population, rapid urbanization, and the usage
of various household appliances leads to increasing energy

consumption. It is crucial that the energy providers are reli-
able and flexible based on these increases in the demands.
Demand response (DR) of the energy providers motivates
the consumers to adapt their energy consumption in response
to the market pricing signals [1]. In the recent years, with
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the widespread application of advanced information and com-
munication technologies, buildings and household appliances
have become more intelligent, having the potential to oper-
ate more efficiently to adjust their usage based on the DR and
also to achieve higher energy savings. Transactive energy (TE)
extends DR to operate on faster time scales with multilateral
market participation by responsive loads [2]. In this article,
we focus on TE systems with HVAC as a responsive load.

Electricity use by residential air conditioners accounts for
14.7% of the total power consumption in the U.S., which
was the largest use of electricity by the U.S. residential sec-
tor in 2018 [3]. With the advancements in technology, HVAC
systems can be designed to participate in TE systems with
energy providers by modifying the temperature levels at each
individual residence based on the consumer needs, available
energy levels and energy prices. HVAC load can be shifted
by pre-heating or pre-cooling the houses providing flexibility
to these systems for intelligent operation based on TE [4].
However, consumers are generally willing to pay more for
comfort. For example, it was shown that residential consumers
will pay two times the actual price for electricity during a
power outage [5]. This may be partially due to the fact that
the consumers may not be aware of the price changes and/or
they may not be willing to compromise on their comfort.
However, another factor that contributes to this is that the cur-
rent HVAC (or other household appliance) technology does not
adjust energy consumption patterns that can balance between
consumer comfort and energy savings. We argue that future
HVAC technology should enhance an intelligent automated
operation for active participation of the consumers to achieve
this balance between price and comfort [6].

Real-time thermal control is required for the HVAC
systems to participate in TE in an automated manner.
Traditionally, model-based approaches are used for thermal
control problems [7]–[9], often requiring simplified mathe-
matical modeling of the dynamics of the HVAC systems.
However, model-based approaches require time and domain
expertise [10] to obtain a robust and generalized approach for
HVAC thermal control strategy design due to various random-
ness originating from individual residences (e.g., size, thermal
integrity, window wall ratio and different behaviors of the end
users) which introduces additional complexity and uncertainty
to the control problem.

In order to address this randomness, artificial intelligence
(AI) was applied in many optimal decision-making problems
in TE by imitating human behavior and automating the con-
trol of the appliances such as HVAC systems. To solve such
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problems, especially reinforcement learning (RL) was utilized.
RL is a machine learning approach with a strong ability
to learn and adapt through the interaction with the environ-
ment of real world applications. It was shown that with the
help of RL, a well designed TE scheme can achieve bet-
ter performance on the optimal control and decision making
of residential appliances. For example, most studies demon-
strated the use of a popular RL method, Q-learning [11],
in DR and TE [12]–[14]. Another RL based method was
proposed in [15] for the modeling and learning of TE for
plug-in electric vehicle (PEV) charging to reduce the long-
term cost. Yang et al. used RL to solve the optimal control
of a building energy system [16]. In [17], with the predicted
future price, the authors proposed a multi-agent RL algo-
rithm to make optimal decisions for the control of various
home appliances. In [18] and [19], batch RL algorithms were
proposed to schedule thermostatically controlled loads and
water heaters participating in a day-ahead market. However,
few of the studies modeled the appliances with a high level of
detail. Most of the above mentioned approaches did not have
a practical way to deal with the continuous space of the con-
trolled state (temperature) of the HVAC systems. Moreover
due to limitations in the simulations, these studies failed to
provide a high degree of granularity in the precise control
of the HVAC.

In this article, we develop an RL-based approach for precise
control of HVAC systems that are participating in the energy
market as transactive elements in the Transactive Energy
Simulation Platform (TESP) [20]. TESP was developed by
Pacific Northwest National Laboratory (PNNL) as an open-
source simulation platform with transactive market and control
mechanisms for the grid [21]. TESP includes distribution
simulator, transmission simulator and building simulator with
multiple transactive agents, and the integrating Framework for
Network Co-Simulation (FNCS) [22] that manages the mes-
sage exchange among different simulators. In order to have
an intelligent and granular control of the HVACs, we utilize
RL and formulate the control problem as an optimization of
cost function that balances between the electricity cost and
end-users’ dissatisfaction. More specifically, combined with a
price prediction method using historical data, we adopt Deep
Deterministic Policy Gradients (DDPG) RL algorithm. The
methods are implemented as a RL agent in TESP simulations.
DDPG is a deep reinforcement learning approach developed
for continuous action space; therefore it is naturally suitable
for the control of HVAC systems achieving a finer and more
precise control. We specifically use DDPG RL to control the
base temperature schedule of the HVAC in TESP to make
the TESP thermostat controller respond to the cleared market
prices more intelligently at each time step to maximize the
long term reward that balances between electricity cost and
end-user’s dissatisfaction. In summary, the main contributions
of this article are as follows:

1) A market price prediction model is developed through an
artificial neural network (ANN). The method produces
accurate results compared to the existing methods [23].
This method provides price information to the below RL
algorithm that is developed for HVAC control.

2) A DDPG RL based model-free control algorithm is
developed for the optimal deterministic decision mak-
ing to adapt the schedule setting of HVACs participating
in the market as transactive elements through balancing
between energy cost and consumers’ dissatisfaction.

3) The RL-based control approach is implemented in and
tested through TESP. Through multiple experiments,
the effect of control algorithm parameter selection is
demonstrated, and the proposed method is compared
with the transactive HVAC controller that is currently
implemented in TESP.

Moreover, there exists model-based algorithms such as model
predictive control for the control of large-scale HVAC systems
with separate airside/waterside system [24] or the detailed con-
trol considering different components of HVAC systems, e.g.,
compressor switching, electrical compressor power/rotational
speed [25], or energy flexibility of a single building assum-
ing one-way price signal [26]. Different from these existing
approaches, the proposed method in this article focuses on the
interaction of the responsive load (HVACs) with the electricity
market and it is suitable for data-driven models. Our method
controls how individual HVACs participate in and interact with
the market.

The rest of this article is organized as follows. In Section II,
we first present the HVAC control problem formulation. Then,
we introduce a price prediction method, and a DDPG RL
method for HVAC control in the same section. The simula-
tions and performance evaluation of the proposed methods
is presented in Section III, followed by the conclusion in
Section IV.

II. METHOD

In this section, we describe the formulation of the optimum
HVAC control balancing between energy cost minimization
and customer’s dissatisfaction based on RL. This RL based
method relies on the predicted energy price; therefore, a price
prediction method based on ANNs is also presented in this
section.

A. HVAC Response and Problem Formulation

In a transactive energy system, residential users are able
to participate in TE through a transactive HVAC system.
Transactive HVAC systems are flexible, and they can adjust
the power consumption by changing the temperature settings
in residences. Here, we formulate the HVAC temperature
control objective to minimize the electricity cost and the
dissatisfaction of the customers caused by the temperature
differences between the desired and adjusted temperature set-
tings. Accordingly, different than the legacy ramp transactive
control mechanism used in TESP [27], we formulate the
HVAC control through a Markov Decision Process (MDP) to
optimize the energy cost and customer’s dissatisfaction simul-
taneously. MDP accommodates the complex system dynamics
for optimal control policies which are derived by performance
evaluation instead of function optimization. It is a general
mathematical framework for sequential decision-making with
uncertainties. It has been significantly explored in the control



Fig. 1. HVAC control flow and settings; discomfort region shaded in pink.

of HVACs in [28]–[30]. In these studies, it was assumed that
the room temperature at the next time point is determined by
the room temperature, HVAC power input, and environmen-
tal disturbances at the current time point. The action of the
current time point, the current temperature schedule, together
with the state of the current moment (room temperature, cur-
rent outside temperature) determine the HVAC set point and
affect the HVAC power input at the current moment, and
consequently affect the state at the next moment. According
to [31], [32], even though the environment is not strictly MDP,
the corresponding problem can still be solved by reinforce-
ment learning based algorithms empirically. MDP has four
elements: a set of states which represent the environment, a
set of possible actions for each state, a reward function to
assess the value of each action taken at a certain state, and the
rules for the transitions among different states. Below is the
description of the state, action, and reward function tailored
to the HVAC; the control flow of HVAC based on MDP is
shown in Fig. 1.

a) HVAC state: The HVAC power consumption is influ-
enced by various factors. We consider these factors as the
elements of the HVAC state in the MDP model. We denote
the HVAC state at time t as St, see (1). The observable state
of a HVAC should contain information about both indoor and
outdoor environment as they significantly affect the energy
consumption. Therefore, the indoor temperature Tt

room and out-
side temperature Tt

out at time t are considered as elements
of the HVAC state. In addition, the desired or scheduled
base temperature, Tt

schedule, of the house is included in the
HVAC state. Finally, since the HVAC on/off status at time
t depends on price-responsive Tt

set and the current indoor
thermal environment, Tt

set is also included in the HVAC state.

St =
{
Tt

set, Tt
room, Tt

schedule, Tout
}

(1)

Tt
set = Tt

schedule +
(
Pt

cleared − Paverage
)× ∣∣Tmax/ min

∣∣

khigh/low × σactual
(2)

The relation between Tt
set and Tt

schedule in TESP is shown
in (2), where Paverage is the historical mean price, |Tmax/ min|
is the allowed range of set point variation , khigh/low is the
bidding ramp denominator, σactual is standard deviation of the
price. Bidding ramps and allowed temperature ranges could
be unequal above and below Tt

schedule as in [27].
b) Action: The aim of the HVAC control is to minimize

the cost by changing the HVAC temperature setting schedule,
Tt

schedule. Therefore, in our formulation, the learning agent of
the RL approach based on MDP assumptions is designed to
make changes in the scheduled temperature deviating from the

original schedule based on a reward function. The action is
the temperature change from the original schedule in a certain
adjustable range, e.g., [−5, 5] degrees Fahrenheit.

c) Reward: In our optimization problem we aim to min-
imize the consumer dissatisfaction. Accordingly, we represent
consumer dissatisfaction as the deviation of the HVAC tem-
perature from the desired temperature schedule which is set
by the consumers. Therefore, the reward of each action con-
sists of two parts, the penalty for the energy consumed by
the HVAC during the time period and the discomfort of the
consumer resulting from the control action taken at a given
state. The discomfort is the estimated feedback of the occu-
pants’ dissatisfaction under the current thermal condition. The
reward at each time step is defined as:

rt = −α
(
Et

hvac × Pt
clear

)− (1− α)k × (
Tt

dev

)2 (3)

Tt
dev =

(
Tt

room − Tt
schedule

)
(4)

where α represents the importance of the cost of energy con-
sumption of the HVAC. Et

hvac is the energy consumption of the
HVAC during this time step. Pt

clear is the cleared price from
TESP. The cost will be higher if more energy is consumed
when the price is relatively high. The second term is the con-
sumers’ dissatisfaction cost which is calculated by multiplying
a factor k by the squared room temperature deviation Tt

dev from
the original schedule temperature.

B. HVAC Control Through Deep Deterministic Policy
Gradient

Model-based or model-free approaches can be used in rein-
forcement learning to optimize energy cost and/or thermal
comfort through the control of HVAC [33]. Model-based
approaches require complete information of the HVAC thermal
dynamics to represent transition among different states. For
example, for the model-based approaches, accurate dynamic
interactions between the residence and the surrounding envi-
ronment may be needed. In contrast, model-free methods are
more flexible to overcome the detailed modeling of the HVAC
dynamics and accordingly to represent state transitions.

Q-learning, state-action-reward-state-action (SARSA) and
deep Q-networks (DQN) are commonly used for model-free
RL [34]. However, they cannot be used to solve control
problems with both continuous state and action spaces. For
instance, in order to utilize DQN for HVAC control, temper-
ature of the HVAC can be discretized finely, resulting in a
large number of possible actions. But higher granularity of
the action space will decrease the training efficiency dramati-
cally. DDPG is a deep reinforcement learning method which is
capable of handling a space of continuous states and actions.
There exist other off-policy algorithms like soft actor critic
(SAC) [35] and twin delayed DDPG [36] which are variations
of the DDPG algorithm. They can also be used to solve the
continuous control problem such as HVAC control. In this arti-
cle, we utilize DDPG for the control purposes as we can show
through our numerical results that the reward convergence is
robust to the changes in the hyperparameters.

As shown in Fig. 2(a), for any given input state, through
the interaction of actor and critic networks, DDPG is able to



Fig. 2. (a) DDPG is able to generate continuous action control. (b) The
network structure of DDPG implemented as the RL agent.

Algorithm 1 DDPG
1: Initialize memory M of size N;
2: Initialize the actor network μ(St|θμ) and critic network (St, At|θQ)

3: with random parameter θμ and θQ

4: Initialize the target network μ
′

and Q
′

with θμ
′
← θμ ,θQ

′
← θQ;

5: Input the estimated price {P̂clear}T0 ;
6: Define st = {Tt

set, Tt
room, Tt

out, Tschedule
t};

7: Receive the initial HVAC state s0={T0
set, T0

room, T0
out, Tschedule

0};
8: for t=0,1,2,..,T do
9: Select at by at = μ(st|θμ)+Nt;

10: Execute at on HVAC and obtain the reward r(st, at) and next state
st+1;

11: Store the transition (st, at, rt, st+1) in M;
12: Sample K transition from M randomly and calculate the esti-

mated policy value for the sampled transitions i : yi = ri +
γ Q
′
(si+1, μ

′
(si+1|θμ

′
)|θQ

′
);

13: Update the critic network θQ by the gradient ∇
θQ L of the MSE

over the K size mini-batch and learning rate βy: ∇
θQ L = 1

K
∑k

i=1(yi −
Q(si, ai|θQ))2;

14: Update the actor network using the sampled policy gradient ∇θμ J and

learning rate βx: ∇θμ J ≈ 1
K

K∑

i=1
∇aQ(s, a|θQ)|s=si,a=μ(si)∇θμμ(s|θμ)|si

15: Update the target networks (τ : updating rate):

16: θμ
′
← τθμ + (1− τ)θμ

′
;

17: θQ
′
← τθQ + (1− τ)θQ

′
;

18: end for

generate optimal control action directly rather than by fine dis-
cretization of the action space. The network structure of the
DDPG method is presented in Fig. 2(b). More specifically,
DDPG is implemented here through an actor-critic architec-
ture that learns approximations to both policy function, θμ,
and value function, θQ. An actor is used to tune the parame-
ter θμ for the policy function (i.e., to decide the best control
action At given a specific HVAC state St, where θμ repre-
sents the weights of the actor neural network). On the other
hand, a critic network is used for evaluating the policy func-
tion estimated by the actor network. Here, the critic network’s
parameters are denoted by θQ. Critic network estimates the
action value Q which is the expected reward of taking the
control action At at state St.

The actor network and the critic network are trained through
the TESP simulations which enables evaluation of different
actions for different HVAC states. After training, during test-
ing, through the interaction between actor and critic networks
RL-based control outputs an optimum action that is used by
TESP to control the HVAC. The training details of the actor
and critic networks are provided in Algorithm 1 and Fig. 3.

For the training, we initialize the actor network and the critic
network with random parameters, also we use the same ran-
dom parameters to initialize the target actor network and target

Fig. 3. The structure of critic network and actor network, red numbers
correspond to lines in Algorithm 1.

critic network. DDPG enables the agent to explore a wide
variety of actions in the beginning of learning. Specifically,
after receiving the initial state s0, the actor network explores
the action space to select a control action. We add a ran-
dom noise to the selected action to explore the control
action space to prevent converging to a local solution through
Ornstein–Uhlenbeck process [37], see Algorithm 1 line 10.

During training, at each time step t, after the learning agent
takes the control action at, it communicates this action to
TESP to change the HVAC state st, then receives the new
HVAC state st+1 and the reward Rt calculated based on (3)
as feedback from TESP. In order to improve the convergence
and decrease the correlation among the training samples, we
add a memory buffer for experience replay. So at every time
step, the state action transition st, at, Rt, st+1 is stored into the
memory M. From the memory M, we then randomly sample K
transitions and calculate the estimated value y of each sampled
transition using the target networks. The next-state Q values
are calculated with the target value network and target policy
network (Fig. 3 arrow 13). Then, we minimize the mean-
squared loss between the updated Q value and the original
Q value (line 14). Here, we use the target networks which are
constrained to change slowly. The two target networks θμ

′
and

θQ
′

will slowly track two learned networks θμ and θQ which
will help improve the stability of learning. Calculation of the
estimated value y through the target networks is achieved
through Algotithm 1 line 13, where γ is the discounting fac-
tor indicating the importance of future versus current value.
The weight of the critic network is updated by minimizing the
mean square error with respect to the critic network parame-
ters using the values corresponding to the randomly selected
K samples as shown in line 14 of the Algorithm 1. The policy
loss is the derivative of the objective function with respect to
the policy (actor network) parameters. Then the actor network
is updated through the sampled policy gradient as shown in
line 15 of Algorithm 1 [38]. Note that the chain rule is applied
since the policy function and the actor network are both dif-
ferentiable. Finally, both target networks are updated with an
update rate τ � 1 as shown in lines 17 and 18.

The actor network and the critic network of DDPG algo-
rithm both have 2 hidden layers. The structure and different
activation functions are shown in Fig. 4.



Fig. 4. The structure of critic network and actor network; ReLU is a rectified
linear activation unit.

Fig. 5. The neural network for price prediction.

C. Price Prediction With ANN

The optimal control strategy based on DDPG relies also
on the predicted electricity price, see Fig. 2. In our approach,
we utilized a multi-layer perceptron neural network with 2
hidden layers to predict the future electricity price. Through
such an artificial neural network, we develop a nonlinear rela-
tionship between the input variables (e.g., temperature, system
load, day of the week) and the predicted output electric-
ity price. Fig. 5 demonstrates the topology of the utilized
neural network. As listed in Fig. 5 there are up to 18 day,
hour, load, temperature and price inputs connecting to the
hidden layers.

III. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, we describe the simulation scenarios and
present the numerical results. We first present the performance
of the proposed ANN structure for electricity price prediction
and we compare it with the state-of-the-art price prediction
methods such as weighted average filter [39], support vec-
tor machine (SVM)-based prediction [40], and ANN-based
prediction [17]. Then, we consider different simulation scenar-
ios in TESP to compare the proposed DDPG RL-based HVAC
control strategy with the control strategy that is already imple-
mented in TESP in terms of electricity cost and consumer’s
dissatisfaction. We represent the consumer’s dissatisfaction as
the deviation of the temperature settings from the desired
temperature schedule of the HVAC systems.

TABLE I
INPUT FEATURES FOR PRICE PREDICTION (H REPRESENT HOUR)

Fig. 6. Price prediction vs TESP Simulation data.

A. Simulation of ANN Price Prediction

1) Simulation Scenarios: We generated four weeks of
electricity price data using a TESP feeder model with a
substation and 306 different houses with HVACs. We used
the first two weeks of the generated price data for training
the proposed neural network and used the second two weeks
of data for testing. As shown in Table I, we considered up
to 18 input features to train the proposed neural network to
predict electricity price. Day of the week, hour of the day
and historical price data are obtained directly from the gen-
erated TESP data. Historical weather (temperature) and the
load data for price prediction training in the Pittsburgh area
are obtained from the weather data in Typical Meteorological
Year 3 (TMY3) format [41] and PJM website, respectively.
PJM is a regional transmission organization and they pub-
lish historical hourly load data for Duquesne Light Company
on their website. Since the TESP simulation data have higher
temporal resolution compared to the load data, the hourly load
data is interpolated to obtain 5 minutes per sample temporal
resolution.

2) Price Prediction Simulation Result: In Fig. 6 we com-
pare the proposed neural network that is trained using all 18
inputs that are listed in Table I directly with the TESP simula-
tion results. Here TESP simulation results are the benchmark.
We use k-fold cross validation for the ANN price prediction
to test the generalization ability. We split the dataset into 6
groups. For each group, we take the group as test data set
and take the remaining groups as training data set. Fig. 6 (a)
shows 24 hour prediction results with training mean square
error (MSE) 2.12 × 10−4, test MSE 2.75 × 10−4. Fig. 6 (b)
shows 10 hour simulation results. From these two figures we
observe that the overall trend of the predicted price is consis-
tent with the TESP-simulated electricity price. Note that even
some small fluctuations in price are also correctly predicted.

Here we also compare the proposed approach with the state-
of-the-art price prediction methods. We denote the proposed
approach as ANN with weather and price distribution input
(ANN + weather + price distribution) and compare it with



Fig. 7. Error comparison of price prediction methods.

TABLE II
p VALUE OF WILCOXON RANK-SUM TEST BETWEEN THE ERRORS IN

FIG. 7 OF THE METHOD IN EACH ROW AND THE METHOD IN EACH

COLUMN

weighted average filter-based, SVM-based, ANN with weather
input (ANN + weather) and ANN without weather and price
distribution (ANN) methods. For this comparison, we gen-
erated simulation data from the 306-house system described
above. Similar to the above scenario, historical weather and
PJM load data are obtained from online sources.

The data was divided into 50 week-long periods, and the
mean square error of predicting price of different weeks
throughout the year is shown for different methods in Fig. 7.
We observe that SVM-based method is better than the
weighted average filter, and ANN based methods outperform
both the weighted average filter and SVM-based methods. To
statistically compare the methods, we apply non-parametric
one-sided rank sum test and the results are presented in
Table II. In this table, we specifically present the p-values
for testing if the methods listed in the columns have lower
mean-square error in price prediction than the methods listed
in the rows. A p-value lower than 0.05 means that the method
listed in the column has statistically lower mean-square error
compared to the method listed in the row. Similar to Fig. 7,
ANN-based methods are significantly better than weighted
average filter and SVM-based methods. Even though there are
not statistically significant differences among ANN, ANN+W
and ANN+W+P (see Table II), adding weather and price
distribution information may make the price prediction more
robust, see Fig. 7. But this robustness comes with price of
additional data collection.

B. Simulation of DDPG RL HVAC Control

1) Simulation Scenarios: The proposed RL-based HVAC
control is evaluated using TESP-simulated data on 306 houses.
We specifically considered the scenarios in which HVACs are

Fig. 8. Test cases of the proposed RL agent.

TABLE III
PARAMETER SETTINGS

in the cooling mode. To make sure the HVACs are in cooling
mode during the training, TMY3 data for Florida instead of
Pittsburgh were used during the period from June to November
of 2018. One generic control policy for different houses is
obtained after training. The DDPG algorithm is implemented
with Pytorch, an open source Python-based scientific comput-
ing package for machine learning. The training data comes
from simulation of 212 days in TESP.

As also mentioned above, we compare the RL-based
approach with the HVAC ramp control approach that is imple-
mented in TESP. This method (which we denote as “without
RL agent” in this article) controls the HVAC using a pre-
defined temperature schedule. On the other hand, the proposed
RL-based method (which we denote as “with RL agent”)
changes the pre-defined temperature schedule based on the
predicted price and DDPG-based control. We compare these
two control approaches not only under normal conditions
but also during a high price scenario that includes a bulk
system generator outage. Test cases are illustrated in Fig. 8.
Simulation configurations and key parameters of the DDPG
training algorithm are listed in Table III.

The batch size for DDPG training is chosen to be 72. The
parameter α that was introduced in (3) and that balances
between energy cost saving and customer’s dissatisfaction is
varied between 0.1 and 0.5.

2) Performance Metrics: In order to compare the control
methods with and without RL agents, we define electricity cost
saving factor (CSF) and thermal comfort improvement factor
(TIF) as the performance metrics. Both are affected by α.

CSF = weeklybillbase − weeklybillRL

weeklybillbase
× 100% (5)

TIF = �Tbase −�TRL

�Tbase
× 100% (6)



Fig. 9. Convergence of DDPG training process with different hyper
parameters.

Both CSF and TIF can be greater or less than 0; a positive
CSF or TIF indicates better performance with the RL agent.

3) Simulation Result:
a) Convergence of the training process: As shown in

Fig. 9, we plot the reward function as a function of training
time steps for different hyper-parameters. It can be observed
that the training of the algorithm is very robust to the changes
in α and βμ (βμ = 10βQ), and τ (when τ is greater than
0.001, which is the literature recommended value).

b) Computational effort: The training of the RL agent is
the most computational expensive part and it can be completed
offline. Once the RL agent is trained, only small memory
is required to save the trained network parameters. When
the RL agent chooses action at a certain time, the decision-
making only depends on the linear combinations of these
saved network parameters with the incoming signals (input
state values: room temperature, outdoor temperature). Once
offline training is done, the proposed method can be easily
implemented in real time systems.

c) Performance of the DDPG RL algorithm: Through
TESP simulations as described above, we compare HVAC
control with RL agent to HVAC control without RL agent.
Recall here that HVAC control without RL agent uses a fixed
temperature schedule and adjusts the HVAC setting based on
this fixed temperature schedule and cleared market price for
electricity [27]. On the other hand, HVAC control with RL
agent changes the temperature schedule and then adjusts the
HVAC setting for price. For these two approaches, in Fig. 10,
we plot the temperature schedules, HVAC temperatures and
cleared market price for electricity. The purple dashed-line
demonstrates the cleared market price, green and orange lines
show the fixed and changing temperature schedules, respec-
tively, and red and blue lines are for the HVAC temperatures
with and without RL-agent control, respectively. The room
temperature is rising along with the increasing outside tem-
perature from 8am to noon and it continues to rise until it
triggers the HVAC to cool the room. The HVAC control with
RL agent predicts the afternoon increase in the cleared market
price; therefore, there is sudden drop in the temperature sched-
ule at 12:00 with RL agent, and the temperature schedule then
continues to drop below the current room temperature. As a
result, the HVAC starts cooling the house a little earlier than
the original control without RL agent before the price peak is

Fig. 10. Room temperature with and without RL agent.

Fig. 11. Time varying price and the HVAC load.

Fig. 12. Aggregate responses of the HVACs.

reached at around 14:00. Specifically, just after 12:00, the red
line starts to drop and fluctuate, before the blue line. At every
time step, the RL agent controls the HVAC output to mini-
mize the deviation of the room temperature from the original
schedule while aiming to consume more power for HVAC at
relatively lower price.

Fig. 11 demonstrates the energy consumption of a single
HVAC controlled with (blue) and without (orange) the RL
agent. We observe that compared to the HVAC controlled with-
out RL agent, HVAC controlled with RL agent consumes more
power (higher HVAC load) when the price is low and less
power (lower HVAC load) when the price is high. Additionally,
Fig. 12 shows the aggregated loads of 306 HVACs controlled



Fig. 13. Comparative box plot of the weekly energy cost vs. α.

with (blue) and without (orange) the RL agent. In this figure,
total HVAC load is less when the price is high around 14:00
to 18:00. The HVACs consume a little more power during
the time when price is relatively low such as 0:00 to 4:00.
Similar to what we observe in Fig. 11, HVACs controlled
with RL agents aim to save more energy at higher market
prices.

Recall from (3) that α value is chosen to balance between
the consumed energy cost of HVAC and the comfort level
of the customers. We define the minimization of customer
discomfort as the minimization of the deviation of the temper-
ature schedule from the original schedule. Parameter α takes
values between 0 and 1 and as its value increases, customers
care more about the energy cost. Here we compare again the
HVAC control methods with (blue) and without (orange) RL
agent for different α values. More specifically, Fig. 13 is the
box plot of weekly cost of consumed power by HVAC. The
green dashed lines show the weekly mean values. As can be
observed from this figure the RL agent saves more money
compared to the control without RL agent; saving increases
as α increases. For example, the CSF is 38.5% when α is 0.5.
On the other hand, Fig. 14 is the bar plot of the room tem-
perature deviation from the desired temperature schedule. The
average temperature deviation increases with the increase of α,
such that TIF ranges from 42.75% to −28.7%. Fig. 15 shows
the room temperature under the control of RL agent with dif-
ferent α. When α increases the deviation of the temperature
from the scheduled temperature increases. With larger α, the
RL agent is very sensitive to the electricity consumption, in
consequence, the RL agent tends to save more energy by sac-
rificing thermal comfort. For example, as shown in Fig. 14,
with α = 0.45 and α = 0.5, the TIF became negative and the
temperature deviation is even higher than the case that uses
HVAC control without RL. Moreover, Fig. 13 and Fig. 14
also demonstrate that with certain α, the RL agent is able to
reduce the energy cost and improve the occupants’ comfort at
the same time compared to the HVAC control without RL, for
example see α = 0.4.

d) DDPG RL performance during a generation outage:
In the above simulations, the clearing price is at a normal level
for most of the time. To evaluate the performance of the HVAC
control with RL agent during high-price events, we perform

Fig. 14. Comparative bar plot of the temperature deviation vs. α.

Fig. 15. Room temperature of different cases.

simulations with a bulk generation outage at a certain time
of day. We are using the same simulation scenario with 306
HVACs as described above but now there is a generation unit
outage from 12:00 to 18:00.

Due to the outage of a main generation unit and the higher
cost of the back up generation unit, the Locational Marginal
Price (LMP) at the substation bus becomes higher than normal
during the outage, leading to a high clearing price as shown
in Fig. 16. With RL agent, the HVAC consumes less power
during the outage when the electricity price is at peak. As
illustrated in Fig. 16, different from the HVAC control without
RL which consumes power during the price peak, the HVAC
with RL agent is off beginning around 16:00 and starts to work
again when the price drops.

Similar to Fig. 13 for different α values, Fig. 17 shows the
box plot of weekly HVAC energy cost with generation outage.
As observed in Fig. 17, without RL agent, the energy cost of
HVAC is doubled over the normal scenario as demonstrated in
Fig. 13. Similar to Fig. 14, Fig. 18 shows the bar plot of room
temperature deviation from the desired temperature schedule.

When α = 0.25, the thermal comfort with and without
RL are almost the same in these two cases. Note that when
α = 0.25 the consumers are still able to save 12.7% of HVAC
energy cost on average with the RL agent. That is, while the
comfort level is preserved, there is more energy savings with
HVAC control with RL. When α = 0.55, although the average



Fig. 16. Electricity price and the HVAC power consumption with RL agent
during generation outage.

Fig. 17. Weekly HVAC energy cost vs. α with generation outage.

Fig. 18. Average temperature deviation vs. α with generation outage.

HVAC energy cost is reduced by 50%, the temperature devi-
ation increases a lot. In general, consumers are able to save a
greater extent of money with a higher α (emphasis on energy
saving), reducing thermal comfort as shown in Fig. 18.

IV. CONCLUSION

We have developed a RL-based method for the control of
transactive HVACs in distribution systems that are partici-
pating in a double auction electricity market. The method
is integrated in and tested through TESP simulation. As
the first step, we proposed and tested an electricity price
prediction method and compared it with existing state-of-the-
art price prediction methods. Then we used the developed
price prediction method together with a DDPG approach to

train a reinforcement learning agent to control the HVAC.
The proposed RL-based method balances between electricity
cost and customer comfort. Accordingly, we compared our
approach with the ramp control method that already exists
in TESP. Our results showed that the proposed method not
only saves the electricity cost but also improves the customers’
comfort at the same time. Our future work will explore using
α as a customer-oriented slider setting to express preferences,
training on the fly for continuous improvement of the local
RL agent, and extensions to water heaters and batteries.
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