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1 Towards stable and high-performance electrocatalysts

Electrochemical catalysts or electrocatalysts are used to interconvert electrical and chemical energy in elec-
trochemical cells. This class of catalysts serves as the enabling technology for electrolysis cells, fuel cells, and
a variety of electrochemical reactors that can be used to either store electrical energy in the chemical bonds of
molecules, or to alternatively produce commodity chemicals via electrochemical reactions. Historically, plat-
inum group metals have been used as the active material in electrochemical cells in light of their intrinsically
high catalytic activity for a multitude of chemical and electrochemical reactions. However, the widespread
adoption and commercialization of a number of electrochemical cells has been hindered due to the high cost
of platinum group metals. A key focus of modern research has been to design new active materials that are
either free of expensive platinum group metals or contain negligible amounts of them, while simultaneously
developing an understanding of how certain reactions proceed over catalyst surfaces so as to improve the
mass activity and selectivity for particular reaction pathways.[1] A number of approaches have been pursued
to lower the cost of electrocatalysts, such as the preparation of shape-controlled metal nanoparticles and
nanoporous metal foams, both of which boast high specific surface areas, effectively minimizing the amount
of active material needed to achieve a threshold mass activity.[2] Through these efforts, it was also dis-
covered that nanostructuring electrocatalysts can lead to further performance improvements through finite
size effects that occur as a result of the unique electronic properties of nanoscale metals.[3, 4] Further cost
reductions may be realized by alloying the expensive catalytically active components with cheaper coinage
metals such as silver and copper, or base metals such as nickel or aluminum. The incorporation of multiple
metals can lead to additional performance enhancement by way of ligand, strain, and ensemble effects that
arise as a result of the difference in electronic structure of the alloyed metals, atomic size differences, and
preferential organization of components within the surface layer.[5, 6, 7] Similarly, performance enhance-
ments may arise through bifunctional effects where different alloy components present along the surface may
work cooperatively to enhance the rate of an electrochemical step in a reaction pathway.[8] Each of these
effects are generally interrelated, and the extent to which they may be present can be assessed through
the combined use of electroanalytical methods such as cyclic voltammetry, scanning probe techniques such
as scanning tunneling microscopy, and first principles approaches such as density functional theory. While
it has been widely observed that the activity and selectivity of electrocatalysts can be improved through
nanostructuring and alloying, an ongoing challenge has been the ability to rationally design high performance
electrocatalysts that are additionally stable in corrosive environments and capable of withstanding large ap-
plied voltages.[9, 10, 11] As a motivating example, we briefly consider core-shell catalyst architectures, where
the active component is present as a thin shell on a cheaper core metal. As shown schematically in Fig. 1,
core-shell catalysts may be subject to metal migration effects where the catalytically active shell compo-
nents diffuse into the core of the electrocatalyst, thereby reducing the concentration of active sites along
the surface, or may similarly experience dissolution effects where catalytically active components dissolve
into the surrounding electrolyte, again effectively diluting the number of sites available for electrocatalysis.
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Obtaining a detailed understanding of the conditions under which particular electrocatalysts degrade is an
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Figure 1: Modern electrocatalysts based on transition metal alloy chemistries can degrade through
metal migration and dissolution effects. Mitigation of these and other related degradation mecha-
nisms is a prominent focus of modern research.

important preliminary step to designing scalable and commercially viable electrochemical cells with durable
and cost-effective electrocatalysts.

In this chapter, we discuss some of the recent advances made in the first principles modeling of electro-
chemical catalysts. The key development, as will be discussed, is the ability to explicitly treat the effects
of surface electrification due to electrochemical processes and applied voltages in a computationally efficient
manner. The latter is achieved using a multiscale quantum-continuum approach that leverages an embedded
polarizable continuum model to efficiently treat the electrolyte. We begin the discussion by first introducing
the thermodynamics and statistical mechanics of electrified metal-solution interfaces. We subsequently dis-
cuss the structure of the electrode-electrolyte interface and the effects of applied voltages. And finally, we
conclude with an overview of the first-principles model and a motivating example.

2 A brief thermodynamic detour

Before we proceed to discuss some of the modern developments in the modeling of electrochemical catalysts, it
is worthwhile to touch on a few important concepts in chemical thermodynamics and electrochemistry. In the
following sections, we provide a brief summary of classical thermodynamics and discuss the thermodynamics
of electrified electrode-electrolyte interfaces. The following is by no means intended to provide a full overview
of these subjects, but rather to merely provide a basis through which the subsequently developed models can
be discussed. We furthermore assume that the reader has had little exposure to thermodynamics prior to
reading this text, and therefore present the material at a level suitable for first or second year undergraduates.
For a more thorough overview of chemical thermodynamics and statistical mechanics, we highly recommend
Refs. [12, 13].
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2.1 The fundamental relation

Throughout the study of thermodynamics, we are fundamentally concerned with the flow of energy and
matter between a system and its surroundings. As shown in Fig. 2, we can place certain restrictions on the
boundary of our defined system, such that it can be an open system so that heat, work, and mass can be
freely exchanged with its surroundings, a completely isolated system that prevents any type of energy or
mass transfer, and several other types of boundaries that selectively allow heat, work, and mass transfer.
This notion of boundary permeability to energy transfer is critically important to understand and to define
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Figure 2: Depending on the type of thermodynamic wall being considered, we can alter how a
system interacts with its surroundings. For example, a system with open boundaries allow energy
to be exchanged between the system and surroundings in the form of heat, work, and matter, while
diathermic boundaries that are rigid and impermeable allow only heat to be exchanged.

since energy and matter are conserved quantities, and can therefore only be transferred or transformed. This
is stipulated by the first law of thermodynamics, which states that the change in internal energy dU of a
system is equal to the amount of heat and work that is exchanged with its surroundings

dU = δQ+ δW, (1)

where δQ and δW are infinitesimal amounts of heat and work, respectively.1 While the first law ensures
the conservation of energy, it does not actually place any limits on the exchange of heat or work between
a system and its surroundings. Understanding how energy is transferred and defining the rules by which it
can transfer is useful since there are a multitude of ways in which the internal energy change dU may be
realized.

It is straightforward to first think about what kind of work can be performed on or by a system. We can
express the total amount of work as δW =

∑
i δWi, whose value depends on the types of work δWi that are

possible. One can, for example, consider the mechanical work −PdV that is done to compress or expand a
volume by an amount dV at a pressure P , the chemical work µdN that is done by adding or removing dN
atoms or molecules to a system at a chemical potential of µ, and the electrical work ΦdQ that is done by
adding or removing an electronic charge dQ to the system at a voltage of Φ. In the case that each of these
processes are allowed to occur, we can rewrite Eq. 1 as

dU = δQ− PdV +
∑
i

µidNi + ΦdQ. (2)

1Here, we differentiate between an exact differential quantity dX and an inexact differential quantity δY such that X is
defined to be a state function whose cyclic integral vanishes

¸
dX = 0, while no such condition is guaranteed for an inexact

differential
¸
δY 6= 0. This is to say, the extent of heat transfer and work done by or to a system are path-dependent or depend

on the manner in which the processes are carried out, while the change in a thermodynamic potential such as the internal
energy U or entropy S are path-independent, and thus depend only upon the initial and final states of the system.
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While the work contributions to the change in internal energy are straightforward to specify, the extent
of heat transfer is less obvious and requires a somewhat more in depth discussion. In order to define δQ,
it is useful to first recall that real processes that are observed to occur in nature such as the mixing of
two different gases or heat transfer from hot regions to colder regions occur spontaneously or irreversibly.
That is, for a given system in an initially non-equilibrium state, the system will tend to evolve towards an
equilibrium state in which it will remain until acted upon by some externally applied force. Thus, once a
system is at equilibrium with its surroundings, the driving force to move to a different state vanishes. In
the context of the examples provided above, gases will continue to mix until their constituent particles are
homogeneously distributed creating a spatially uniform composition and heat will continue to transfer until
a spatially uniform temperature in the system is achieved. The extent to which a process is considered to be
spontaneous or irreversible is characterized by the change in the entropy S of the system. Formally, entropy
is defined to be a state function and a property of a system similar to the way in which internal energy is a
property of a system. The change in entropy can be expressed as

dS =
δQ
T
, (3)

where T is the temperature at which the heat transfer is conducted. Physically speaking, Eq. 3 states that
the gain in entropy due to a transfer of heat is greater for a system at low temperature than for the same
system at an elevated temperature. Furthermore, a system is said to be at equilibrium with its surroundings
when the total entropy of the system and surroundings is maximized upon which dS = 0. A simple example
demonstrating this fact is shown below in Fig. 3. Here, we consider an isolated system that is partitioned

U0 = U1 + U2

1 2

U1,  T1 U2, T2

1 2

U1 + δQ, T0 U1 – δQ, T0

δQ

Adiabatic wall Diathermal wall

Figure 3: Two subsystems contained in adiabatic enclosures with different temperatures T1 and
T2 with T1 < T2 will experience a spontaneous heat transfer when the adiabatic wall is replaced
with a diathermal wall.

into two sub-systems via an adiabatic wall, and we notice initially that they have two different temperatures
T1 and T2, where T1 < T2. We thus have a “hot” region and a “cold” region inside of our isolated system.
The total energy of the isolated composite system is simply the sum of the energy of the two sub-systems,
U0 = U1 + U2. If we now replace the adiabatic wall with a diathermal wall, an amount of heat δQ will flow
between the two sub-systems due to the initial temperature gradient. The effect of this heat transfer is that
the energy of sub-system 1 has increased by δQ and the energy of sub-system 2 has decreased by δQ. The
heat transfer stops only when the temperature of the composite system is uniform everywhere at a value
of T0, which we speculate to lie somewhere in the interval [T1, T2]. After this process is complete, the total
energy of the composite system is unchanged U0 = (U1 +δQ)+(U2−δQ) = U1 +U2. However, if we consider
the change in entropy of the system due to this spontaneous process ∆S = δQ/T1− δQ/T2, we find that the
overall entropy of the system has increased since T1 < T2. The heat transfer stops only when T1 = T2 = T0

since the driving force for heat transfer (i.e, the temperature gradient) vanishes; in other words, once the
system is at equilibrium, any additional heat transfer would fail to increase the entropy any further since
∆S = δQ/T0 − δQ/T0 = 0 J/K.2 This leads us to the second law of thermodynamics, which states that for

2Here we consider the thermal energy to be in units of Joules (1 J = 1 N·m = 1 kg·m2·s−2) and temperature to be in units
of Kelvin (K).
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an isolated system, the total entropy of the system can never decrease; the total entropy can only increase
or remain constant. Using the definition of the second law, we can write the combined first and second law
of thermodynamics as

dU = TdS − PdV +
∑
i

µidNi + ΦdQ, (4)

which indicates that the internal energy of a system is a function of a set of natural variables U =
U(S, V,Ni, Q). This particular set of variables are said to be extensive variables, since their values scale
proportionally with system size, while their conjugate variables T, P, µ, and Φ are said to be intensive vari-
ables that are independent of system size and have the additional property that they are equal everywhere
within a system at equilibrium. Furthermore, Eq. 4 is said to be a fundamental relation that one can use
to completely define the state of a thermodynamic system. The caveat to this is that it is also necessary to
identify the equations of state3 that relate the intensive variables to the extensive variables in the system

T = T (S, V,Ni, Q) =

(
∂U

∂S

)
V,Ni,Q

P = P (S, V,Ni, Q) = −
(
∂U

∂V

)
S,Ni,Q

µi = µi(S, V,Ni, Q) =

(
∂U

∂N

)
S,V,Nj 6=Ni,Q

Φ = Φ(S, V,Ni, Q) =

(
∂U

∂Q

)
S,V,Ni

(5)

Thus, given a fundamental relation of a system and its associated equations of state, one can fully understand
a thermodynamic system.

2.2 Alternative forms of the fundamental relation

While Eq. 4 is an important result embodying the first two laws of thermodynamics, it is not always the
most convenient form of the fundamental relation to use when discussing chemical or electrochemical ther-
modynamics. This stems primarily from the fact that the internal energy depends on extensive quantities
such as entropy, volume, particle number, and charge, which are infeasible to rigorously control in labo-
ratory settings. Instead, it is more useful to consider forms of the fundamental relation that depend on
temperature, pressure, chemical potential, or voltage since these quantities can be more readily manipulated
in experiments. These alternative forms can be derived using a mathematical technique called Legendre
transformation, which provides an alternative but equivalent representation of a function f(x) in terms of
its derivative m(x) = f ′(x) and its associated tangent line’s y-intercept b

b(m) = f(x)−m(x)x. (6)

In Fig. 4, we demonstrate the procedure for a one-dimensional parabolic function.[12] For higher-dimensional
cases, such as the thermodynamic potentials we are considering here, one can perform an analogous procedure
using partial derivatives. Because the intensive variables we aim to replace the extensive variables with are
defined as partial derivatives of the internal energy (Eq. 5), we are able to employ this technique to derive a
variety of fundamental relations. To demonstrate this, we must first consider the internal energy in its Euler
form4

U = TS − PV +
∑
i

µiNi + ΦQ. (7)

3Here we see that the intensive variables can be equivalently expressed as partial derivatives of the internal energy with
respect to their extensive conjugate variables. This follows from the fact that the internal energy is a state function so we
consider an infinitesimal change in internal energy to be an exact differential:

dU =

(
∂U

∂S

)
V,Ni,Q

dS +

(
∂U

∂V

)
S,Ni,Q

dV +
∑
i

(
∂U

∂N

)
S,V,Nj 6=Ni,Q

dNi +

(
∂U

∂Q

)
S,V,Ni

dQ.

4Extensive quantities such as the internal energy are said to be first order homogenous functions, which obey the property
f(λx1, λx2, . . . , λxn) = λf(x1, x2, . . . , xn), where λ is an arbitrary constant. If we compute the derivative of both sides with
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a. b.

Figure 4: The procedure for computing the Legendre transform of a function f(x) involves (a)
obtaining the set of tangent line slopes m = df/dx of the underlying function f(x) and their
associated set of y-intercepts b = b(m) for the entire domain of f(x). The original function f(x)
is transformed (b) to b(m), which can be viewed as an alternative yet equivalent representation of
the underlying function f(x).

As an example, if we wish to obtain a fundamental relation with the set of natural variables (S, P,Ni, Q),
we may compute the Legendre transform of the internal energy with respect to the volume

H = U −
(
∂U

∂V

)
V = U + PV, (8)

where the new thermodynamic potential H introduced above is known as the enthalpy of a system. Using
Eq. 4, we can obtain the desired fundamental relation by computing the differential of Eq. 8

dH = dU + PdV + V dP = TdS + V dP +
∑
i

µidNi + ΦdQ. (9)

We can perform single Lengendre transforms as we have done above, or we can perform multiple Legendre
transforms to obtain a fundamental relation that has more than one intensive variable in its set of natural
variables. For example, the Gibbs free energy G has the set of natural variables (T, P,Ni, Q), and its
fundamental relation can be obtained via the double Legendre transform

G = U − TS + pV −→ dG = −SdT + V dP +
∑
i

µidNi + ΦdQ. (10)

Using this approach, a variety of fundamental relations can be derived from the combined first and second
law, several of which have been summarized below in Table 1.

3 Statistical mechanics

Up until this point, we have mainly considered the thermodynamics of macroscopic systems and introduced
several useful fundamental relations. While these equations enable us to at least in principle identify equilib-
rium states, they do not provide any information about the microscopic details that are needed to effectively
understand the properties of functional materials. Such a detailed view can be obtained by considering

respect to λ, we obtain
∑
i

(
∂f
∂λxi

)
xi = f(x1, x2, . . . , xn). Because λ is just a constant, we can consider the case of λ = 1,

which yields
∑
i

(
∂f
∂xi

)
xi = f(x1, x2, . . . , xn). The latter is referred to as an Euler relation as it obeys Euler’s theorem for

homogenous functions.[12]
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Table 1: Summary of important thermodynamic potentials, their Legendre transforms, and their
associated fundamental relations.

Thermodynamic potential Legendre transform Fundamental relation

Enthalpy H = U + PV dH = TdS + V dP +
∑
i

µidNi + ΦdQ

Helmholtz free energy A = U − TS dA = −SdT − PdV +
∑
i

µidNi + ΦdQ

Gibbs free energy G = U − TS + PV dG = −SdT + V dP +
∑
i

µidNi + ΦdQ

Electrochemical enthalpy F = U − ΦQ dF = TdS − PdV +
∑
i

µidNi −QdΦ

Electrochemical free energy F = U − TS − ΦQ dF = −SdT − PdV +
∑
i

µidNi −QdΦ

Grand potential φ = U − TS − µjNj dφ = −SdT − PdV −Njdµj +
∑
i6=j

µidNi + ΦdQ

Electrochemical grand potential ϕ = U − TS − µjNj − ΦQ dϕ = −SdT − PdV −Njdµj +
∑
i6=j

µidNi −QdΦ

the statistical mechanics of a system, which provides a link between the configuration and motion of a set
of particles and the observed macroscopic properties of a thermodynamic system. In what follows, a brief
overview of the statistical mechanics of electrochemical interfaces will be provided.

3.1 Preliminaries

In statistical mechanics, we consider a system to exist in a certain macrostate, which is a particular ther-
modynamic state specified by a set of fixed properties such as constant particle number N , constant volume
V , and constant temperature T . Each macrostate is associated with a vast set or ensemble of microstates,
where a microstate can be viewed as a copy of the system whose constituent particles adopt different config-
urations and momenta. The set of microstates corresponding to a given macrostate spans all of the possible
configurations and momenta that conform to the particular macrostate. We can furthermore associate each
microstate with a set of 6N coordinates {rN ,pN} describing the positions r and the momenta p of the N
particles in the system, as well as an energy E = H(rN ,pN ) that is determined by a suitable Hamiltonian

H = T + V that accounts for the kinetic energy T (pN ) =
∑N
i |pi|2/2mi and the potential energy V(rN ) of

the particles. Individual microstates can additionally be viewed as points in a 6N -dimensional space that
is referred to as the phase space of the system. We can therefore quantify the “size” of a macrostate by
the volume it occupies in phase space, or equivalently the number of microstates it contains. Thus within
any given macrostate, there are an enormous number of possible microstates that the system could be in at
any given time; however, as we will discuss shortly, certain microstates may be more probable than others.
It follows then, that the subset of microstates with the highest probabilities can be identified to be the
equilibrium states of a system.

The probability of the system being in a particular microstate is determined by the Boltzmann distribu-
tion, which for the example (N,V, T ) ensemble discussed above, would be expressed as

P (rN ,pN ) =
exp

[
−βH(rN ,pN )

]
1

h3NN !

ˆ
Ω

dpNdrN exp
[
−βH(rN ,pN )

] =
exp

[
−βH(rN ,pN )

]
Q

, (11)

where Q is the partition function of the system that involves 6N integrals over the region of phase space
Ω occupied by the macrostate, and β = 1/kBT is known as the thermodynamic beta, where kB is the
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Boltzmann constant. Because each volume element of phase space dpdr has dimensions of action, it is
common by convention to introduce a factor of h−3 for each element to obtain a dimensionless probability,
where h is Planck’s constant. Furthermore, in the case that we consider particles to be indistinguishable from
one another, a permutation factor (N !)−1 is introduced to account for the identical configurations that arise
from interchanging the positions of indistinguishable particles. Macroscopic properties of the system such as
the internal energy, volume, and charge can be computed as an expectation value or an ensemble average of
the system. For example, the ensemble average of an arbitrary property A of a classically interacting system
is computed by integrating a weighted probability distribution over the region of phase space occupied by
the macrostate

〈A〉 =
1

h3NN !

ˆ
Ω

dpNdrNA(rN ,pN )P (rN ,pN ) (12)

where here we see that the pre-factor (h3NN !)−1 cancels when the expectation value is computed. In practice,
this expression can be simplified by analytically solving the momentum integrals over the phase space of
the system.5 This enables us to focus solely on the contribution of the configuration-dependent potential
energy Ei = V(rNi ) when computing expectation values, which means that the probability distribution that
must be considered depends only on the configurational space of the system and is thus proportional to
the overall probability P(rN ) ∝ P (rN ,pN ). Similarly, we also consider a configuration-dependent partition
function Z ∝ Q. And finally, the integrals over the configurational space of the system may be replaced by
a summation over the individual microstates that are accessible within the given macrostate. This allows us
to rewrite the probability distribution as

Pi =
exp [−βEi]∑
j

exp [−βEj ]
=

1

Z
exp [−βEi] . (13)

Accordingly, ensemble averages are analogously obtained by computing a weighted sum over the phase space
of the system

〈A〉 =
∑
i

AiPi. (14)

3.2 The electrochemical canonical (N, V, T,Φ) ensemble

In the electrochemical canonical ensemble, we consider a closed system to be in contact with a large reservoir
that is held at a fixed temperature T and a fixed electrode potential Φ.[14] The system is able to freely
exchange heat and electrons with the reservoir, and at equilibrium, the energy and the charge of the system
will fluctuate around their equilibrium values. Furthermore, as in classical thermodynamics, the temperature
and the electrode potential of the system will be equal to that of the reservoir at equilibrium. It can
additionally be shown6 that the Boltzmann distribution for the (N,V, T,Φ) ensemble can be expressed as

Pi =
1

Z
exp [−β(Ei − ΦQi)] . (15)

The validity of this definition for the Boltzmann distribution can be demonstrated by calculating the entropy
of the system via the Gibbs entropy formula

S = −kB
∑
i

Pi lnPi. (16)

Inserting Eq. 15 into Eq. 16, we obtain

S =
〈E〉
T
− Φ〈Q〉

T
+ kB lnZ, (17)

5For a single component system, it can be shown that the momentum integrals I =
´∞
−∞ dpN exp

[
−β
∑
i |pi|2/2m

]
eval-

uate to I = (
√

2mπkBT )3N . This allows the partition function to be expressed as Q = (Λ3NN !)−1
´
drN exp[−βV(rN )] =

Z/Λ3NN !. Here Λ =
√
h2/2πmkBT is the thermal de Broglie wavelength, and Z is referred to as the configurational integral.

It is straightforward to show that this result may be generalized to treat classically interacting multi-component systems.
6The Boltzmann distribution can be obtained in a straightforward manner using Lagrange multipliers to maximize the Gibbs

entropy of the system, subject to the constraints that the probability remains normalized
∑
i Pi = 1 and that the probability

distribution recovers the expectation values of the energy 〈E〉 =
∑
i PiEi and charge 〈Q〉 =

∑
i PiQi.

8



where we have made use of Eq. 14. After some minor algebra, we find

−kBT lnZ = 〈E〉 − TS − Φ〈Q〉. (18)

Comparing this equation to the Euler relation for the electrochemical free energy, F = U − TS − ΦQ, we
can readily identify F = −kBT lnZ, U = 〈E〉 and Q = 〈Q〉. Thus, the electrochemical free energy F and
the entropy S depend explicitly on the partition function Z, while the internal energy and the charge of the
system are obtained as expectation values of fluctuating quantities. It also straightforward to show that the
average charge and the internal energy can be expressed in terms of logarithmic derivatives of the partition
function

〈Q〉 =
∑
i

QiPi =
1

β

∂ lnZ

∂Φ
= −

(
∂F

∂Φ

)
N,V,T

(19)

〈E〉 =
∑
i

EiPi = Φ〈Q〉 − ∂ lnZ

∂β
. (20)

At equilibrium, heat and charge fluctuate randomly between the system and the reservoir, indicating that
the fluctuations ∆E = Ei − 〈E〉 and ∆Q = Qi − 〈Q〉 may also be considered to be random variables. For
a general fluctuation ∆A = Ai − 〈A〉, it can be shown that the mean of the fluctuation vanishes 〈∆A〉 = 0,
verifying that the energy and the charge distributions are centered on their means. The spread of the
distributions can be quantified as the mean square of the fluctuations 〈(∆A)2〉 = 〈A2

i − 2Ai〈A〉 + 〈A〉2〉 =
〈A2〉−〈A〉2, which is nothing other than the variance of the distribution of fluctuations. It can be shown that
the variance of a fluctuation is related to the second order logarithmic derivative of the partition function
with respect to the intensive conjugate variable of the fluctuating quantity. For example, when considering
the fluctuation of the charge in the system, we observe the following relation to hold

∂〈Q〉
∂Φ

=
1

β

∂2 lnZ

∂Φ2
=

1

β

∂

∂Φ

[
1

Z

∂Z

∂Φ

]
=

1

β

[
1

Z

∂2Z

∂Φ2
− 1

Z2

(
∂Z

∂Φ

)2
]

= β
[
〈Q2〉 − 〈Q〉2

]
. (21)

The latter is quite interesting as it provides a connection between the macroscopic charge-voltage response
of an electrochemical interface and the fluctuating charge on the electrode. In fact, this is the definition of
the differential capacitance of the electrode-solution interface, which allows us to write

C0 =
dσ

dΦ
=

1

A

d〈Q〉
dΦ

=
β

A

[
〈Q2〉 − 〈Q〉2

]
, (22)

where σ = Q/A is the surface charge density on the electrode, and C0 is the areal differential capacitance.
The exactness of this definition is guaranteed in the thermodynamic limit where the total number of particles
Ntot =

∑
iNi in the system approaches Avogadro’s number. To show this, we consider the fact that the

charge and the capacitance of a system are extensive quantities and can be expressed in terms of a scalar
λ as 〈Q〉 = λ〈Q〉ref and AC0 = λArefC0. Here, we define λ in terms of a reference system that has a fixed
stoichiometry and a total number of particles Nref =

∑
iN

ref
i , so that the total number of particles in the

scaled system are Ntot =
∑
iNi = λNref. Next, we define the amplitude of the charge fluctuation to be the

root mean square fluctuation ∆Qrms = (〈Q2〉−〈Q〉2)1/2, which is nothing other than the standard deviation
of the charge fluctuations. If we now consider the ratio of the fluctuation amplitude to the average charge
in the system

∆Qrms

〈Q〉
=

√
AC0

β〈Q〉2
=

√
λArefC0

βλ2〈Q〉2ref

=

√
ArefC0

β〈Q〉2ref

1√
λ
, (23)

we find that the charge fluctuations become vanishingly small in comparison to the average charge of the
system in the thermodynamic limit where λ→∞. As a consequence of this, the charge distributions become
very sharply peaked about their means.

The differential capacitance is one example of what is known as a response function or a susceptibility
in statistical mechanics. Several other response functions can be defined in the (N,V, T,Φ) ensemble that
consist of the response of an extensive quantity to variations in either their conjugate intensive variable or
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to another intensive variable that is controlled by the reservoir. It can be shown that given two sets of
conjugate variables (X,FX) and (Y, FY ), the following relation generally holds

〈∆X∆Y 〉 = 〈XY 〉 − 〈X〉〈Y 〉 =
1

β

∂〈X〉
∂FY

=
1

β

∂〈Y 〉
∂FX

, (24)

which states that the covariance of fluctuations in X and Y are related to the response of 〈X〉 to variations
in the externally controlled potential FY and vice versa. A number of response functions can be derived for
the (N,V, T,Φ) ensemble, several of which have been summarized below in Table 2.

Table 2: Summary of several useful response functions in the electrochemical canonical (N,V, T,Φ)
ensemble.

Response function

Internal energy - Voltage
∂〈E〉
∂Φ

= β[〈EQ〉 − 〈E〉〈Q〉]

Differential capacitance, AC0
∂〈Q〉
∂Φ

= β[〈Q2〉 − 〈Q〉2]

Constant volume heat capacity, CV
∂〈E〉
∂T

= kBβ
2

[
〈E2〉 − 〈E〉2 − Φ

β

∂〈E〉
∂Φ

]
Charge - Temperature

∂〈Q〉
∂T

= kBβ
2

[
1

β

∂〈E〉
∂Φ

− Φ

β

∂〈Q〉
∂Φ

]

3.3 The electrochemical grand canonical (µ, V, T,Φ) ensemble

In the electrochemical grand canonical ensemble, we consider an open system that is in contact with a large
reservoir that is held at a fixed temperature T , a fixed electrode potential Φ, and a fixed chemical potential
µj for a species j.[15] The system is able to exchange heat, electrons, and j particles with the reservoir, and
at equilibrium, the energy, charge, and particle number of the system will fluctuate around their equilibrium
values. The Boltzmann distribution in the (µ, V, T,Φ) ensemble can be expressed as

Pk =
1

Z
exp [−β(Ek − µj(Nj)k − ΦQk)] =

1

Z
exp [−β(Fk − µj(Nj)k)] , (25)

where we show explicitly that the Boltzmann factor can be rewritten in terms of the electrochemical enthalpy
Fk = Ek −ΦQk. Following the same procedure we employed in the previous section, we compute the Gibbs
entropy of the system as

S =
〈E〉
T
− µj〈Nj〉

T
− Φ〈Q〉

T
+ kB lnZ, (26)

which upon rearrangement leads to the definition of the electrochemical grand potential

ϕ = −kBT lnZ = 〈E〉 − TS − µj〈Nj〉 − Φ〈Q〉. (27)

Similar to the energy and charge in the (N,V, T,Φ) ensemble, the mean particle number can be expressed
in terms of a logarithmic derivative of the partition function

〈Nj〉 =
1

β

∂ lnZ
∂µj

= −
(
∂ϕ

∂µj

)
T,V,Φ,µk 6=µj

. (28)

Finally, a number of response functions can be defined in the (µ, V, T,Φ) ensemble that describe the re-
sponse of unconstrained extensive quantities to variations in the electrode potential, chemical potential, and
temperature. Several of these response functions are summarized below in Table 3.
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Table 3: Summary of several useful response functions in the electrochemical grand canonical (µ, V, T,Φ)
ensemble. The response functions listed in Table 2 (excluding the (N,V, T,Φ) heat capacity) also exist in
the (µ, V, T,Φ) ensemble, but are omitted for brevity.

Response function

Particle number - Voltage
∂〈Nj〉
∂Φ

= β[〈NjQ〉 − 〈Nj〉〈Q〉]

Internal energy - Chemical potential
∂〈E〉
∂µj

= β[〈ENj〉 − 〈E〉〈Nj〉]

Particle number - Chemical potential
∂〈Nj〉
∂µj

= β[〈N2
j 〉 − 〈Nj〉2]

Charge - Chemical potential
∂〈Q〉
∂µj

= β[〈QNj〉 − 〈Q〉〈Nj〉]

Constant volume heat capacity, CV
∂〈E〉
∂T

= kBβ
2

[
〈E2〉 − 〈E〉2 − µj

β

∂〈E〉
∂µj

− Φ

β

∂〈E〉
∂Φ

]
Particle number - Temperature

∂〈Nj〉
∂T

= kBβ
2

[
1

β

∂〈E〉
∂µj

− µj
β

∂〈Nj〉
∂µj

− Φ

β

∂〈Nj〉
∂Φ

]
Charge - Temperature

∂〈Q〉
∂T

= kBβ
2

[
1

β

∂〈E〉
∂Φ

− µj
β

∂〈Nj〉
∂Φ

− Φ

β

∂〈Q〉
∂Φ

]

3.4 Computational methods

Leading up to this point, we have recapitulated thermodynamics and statistical mechanics, and we have
additionally demonstrated how the effects of an applied electrode potential may be included within the
developed theoretical framework. We note that while statistical mechanics provides a formally exact answer
for how a collection of particles behaves under a set of externally applied potentials, it stops short of providing
an approach for performing practical calculations to obtain useful numerical results. Such approaches are
necessary to guide the design and understanding of physical material systems. That being said, a significant
effort has been made since the inception of statistical mechanics to develop the computational tools and
methods needed to obtain reliable estimates of material properties from atomistic models. In general, two
major obstacles must be overcome in order to achieve satisfactory results. The first challenge to address is
how to define the many-body potential V(rN ) that describes the interactions between the particles in the
system. In condensed matter systems such as the electrode-electrolyte interfaces we consider herein, quantum
effects generally become important and computationally demanding quantum mechanical calculations must
be performed to explicitly treat the electrons in the system. As will be discussed in the next section,
modern approaches rely on density functional theory (DFT) calculations, which offer a balance between
computational efficiency and accuracy for the ground state properties of most material systems. The second
challenge to be addressed is that the thermodynamic averages we aim to compute require integrals to be
carried out over the 6N -dimensional phase space of the system. Because of this, attempts to directly compute
the partition function in the thermodynamic limit where statistical mechanics becomes precise requires the
solution of an astronomically large number of integrals on the order of 1023. We therefore regard the partition
function to be an essentially unknowable quantity, and as will be discussed shortly, several methods have
been developed to circumvent the need for its direct evaluation.7

One popular approach to obtaining the equilibrium properties of an atomistic system is to perform a
molecular dynamics simulation, which evolves a collection of atoms through space and time by integrating

7There are, however, some exceptional cases where the partition function can be written as a closed-form expression, such
as the 1D and 2D Ising models that describe the magnetization of a lattice of binary spins. The latter are often regarded to be
“toy models” in view of their simplicity.
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Newton’s equations of motion

Fi(t) = miai(t) = −∇ri
V(rN , t) (29)

vi(t) =

ˆ t

t0

ai(s)ds+ vi(t0) (30)

ri(t) =

ˆ t

t0

vi(s)ds+ ri(t0), (31)

where Fi(t), ai(t), vi(t), and ri(t) are the time-dependent force, acceleration, velocity, and position of atom
i, respectively. Ensemble averages are then approximated as a time average across the trajectory that the
system takes through phase space after the system has been adequately equilibrated.8 The time-dependent
potential energy of the system V(rN , t) that appears in Eq. 29 may be defined ab initio using DFT as we have
discussed above, or may be approximated using a suitably parametrized model force field. Because of their
analytic form, the use of force fields considerably extends the length and time scales that may be considered
in a molecular dynamics simulation, thereby enabling the simulation of a broader range of phenomena.
However, the use of force fields becomes challenging when modeling electrochemical interfaces since the
electronic degrees of freedom in the system must be accounted for to accurately model the effects of an applied
electrode potential. A number of efforts have been made recently to effectively describe the behavior of
electrons within classical force fields resulting in the development of polarizable force fields, charge optimized
many body force fields, and reactive force fields that can capture the effects of instantaneous molecular dipole
formation, the variation in atomic oxidation states, as well as the formation and breaking of chemical bonds,
respectively.[16, 17, 18] Unfortunately, these approaches tend to be ad hoc by design and therefore require
extensive parametrization and validation work each time a new material system is considered. However,
once parameterized, large simulations may be conducted with an accuracy that approaches that of ab initio
molecular dynamics at a fraction of the computational cost. Nevertheless, in cases where force fields do not
yet exist or are challenging to parametrize, ab initio molecular dynamics may still be performed to provide a
rigorous description of the atomic and electronic degrees of freedom in the system. Of course, the downside
to this gain in accuracy and rigor is a highly demanding calculation that may presently require hundreds of
processors operating for weeks or even months at a time in order to obtain sufficiently accurate statistics.

While molecular dynamics simulations provide a perfectly valid basis for modeling materials, certain
types of phenomena or properties may be challenging to study due to the limited time and length scale
of a simulation. Fortunately, we are not restricted to using purely dynamical simulations to sample the
microstates of a thermodynamic system. Alternatively, one may employ a Monte Carlo method, which
facilitates the efficient computation of ensemble averages via a random sampling of the configurational space
of a system. Monte Carlo approaches are deemed to be superior to dynamical simulations when studying
infrequent events such as the binding of a substrate to an active site in enzyme catalysis or the penetration of
radiation through dense media such as the shielding materials used in nuclear reactors. Similarly, Monte Carlo
methods are useful for predicting properties that require a large degree of conformational or configurational
sampling such as when determining the most probable structure of a protein based on how its underlying
peptide chain may fold in on itself, or the composition and structure of an alloy electrode surface at a given
temperature, pressure, or electrode potential. In general, Monte Carlo methods excel in any application
that requires the evaluation of large multidimensional integrals such as the integrals frequently encountered
in statistical physics.[19] The utility of Monte Carlo methods stems from the fact that the accuracy of
an estimator ĀN for an expected value 〈A〉 improves systematically as the number of independent random
samples N drawn from a probability distribution P approaches infinity as a result of the law of large numbers,
and similarly that the statistical error ∆ĀN

= (〈Ā2
n〉 − 〈A〉2)1/2 that describes the standard deviation of the

estimator for the expected value decreases as N−1/2 as a consequence of the central limit theorem. In other
words, we can always improve the accuracy and precision of our estimate for an expected value by drawing
more random samples so long as the samples are independent and identically distributed. This is at variance
with conventional numerical quadrature techniques, which require the integration domain to be discretized

8The equivalence of time and ensemble averages is posited by the ergodic hypothesis, which states that over a long enough
simulation time, the microstates associated with a certain energy become equally likely. Thus, over a long enough trajectory of
an equilibrated system, the simulation samples the most probable microstates of a system which constitute a large fraction of
the phase space volume, thereby approximating the ensemble average.

12



into a mesh of uniformly spaced points at which a function is evaluated. The total number of points in
this mesh grows exponentially as Nd, where N is the number of points along each dimension, and d is
the number of dimensions to be considered. Because the accuracy and precision of quadrature techniques
improve with increasingly dense meshes, high dimensional systems become prohibitively expensive to treat
due to the exponential growth in computational effort. Compared to analogous Monte Carlo integration
schemes, achieving systematic improvements in the accuracy and precision of integral estimates via numerical
quadrature methods can be challenging. While a number of Monte Carlo algorithms exist in the literature, we
will concern ourselves with just one approach in this work that is known widely as the Metropolis algorithm.
We will provide a more detailed discussion of this approach in Section 4.3.

4 The quantum-continuum approach

4.1 Overview

In the previous section, a thermodynamic framework that accounts for the effects of an electrode potential on
the state of a thermodynamic system was introduced and discussed at a high level. The connection between
the net electronic charge and the microscopic properties of the system was underscored, and notable quantities
such as the differential capacitance of an electrode-electrolyte interface were defined in terms of statistical
fluctuations of unconstrained extensive quantities. The latter quantity is of particular interest in interfacial
electrochemical modeling since it describes the response of the electrode surface charge to variations in the
applied electrode potential. Physically, these charge variations may occur as the result of either faradaic or
non-faradaic processes that may be measured experimentally via a suitable electroanalytical technique. In
a faradaic process, electronic charge is transferred across the electrode-electrolyte interface to participate
in electrochemical reactions, whereas in a non-faradaic process, electronic charge accumulates along the
electrode surface and the structure of the electrolyte in the vicinity of the interface adjusts in response to
the excess charge on the electrode surface. In the limit where non-faradaic processes prevail, the electrode
is referred to as an ideally polarizable electrode and the electrode-electrolyte interface behaves as a capacitor
where electronic charge stored on the electrode surface is compensated by a build up of ionic charge within
the electrolyte near the surface. In the opposite limit where faradaic current dominates, the electrode is
referred to as an ideally non-polarizable electrode and no capacitive charging along the interface takes place.
Generally, real electrodes exhibit properties somewhere in between these two extremes and we can take these
to be idealized limits, however in certain cases near ideal polarizability can be observed in certain voltage
windows that are referred to as double layer ranges. It is evident, however, that in order to understand
the charge-voltage response of electrodes, we must first understand the structure and properties of what is
referred to as the electric double layer (EDL), which is composed of the charged electrode surface and the
structured electrolyte near the surface.

As depicted schematically in Fig. 5, the EDL generally consists of a compact layer and a diffuse layer.
Within the compact layer, water and specifically adsorbed ions with broken hydration shells may be present
proximal to the surface forming what is referred to as an inner Helmholtz plane, and hydrated ions and
water may be present above this forming what is referred to as an outer Helmholtz plane, or Stern layer.
The ions present within the compact layer are generally regarded to be immobile and form planes of charge
that are situated at a distance that is on the order of the ionic radius or hydrated ionic radius from the
surface (or roughly 3-5 Å). Unlike the ions in the compact layer, the ions present in the diffuse layer are
fairly mobile and form a space charge region that can extend approximately 10-100 nm into the bulk of
the electrolyte.[20] This length scale is problematic for first principles calculations, however, since it would
require an immense number of water molecules and ions to be considered introducing an astronomical number
of degrees of freedom into the calculation. As will be discussed shortly, it is a common practice to employ
a multiscale modeling approach in which only a small portion of the calculation domain is treated quantum
mechanically to retain sufficient accuracy, while the remainder of the calculation domain is treated in a
simplified manner to greatly improve the speed of the calculation. In the examples that will be discussed
below, we will see how an embedded polarizable continuum model can be employed to simplify the treatment
of the electrode-electrolyte interface. The latter forms the basis of the quantum-continuum approach to first-
principles electrochemical modeling.
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Figure 5: The electric double layer consists of a charged electrode surface and often a combination
of a compact layer of ions adjacent to the surface and a diffuse layer of ions that extend into the
bulk of the electrolyte. The electric double layer screens the interfacial electric field generated by
the charged surface, as depicted by the electrostatic potential of the interface shown as the solid
black curve. The converged potential φ(z =∞) is aligned to zero by convention in the bulk of the
electrolyte to simplify the computation of the voltage to Φ = −EF , where EF is the Fermi level of
the electrode denoted by the dashed line.

4.2 Electric double layer (EDL) models

To date, several models with varying complexity have been proposed to describe the distribution of ionic
charge within an aqueous electrolyte. In order to preface our discussion of the main EDL models and how
they describe the charge-voltage response of model electrochemical interfaces, it is necessary to first discuss
how the voltage on an electrode is defined in this context. As shown in Fig. 5, the voltage Φ on an electrode
is defined as the work required to transfer an electron from the electrode to the bulk of the electrolyte
Φ = −e0φ(z = ∞) − EF , where −e0 is the charge of an electron, φ(z = ∞) is the electrostatic potential of
the interfacial system far from the electrode surface in the bulk of the electrolyte, and EF is the Fermi level
(or chemical potential) of the electrons in the electrode. In practice, we align the potential to be zero in
the bulk of the electrolyte so that the voltage can be simply computed as Φ = −EF , where the Fermi level
can be readily obtained for a model electrode via quantum-continuum calculations. Here we note that the
latter is the definition of the voltage on an absolute scale, and that it is necessary for practical reasons to
report this voltage on a relative scale to a well-established reference electrode, such as the standard hydrogen
electrode (SHE). This can be achieved by subtracting 4.44 V, which is an estimated value for the absolute
SHE potential, or alternatively by aligning the potential of zero charge (PZC) of the model electrode to
an experimentally measured PZC.[21, 14, 15, 22] Here, the PZC is the voltage at which zero net charge
exists on the electrode surface. In general, the PZC of an electrode is sensitive to the composition of the
electrolyte it is in contact with. However, if the PZC is observed to have a concentration dependence in a
given electrolyte, then specific adsorption effects may be prominent and greater care must be taken in order
to properly describe the electrode surface.[20]

The earliest model introduced for the EDL, which is referred to as the Helmholtz model, treats the
ionic counter charge as a plane of charge sitting a distance λH from the electrode surface. The electrode
itself is modeled as having an infinite permittivity εM = ∞, so that the potential within the electrode is
a constant φM . In effect, this model treats the electrode-electrolyte interface as a parallel plate capacitor
where the two plates are separated by a dielectric medium. As shown below in Fig. 6, the electrostatic
potential varies linearly between the two plates and the interfacial electric field (E = −dφ/dz) is completely
screened (E = 0) by the ionic countercharge at z = λH , leading to the following piecewise dependence of the

14



electrostatic potential

φ(z) =


φM = 4πσλH/εS , z < 0

4πσ(λH − z)/εS , 0 ≤ z < λH

0 , λH ≤ z
, (32)

where z = 0 defines the top of the metal surface, σ is the surface charge density of the metal, and εS is
the permittivity of the solvent layer separating the electronic and ionic charge. The electrode potential is

Helmholtz Gouy-Chapman Gouy-Chapman-Stern

Figure 6: Electrostatic potential profiles for the Helmholtz, Gouy-Chapman, and Gouy-Chapman-
Stern models plotted on a relative potential scale. The vertical lines indicate the Debye lengths
for 1 M, 0.1 M, and 0.01 M symmetric electrolytes with monovalent ions.

therefore modeled to vary linearly with the surface charge density Φ = −4πσλH/εS , and as depicted in Fig. 7,
the differential capacitance is a constant parametrized by the Helmholtz layer thickness and the dielectric
permittivity

CH =
dσ

dΦ
=

εS
4πλH

. (33)

Helmholtz Gouy-Chapman Gouy-Chapman-Stern

Figure 7: Representative differential capacitance plots for the Helmholtz, Gouy-Chapman, and
Gouy-Chapman-Stern models.

Shortly after the introduction of the Helmholtz model, it was quickly realized that it provided an incom-
plete picture of the EDL as real electrodes exhibit a more complex charge-voltage response that leads to
a variable capacitance that passes through a minimum at the PZC of the electrode. The Gouy-Chapman
model solves some of these deficiencies by considering the ionic countercharge to be composed of a diffuse
layer of ions. In this framework, the ions are assumed to be point particles that are distributed within the
electrolyte according to Boltzmann statistics, leading to a diffuse layer charge density

ρd(z) = zDcD

[
exp

(
− βzDφ(z)

)
− exp

(
βzDφ(z)

)]
, (34)
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where zD is the valence of the ions (for now we assume symmetric electrolytes with ion charges of ±zD)
and cd is the concentration of the ions. Here we see that the ionic charge distribution depends upon the
interfacial potential, which is generally not known a priori. In order to obtain the potential (and therefore
the ionic charge distribution), we can insert the Boltzmann distributed density ρD(z) into a Poisson equation
and solve the resulting Poisson-Boltzmann equation

d2φ

dz2
(z) = −4π

ρD(z)

εS
=

8πzDcD
εS

sinh
(
βzDφ(z)

)
. (35)

By integrating this equation with the boundary conditions φ(z = 0) = φM and dφ/dz → 0 as z → ∞, we
obtain the derivative of the potential as

dφ

dz
(z) = −

(
32πcD
βεS

) 1
2

sinh

(
βzDφ(z)

2

)
, (36)

where we note that the potential and its derivative have opposite signs, indicating that the potential is
correctly being screened by the diffuse ionic charge density. By employing Gauss’ law (

‚
~E · d~S = 4πQ/ε),

we can show that the magnitude of the electric field is proportional to the surface charge density as dφ/dz =
4πσ/εS , allowing us to express the surface charge density at z = 0 as

σ = −
(

2εScD
πβ

) 1
2

sinh

(
βzDφM

2

)
. (37)

From here, we can obtain the differential capacitance (Fig. 7) of the diffuse ionic countercharge as

CD =
dσ

dΦ
= CD,pzc cosh

(
βzDΦ

2

)
, (38)

where CD,pzc is the differential capacitance at the PZC of the electrode, and the absolute voltage in this
model is taken to be Φ = −φM . The former quantity can be expressed as

CD,pzc =

(
εSβcDz

2
D

2π

) 1
2

=
εS

4πλD
, (39)

where we have introduced the Debye length λD = (εS/8πβcDz
2
D)1/2, which describes the characteristic

screening length of the diffuse counter charge that is sensitive to both the composition and concentration of
the bulk electrolyte. Furthermore, by integrating Eq. 36, it can be shown that the potential (Fig. 6) in the
system decays exponentially into the electrolyte

φ(z) = φM exp

(
− z

λD

)
, (40)

and that the Debye length is the distance at which the potential has decayed by a factor of 1/e. Therefore,
as the concentration or valence of the ions is increased, the differential capacitance of the interface increases
while the Debye length shrinks. Similarly, the capacitance increases at potentials both above and below the
PZC as shown in Fig. 7, providing an enhanced qualitative agreement with experimental measurments.

The Gouy-Chapman model is successful to some extent in that it predicts a minimum in the differential
capacitance at the PZC, however the model becomes less applicable at modest electrode potentials due to
the predicted exponential growth in the capacitance, a feature that is clearly at variance with experimental
results. The model also fails in situations where ions become specifically adsorbed to the surface since
the point-like ions are free to approach infinitely close to the electrode surface. These issues were rectified
by Stern who considered the EDL to contain both Helmholtz and Gouy-Chapman layers. In the Gouy-
Chapman-Stern model, the interfacial capacitance is modeled as two capacitors placed in series, leading to
the overall capacitance

CS =

(
1

CH
+

1

CD

)−1

=
εS
4π

(
λH +

λD
cosh(zdβΦ/2)

)−1

, (41)
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where CH and CD are the Helmholtz and Gouy-Chapman capacitance, respectively. As shown in Fig. 7,
the capacitance exhibits a minimum about the PZC of the electrode and attains a finite value at electrode
potentials higher and lower than the PZC in closer agreement with measurements. The electrostatic potential
of the Gouy-Chapman-Stern model is depicted in Fig. 6, where we see that the model behaves similarly to
the Helmholtz model close to the surface where the potential decays linearly, but then begins to decay
exponentially at the interface of the compact and diffuse layers adopting a Gouy-Chapman-like response.

4.3 Example: Silver monolayer stripping on Au(100)

In this section, we demonstrate how the quantum-continuum approach may be applied to model inter-
facial electrochemical phenomena using planewave density functional theory and a polarizable continuum
model.[23] As an example, we consider the electrochemical stability of an atomically thin layer of silver on
the gold (100) surface.[15] The calculations that will be described in this section are performed in a periodic
cell, and consist of a model gold (100) surface that is composed of seven atomic layers, where the adsorbed
silver atoms are included symmetrically on top of the exterior layers of gold. This type of model is commonly
referred to as a symmetric slab, and we would say that the gold surface is modeled within the slab-supercell
approximation. The geometry of a typical cell is shown below in Fig. 8, along with the electrostatic potential
profile of a silver-covered slab with several different surface charges. In these calculations, the electrode
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Figure 8: The finite charges placed on the silver-covered gold (100) slab are screened by the planar
ionic countercharge in solution. (a) The response of the continuum dielectric at the cavity interface
is visualized. Positive/negative polarization charges are shown in red/blue. (b) The electrostatic
potential of the electrified slabs are aligned to zero at the edges of the supercell. (c) The Helmholtz
layer placed 3 Å from the silver monolayer fully screens the surface charge.

surface is embedded in a polarizable dielectric cavity that enables the description of solvation effects in a
computationally efficient manner.9 Specifically, the mutual interaction of the slab and the continuum dielec-
tric induces the dielectric medium and the electron density to polarize along the interface of the cavity (as
shown in Fig. 8a), which mimics the interaction of the metal surface and the dipoles of interfacial water.[23]
We additionally consider the electrolyte to be sufficiently concentrated so that the ionic countercharge can

9Specifically, these calculations were performed with the planewave DFT code PWscf that is implemented in Quantum
ESPRESSO and the self-consistent continuum solvation model that is implemented in the Environ module, which serves as a
plugin to the PWscf code.[24, 23]
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be effectively modeled as a Helmholtz layer. The planar ionic countercharge is positioned 3 Å from the
electrode surface and fully screens the surface charge density as shown in Fig. 8c.

The electrochemical stability of silver monolayers on single crystal gold surfaces has been thoroughly
studied experimentally. For example, cyclic voltammetry measurements of silver monolayer stripping on the
gold (100) surface indicate that the silver monolayer desorbs in three distinct stages, with desorption peaks
at 1.25 V, 0.93 V, and 0.72 V versus the SHE in a solution of 5×10−3 M Ag2SO4 + 0.5 M H2SO4 at T = 298
K.[25] In order to gain insight into how the presence of surface charge stabilizes the silver monolayer on the
surface, we can simulate the adsorption process under different environmental conditions. To begin, we must
consider the following electrochemical reaction

Ag+ + e− + ∗
 Ag∗, (42)

where ∗ is an available surface site, and Ag∗ indicates an adsorbed silver atom on the gold surface. At
equilibrium, we have

µAg+ − e0Φ = µAg∗(Φ, θ), (43)

where we note that the equilibrium chemical potential of the adsorbed silver atoms µAg∗(Φ, θ) has an explicit
dependence on the applied electrode potential Φ and silver surface coverage θ. Because the silver atoms may
adopt an inordinate number of configurations for a given coverage, it is necessary to sample a number of
these configurations to gain a sense of how key thermodynamic properties of the interface may vary. For
example, by sampling a series of configurations with neutral surface charge, we may directly probe the
variation in the PZC of the electrode as a function of surface coverage, as shown below in Fig. 9a. Here we
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Figure 9: a) Variation in PZCs of silver covered Au(100). b) Variation in the Helmholtz differential
capacitance of a variety of silver monolayer configurations on a Au(100) surface.

see the general trend that as the surface coverage increases, the PZC initially begins to shift towards negative
potentials, but then begins to increase again after the silver surface coverage exceeds 50%. We also observe
that surfaces with compact island-like silver configurations tend to have more positive PZCs as compared to
surfaces with dispersed configurations. This indicates that dispersed configurations are accompanied with a
larger change in the surface dipole upon monolayer formation as compared to compact configurations. The
effect of this is most readily observed in the differential capacitance, which is shown in Fig. 9b for Helmholtz
layer thicknesses of 3Å and 5Å. As anticipated, we observe that increasing the Helmholtz layer thickness
decreases the capacitance in agreement with Eq. 33. Here we also observe the trend that configurations
with lower PZCs tend to have higher capacitance. The origin of this relationship between PZC shift and
capacitance enhancement is due to the charge transfer that takes place between the silver adatoms and the
gold surface. In general, larger extents of charge transfer occurs for dispersed silver adlayers as compared to
condensed adlayers, which is additionally associated with an enhancement in the density of states near the
Fermi level of the electrode. The latter enhancement is important as it leads to a concomitant increase in the
quantum capacitance of the electrode, which is typically on the order of 100-1000 µF/cm2 (as compared to 30
µF/cm2 for electrolytes) for transition metals. Because the overall capacitance of the interface depends on the
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capacitance of the electrode and the capacitance of the electrolyte Ctot = (1/CQ + 1/CH)−1, enhancements
in the quantum capacitance increase the overall capacitance of the interface.

Another key thermodynamic property to be assessed is the binding energy of the monolayer per surface
site as a function of the silver adlayer coverage. Here we would like to point out that binding energies are
enthalpies and not free energies as they do not include entropic contributions, which as we saw previously,
requires knowledge of the partition function. Furthermore, understanding how the electrode potential affects
binding energies is a prerequisite for determining the equilibrium coverage at a given electrode potential.
With this said, we can calculate the binding energy EB per site of a neutral symmetric slab as

EB =
1

2Nsites

[
E(NAg∗)− Eclean −NAg∗µ◦Ag

]
, (44)

where Nsites is the total number of sites on one face of the symmetric slab, E(NAg∗) is the total energy of
the neutral silver covered slab with NAg∗ adsorbed silver atoms, Eclean is the total energy of the pristine
gold (100) slab, and µ◦Ag is the chemical potential of silver in its standard reference state as a bulk metal. A
charge-dependent binding energy can then be obtained by Taylor expanding the neutral binding energy to
second order

EB(Q) = EB +

(
∂EB
∂Q

)
Q=0

Q+
1

2

(
∂2EB
∂Q2

)
Q=0

Q2 = EB + Φ0Q+
Q2

2AC0
, (45)

where by definition, the first and second order coefficients are the PZC and the inverse of the differential
capacitance. We can subsequently convert the charge-dependent binding energy of each adlayer configuration
to an electrochemical enthalpy by the Legendre transform F = EB(Q)−ΦQ, where Q = AC0(Φ−Φ0), and
the PZC Φ0 in this expression is configuration-dependent. In principle, the differential capacitance could
also be configuration-dependent, however we will just consider the case where it is a constant parameter
for all configurations to understand how its value influences the overall thermodynamics of the system. As
shown in Fig. 10a, if we set the capacitance to 0 µF/cm2, which is equivalent to considering each surface
with a neutral charge, we find that the binding energies are insensitive to the applied electrode potential.
Furthermore, because DFT treats electronic systems at 0 K, only the lowest energy states or ground states
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Figure 10: a) Variation in the silver monolayer binding energies on Au(100) as a function of silver
coverage and applied electrode potential for Φ = 0.65 V vs. SHE (squares), Φ = 1.00 V vs. SHE
(circles), and Φ = 1.40 V vs. SHE (pentagons). b) Silver adsorption isotherms computed for
C0 = 0 µF/cm2 and C0 = 30 µF/cm2 for T = 0 K (dashed lines) and T = 298 K (solid lines with
markers). The 298 K results were obtained via grand canonical Monte Carlo simulations.

would be available to the surface at this temperature. The lower convex hull or lower envelope formed
by these ground states shown as the solid line in the figure indicates that only two stable states exist
in this case: the clean gold (100) surface and the same surface with a full silver monolayer. All of the
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configurations with intermediate coverages are higher in energy and are therefore inaccessible to the system
at 0 K. If we alternatively consider the capacitance to be 30 µF/cm2, we see distinctly different behavior.
In this case, the binding energies become potential-dependent, and we see that several new structures with
intermediate coverages migrate to the convex hull, indicating that more configurations with sub-monolayer
coverage become stable in the presence of finite surface charge than compared to the neutral case.

In the interest of determining the equilibrium coverage as a function of applied potential, i.e., the ad-
sorption isotherm of silver on the gold (100) surface, it is necessary to consider the chemical potential of
the adsorbed silver. At 0 K, this is a straightforward task since the coverage-dependent chemical potential
can be determined directly by computing the derivative of the convex hull of the binding energy data. The
equilibrium surface coverage can then be obtained for a range of electrode potentials through the equilibrium
condition defined by Eq. 43. As shown in Fig. 10b, if we consider the 0 µF/cm2 case, the silver monolayer
is predicted to desorb in a single step at an electrode potential of 0.78 V versus the SHE. This is inline with
what was found with the binding energy data since the only ground states present were the clean and fully
covered surface. Alternatively, for the 30 µF/cm2 case, we find that the silver monolayer is predicted to
desorb over the course of several steps as suggested by the higher number of ground states present on the
voltage-sensitive convex hulls. While it is useful to consider 0 K results to gain a general understanding of
adsorption trends, it is considerably more interesting to study adsorption behavior at room temperature since
experiments are usually carried out under ambient conditions. This can be achieved by employing a force
field or an analogous model that can be trained to predict the binding energies determined from quantum-
continuum calculations. In this example, we have employed a cluster expansion approach that models
configuration-dependent quantities as a series expansion of interacting sites or clusters on a lattice.[26, 15]
Using the cluster expansion approximation for the electrochemical enthalpies, grand canonical Monte Carlo
simulations can be performed to rapidly sample the configurational space and to subsequently estimate the
average surface coverage at a fixed ion chemical potential, temperature, and electrode potential. In these
simulations, a lattice of adsorption sites is modeled to be in contact with a reservoir of silver ions, along with
a potentiostat and a thermostat that the system can exchange silver atoms, electronic charge, and thermal
energy with. A trajectory is generated by randomly proposing new configurations through a series of trial
moves and accepting or rejecting them according to the criteria set forth by the Metropolis algorithm.[27, 19]
A trial move would consist of selecting a lattice site at random and adding (removing) a silver atom if the
site is empty (occupied). The electrochemical enthalpy of the newly proposed configuration is computed,
which is then used to compute the relative Boltzmann probability of the proposed configuration (Pp) to the
current configuration (Pc)

Pp
Pc

=
exp[−β(Fp −NpµAg++e−)]

exp[−β(Fc −NcµAg++e−)]
= exp[−β(∆F −∆NµAg++e−)], (46)

where µAg++e− = µAg+ − e0Φ is the coupled chemical potential of the silver ions in solution and electrons
in the electrode. The trajectory is updated at each step of the simulation by drawing a random number
from a uniform probability distribution over the range [0, 1]. If the random number is less than or equal to
the probability ratio, the newly proposed configuration is accepted and added to the trajectory as the next
configuration; otherwise, the proposed configuration is rejected and the current configuration is added in its
place.10 The average coverage can then be computed as

〈θ〉 =
1

N

N∑
i=1

θi, (47)

where N is the number of steps over which the average is being computed, and θi is the coverage of configu-
ration i in the trajectory. The adsorption isotherms for the 0 and 30 µF/cm2 cases computed at 298 K are
plotted on top of the 0 K isotherms in Fig. 10b. Here we observe that at finite temperature, the 0 µF/cm2

isotherm still predicts the monolayer to desorb in a single step, while several of the predicted steps in the
30 µF/cm2 case have been smoothed to reveal an overall two step desorption process. The finite capaci-
tance case is more closely aligned with the experimental voltammetry which revealed a three step desorption

10It is crucial in the event of a rejection to recycle the previous configuration to ensure the configurations are sampled
according to the Boltzmann distribution.[27, 19]
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process. While the first two peak positions of the voltammetry are predicted fairly well with this model,
we find that the presence of the third peak cannot be attributed to surface charge effects alone. A likely
explanation for this may be found in Fig. 9, where we observe that the potential of zero charge of the gold
(100) surface with low silver surface coverage is predicted to be less than 0.4 V versus the SHE. Therefore,
at electrode potentials positive of this, the silver-covered surface is predicted to have a net positive charge.
The presence of a positive surface charge would provide a driving force for the co-adsorption of anions such
as the bisulfate or sulfate anions present in the electrolyte. Although this is a feature that has not been
presently considered in this example, it is highly anticipated to improve the agreement of the predictions
with voltammetric results.
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