BROOKHFAVEN

NATIONAL LABORATORY

BNL-222300-2021-COPA

Convolutional Neural Networks Based Remote Sensing Scene Classification
under Clear and Cloudy Environments

H. Yu, Y. Lin

Submitted to the IEEE International Conference on Computer Vision Workshop Conference
to be held at Montreal Canada
October 11 - 17,2021

Computational Science Initiative

Brookhaven National Laboratory

U.S. Department of Energy
~OTHER

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



Convolutional Neural Networks Based Remote Sensing Scene Classification
under Clear and Cloudy Environments

Huiming Sun', Yuewei Lin?, Qin Zou?, Shaoyue Song*, Jianwu Fang>, Hongkai Yu'*
ICleveland State University, 2Brookhaven National Laboratory
3Wuhan University, *Beijing Jiaotong University, *Chang’an University

Abstract

Remote sensing (RS) scene classification has wide ap-
plications in the environmental monitoring and geological
survey. In the real-world applications, the RS scene images
taken by the satellite might have two scenarios: clear and
cloudy environments. However, most of existing methods
did not consider these two environments simultaneously. In
this paper, we assume that the global and local features are
discriminative in either clear or cloudy environments. Many
existing Convolution Neural Networks (CNN) based models
have made excellent achievements in the image classifica-
tion, however they somewhat ignored the global and local
features in their network structure. In this paper, we pro-
pose a new CNN based network (named GLNet) with the
Global Encoder and Local Encoder to extract the discrim-
inative global and local features for the RS scene classifi-
cation, where the constraints for inter-class dispersion and
intra-class compactness are embedded in the GLNet train-
ing. The experimental results on two publicized RS scene
classification datasets show that the proposed GLNet could
achieve better performance based on many existing CNN
backbones under both clear and cloudy environments.

1. Introduction

Remote sensing (RS) scene classification is a fundamen-
tal task in the remote sensing research and it is widely used
in agricultural exploration, urban planning, environmental
monitoring, etc. The RS scene images are normally taken
by the satellite or UAV (Unmanned Aerial Vehicle). In the
real-world applications, the RS scene images might have
two scenarios: clear and cloudy environments. However,
most of existing methods, such as [2,4,6,8,23,24,26,28,30],
did not consider these two environments simultaneously. In
this paper, we would like to develop a new CNN based
method to accurately classify the RS scene images under
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both clear and cloudy environments'.

To solve this RS scene classification task, several ap-
proaches have been developed, which could be roughly di-
vided into two types: traditional machine learning based
methods and deep learning based methods. Early traditional
machine learning based methods [3, 16, 18,21,27] mainly
use low-level hand-crafted features (e.g., color, shape, tex-
ture) and regular classifiers (e.g., Support Vector Machine)
to classify the images. Because the representation capac-
ity of hand-crafted features might be not enough to fully
describe the complex RS scene images, the traditional ma-
chine learning based methods did not perform very well
even on the clear RS scene images. Recently, with the
tremendous development of CNN, the deep learning based
methods [1,2,14,23,29,30] show progresses in the RS scene
classification by designing some end-to-end deep neural
networks. As shown in [23], many CNN based image clas-
sification methods like AlexNet [11], VGG16 [22], and
ResNet [7] could be used to classify the RS scene images
with the relatively good performance. These well-known
CNN architectures can be used as backbones for the deep
learning based methodology development.

However, all these two kinds of methods assume that the
input RS scene image is clear without the degradation by
clouds. The previous work [3] introduced that the global
and local features can be fused to improve the performance
for the clear RS scene classification. In this paper, we as-
sume that the global and local features are discriminative
under either clear or cloudy environments, which could be
used to classify the RS scene image under either clear or
cloudy environments. However, many existing CNN based
models somewhat ignored the global and local features in
their network structure. Therefore, we propose a new CNN
based network (named GLNet) under either clear or cloudy
environments that utilizes Global Encoder and Local En-
coder to extract the discriminative global and local features
for the RS scene classification. In addition, the constraints
for inter-class dispersion and intra-class compactness are

'In this paper, “cloud” represents the “thin cloud” in remote sensing.
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Figure 1. Remote Sensing scene image classification under clear and cloudy environments. Top row: clear images from the public RSSCN7
dataset (7 classes in total) [30]; Bottom row: corresponding cloudy images from the synthetic dataset.

embedded in the network training of the proposed GLNet.
Besides, to test the proposed GLNet, we synthesize the
cloudy RS scene images based on the clear RS scene images
of two publicized RS datasets [28, 30]. On the both clear
and synthetic cloudy RS scene image recognition datasets,
the extensive experimental results show that the proposed
GLNet could obtain the best performance over the compar-
ison methods.

The contributions of this paper are threefold: 1) We pro-
pose a new deep learning model to classify both clear and
cloudy RS scene images; 2) We propose a new deep learn-
ing method named GLNet combining the learning of dis-
criminative global and local features for the RS scene clas-
sification under clear and cloudy environments, where inter-
class dispersion and intra-class compactness are embedded
in the GLNet training; 3) Without publicized real cloudy
RS scene image datasets, we propose a way to study this
research problem from data synthesizing.

Our publicized code of the cloudy RS scene image syn-
thesizing and the proposed GLNet can be found in ht tps:
//github.com/wuchangsheng951/GLNET.

2. Related Work

RS scene classification: In the past few decades, many
different approaches have been developed for remote sens-
ing scene classification. They can be divided in two
forms, i.e., traditional machine learning and deep learn-
ing based methods. The traditional machine learning meth-
ods [3, 16, 18,21,27] extract some handcrafted image fea-
tures (like color histogram, texture) and then input them
into some classifiers for the recognition, such as RF [19],
SVM [20]. Although these traditional machine learning
approaches could effectively deal with regular cases, they
cannot accurately classify complex remote sensing scenes
due to the lack of overall understanding of semantic in-
formation. To solve this problem, deep Convolution Neu-
ral Networks (CNNs), e.g., AlexNet [11], VGG16 [22],

ResNet [7], have recently been applied for the remote sens-
ing scene classification [1, 2,9, 14, 15,23,24,29,30]. For
example, [15] extracts the deep CNN features instead of
handcrafted image features and applies the SVM classifier
for the remote sensing scene classification; [9] stacks dif-
ferent layers of CNN feature maps and they show that the
multilayer stacked covariance pooling is quite useful for the
remote sensing scene classification; [24] uses a Gated Bidi-
rectional Network to integrate the hierarchical feature ag-
gregation for this task. These deep learning based methods
might focus on the global image features and somewhat ig-
nore the local image features, and they all assume that the
input remote sensing images are clear without clouds.

RS scene classification under cloudy environment: To
the best of our knowledge, RS scene classification under
cloudy environment has not been systemically studied be-
fore. In the research area of RS scene classification, most
of previous researches did not consider the cloudy environ-
ment, which actually happens in the real-world data collec-
tion. Previous researches try to remove clouds only for a
better general visualization purpose [5, 12, 13, 17], but there
are no related works to discuss the RS scene classification
problem under cloudy environment so far as we know. In
this paper, we propose a new deep learning based GLNet
model for the RS scene classification under both clear and
cloudy environments.

3. Method
3.1. Synthetic Cloudy RS Scene Image Data

We generate the synthetic cloud image I, by using the
summation of multi-scale random noise images. The de-
tailed synthesizing is computed as follow:

I. =)W (Rand(2")) /2°, (1)
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Figure 2. Overview architecture of the proposed GLNet for the RS scene classification under clear and cloudy environments. The proposed
GLNet could learn the discriminative global and local features with the embedding of inter-class dispersion and intra-class compactness in

the network training.

where Rand(2°) denotes a randomizing function which
produces random noises with the image size of 2%, and ¥
denotes the operator that resizes the random noise to the
cloud image size, and s is the scale factor, which is the nat-
ural number with the range from 1 to logy(N), where N
is the cloud image size. The examples of synthetic cloud
images are shown in Fig. 1.

3.2. Network Architecture

This section introduces the details of the proposed
GLNet, whose network architecture is illustrated in Fig. 2.
Different with many CNN models somewhat ignoring the
local information, the proposed GLNet designed a two-
branch CNN architecture to fully extract the global and lo-
cal features simultaneously.

Given one input RGB RS scene image with the size of
H xW x 3 as shown in Fig. 2, the proposed GLNet uses one
branch as the Global Encoder to extract the global features
f, by feeding the whole image as the input, and simultane-
ously applies another branch as the Local Encoder to learn
the local features {f;,,f;,,f;,, f;,, f;, } by feeding the local
patches as the input. The local patches are the five local
image regions divided from the whole image: top left, top
right, bottom left, bottom right, and center. Each patch is a
square, whose size is 36% of the whole image. It is worth
mentioning that the local patches are spatially overlapped a
little bit to maintain their hidden context relationship. Each
local patch is then resized to H x W x 3 as the input to
the Local Encoder. Since the global and local features are
both discriminative under clear and cloudy environments,
we fuse them by a simple concatenation after the feature
extraction as the final discriminative features f, followed by
an average pooling layer and a Fully Connected (FC) layer

to extract the deep features to learn the RS scene class cen-
ters and another FC layer to reduce the output dimension to
the class number K.

The Global Encoder and Local Encoder can be replaced
by some widely-used CNN as the backbones, such as
AlexNet [11], VGG16 [22], and ResNet [7], etc.

3.3. Loss function

3.3.1 RS Scene Recognition Loss

The RS scene recognition loss is realized by the fully super-
vised cross-entropy loss for classification. Given one input
image x, its output for K classes by GLNet is defined as
01,09, -+ ,0F. The output is not normalized, so we use the
“Softmax” function to normalize each output value as the
probability into the range of [0, 1], which is shown in the
following equation:

exp(0;)

=%
Zj:l exp(0;)

where p; is the probability to be the i-th class for the in-
put image. Let us assume the predicted probability of x as
the ground-truth class to be px and the ground-truth label
is a K-dimensional one-hot vector y, where y; = 1 if the
ground truth of x is class . The RS scene recognition loss
is defined the following equation:

Pi = 2

Lr(x,y) = —yi - log px. 3

Minimizing the RS scene recognition loss during the net-
work training will optimize the network to predict the con-
sistent class as the ground truth label.



3.3.2 RS Scene Center loss

In this paper, we apply the center loss [10, 25] to em-
bed the inter-class dispersion and intra-class compact-
ness in the network training. Given the m input images
X1,X2,* ,Xm IN one training mini-batch, we define the
center of deep features for each of K classes. Let us as-
sume that x;’s deep global-local feature center is cy;. The
center loss is defined in the following equation:

m

1
Lo = §Z\|xi—cyil|§~ (4)

i=1

As defined in [25], minimizing the center loss means to
learn each class’s feature center and penalize the Lo dis-
tances between the features and their corresponding class
centers. The center cy; is updated as the deep features
changed during the each mini-batch training.

3.3.3 Overall loss

With the above two loss terms, the overall loss function of
our approach can be written as:

L:LR-i-O(Lc, (5)

where « is a weight parameter to balance each loss term in
the overall loss function.

4. Experiments
4.1. Datasets

Two popular remote sensing scene classification datasets
(RSSCN7 and UC Merced) are used as the clear RS scene
images to evaluate the proposed method. In addition, we
use the method described in Section 3.1 to synthesize the
cloudy RS scene images. The detailed dataset information
is introduced in the following.

4.1.1 RSSCN7 and RSSCN7_cloud Datasets

The RSSCN7 [30] dataset is acquired from Google Earth.
Each image has a size of 400 x 400 pixels in the RGB color
space. These images contain seven classes: grassland, farm-
land, industrial and commercial regions, river and lake, for-
est field, residential region, and parking lot. Each category’s
image number is 400. Using each clear image in RSSCN7,
we generate its corresponding cloudy image, leading to a
new synthetic dataset named RSSCN7_cloud.

4.1.2 UC Merced and UC Merced_cloud Datasets

The UC Merced dataset [28] is composed of 21 classes and
each class is consists of 100 images with a size of 256 x 256

pixels in the RGB color space. These 21 classes are agri-
cultural, airplane, baseball diamond, beach, buildings, cha-
parral, dense residential, forest, freeway, golf course, har-
bor, intersection, medium residential, mobile home park,
overpass, parking lot, river, runway, sparse residential, stor-
age tanks, and tennis court. In the same way, we generate its
corresponding cloudy images, resulting in a new synthetic
dataset named UC Merced_cloud.

For each of the RSSCN7 and RSSCN7_cloud datasets,
we follow the default split for training and testing set in
its original RSSCN7 work [30]: 50% for training and an-
other 50% for testing. For each of the UC Merced and UC
Merced_cloud datasets, we randomly select half images for
training and another half images for testing same as that
in [3].

4.2. Experimental Settings

We evaluate the classification performance of the pro-
posed method on several classical CNN backbones. For
example, Proposed, Proposedy , and Proposedr indicate
the proposed GLNet based on the CNN backbones of
AlexNet [ 1], VGG16 [22], and ResNet50 [7], respectively.
For the cloudy images, AlexNet., VGG16., and ResNet50,
means directly testing the model pre-trained on the clear
images. The input image of GLNet is resized to 256 x256.
We randomly apply the horizontal flip and the changes of
the brightness, contrast and saturation for the data augmen-
tation. We use the SGD optimization algorithm for the net-
work training with the following hyper parameters: initia-
tive learning rate as 0.0006, momentum as 0.5, batch size
as 8 and training epoch as 50. All the experiments were run
on a workstation with a NVIDIA Quadro P6000 GPU card
(24G). We use PyTorch to implement the proposed GLNet.

4.3. Experimental Results

This section will report the performance of the proposed
GLNet on the benchmark datasets. Table 1 and Table 2
show the overall classification accuracy on the RSSCN7 and
RSSCNT7 cloud datatasets respectively. Table 3 and Table 4
show the overall classification accuracy on the UC Merced
and UC Merced_cloud datatasets respectively. Compared
to the baseline and comparison methods, it is obvious that
the proposed method could achieve the highest classifica-
tion accuracy for RS scene recognition under both clear and
cloudy environments. With different CNN backbones, the
proposed method could obtain better performance over the
CNN baselines. Under the clear environment of RSSCN7,
the Proposedy got 95.07% using VGG16 as the backbone,
while the baseline VGG16 only got 93.57%. Under the
cloudy environment, the pre-trained models on clear images
like VGG16, got low performance of 78.50%, which indi-
cates the difficulty of the cloudy environment. However,
the Proposedy also got the highest accuracy of 94.79% on



aGrass 0.5 1.0 0.0 0.5 0.0

bField - 0.0
cIndustry - 0.0 8.0
dRiverLake - 1.0 1.0
eForest- 0.0 0.0

o
=)

fResident- 0.0

gParking - 0.0 0.5 2.0 0.5 0.0

1 L 1 1 ' 1

v kel @ a P o

8 3 F %2 ¥ § £

= [ ok | o x

o s = = S 2 o

© 2 ] ©
c 4 [] K a
o « & o

°

aGrass 0.5 1.0 0.5 0.5 0.5

80

bField - 0.0
cIndustry - 0.0 8.5
Y 60
dRiverLake - 1.5 0.5
- 40
eForest- 1.0 0.0
fResident- 0.0 0.0 -20
gParking - 0.0 0.5 4.0 0.5 0.0
1 1 1 1 ' 1 . 0
g 3 £ £ § § 2
¢ 5 3§ 1 & % 5
© 2 9 ] 2 &
] = & o
hel

Figure 3. The confusion matrix of the classification result by the proposed GLNet on RSSCN7 dataset (Left) and RSSCN7_cloud dataset

(Right) using VGG16 as backbone.
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Figure 4. The confusion matrix of the classification result by the proposed GLNet on UC Merced dataset (Left) and UC Merced_cloud

(Right) dataset using ResNet50 as backbone.

the RSSCN7 _cloud datataset. The similar result is obtained
on the UC Merced and UC Merced_cloud datatasets. The
detailed confusion matrices for classification are shown in
Fig. 3 and Fig 4, which also display the proposed GLNet
could achieve better performance over the CNN baselines.
On the UC Merced dataset, the traditional machine learning
method salM®LBP-CLM [3] combining global and local
features got reasonable result of 94.21%, but the proposed
method got better accuracy of 97.33% because it designed
an advanced deep learning framework to learn global and

local features embedding with the inter-class dispersion and
intra-class compactness.

4.4. Discussion on the loss weight parameter «

This section will discuss the effects of different loss
weight parameter « in the loss function of Eq. 5. Using
the RSCCN7 dataset as an example, Fig. 5 shows the over-
all accuracy of the CNN baseline, the GLNet with a = 0,
and the GLNet with o« = 0.5. When o« = 0, the GLNet with
only the RS scene recognition loss could get higher accu-



Table 1. Overall classification accuracy of RSSCN7 Dataset.

Method \ Classification Accuracy (%)
AlexNet [11] 91.85
VGGI16 [22] 93.57
ResNet50 [7] 93.64
DCNN [30] 77.00

DAC [23] 93.43
TEX-Net-LF [1] 94.00
TDFF [14] 92.37
Proposed 4 93.78
Proposedy 95.07
Proposedr 94.71

Table 2. Overall classification accuracy of RSSCN7_cloud
Dataset.

Method Classification Accuracy (%)
AlexNet,. 65.50
VGG16, 78.50
ResNet50, 75.78
AlexNet [11] 88.85
VGG16 [22] 93.14
ResNet50 [7] 91.57
Proposed 4 92.07
Proposedy 94.79
Proposedr 93.71
95 = 94.71
X 94.0 94.07
594 i 32l & = Baseline
293 92.28 A a=0
Qo2 91858 s o=0.5
<
° AlexNet Vggle ResNet50

Figure 5. Experimental result of the proposed method with differ-
ent o on the RSSCN7 dataset.

racy over the CNN baseline. When a@ = 0.5, the GLNet
with both the RS scene recognition loss and RS scene cen-
ter loss could get the highest accuracy. This experimental
result verifies the effects of each loss term in the loss func-
tion of Eq. 5.

4.5. Discussion on the failure cases

Using ResNet50 backbone as example, we show the fail-
ure cases of the proposed method on the RSSCN7 and
RSSCN7 _cloud datasets in Fig. 6. Some images might be
quite similar, leading to recognition confusions. For exam-
ple, the Industry image (as shown in first column of Fig. 6)
contains some parked vehicles, so the proposed method may
confuse it as the class of Parking. In addition, the clouds
might cause more difficulties in scene classification. For

Table 3. Overall classification accuracy of UC Merced Dataset.

Method \ Classification Accuracy (%)
AlexNet [11] 91.62
VGGI16 [22] 96.38
ResNet50 [7] 96.76
salM*LBP-CLM [3] 9421
Two-Stream Fusion [29] 96.97
TEX-Net-LF [1] 96.98
Proposed 4 95.24
Proposedy 96.76
Proposedr 97.33

Table 4. Overall classification accuracy of UC Merced_cloud
Dataset.

Method \ Classification Accuracy (%)

AlexNet, 82.48
VGG16, 88.95
ResNet50, 93.24
AlexNet [11] 90.10
VGG16 [22] 93.52
ResNet50 [7] 96.10
Proposed 4 94.57
Proposedy 95.81
Proposedpr 97.33

example, the Resident image (as shown in sixth column
of Fig. 6) contains many small rectangle-shaped buildings
under cloudy environment, then the proposed method may
confuse the buildings as vehicles, so the proposed method
classifies it as the class of Parking. Under the cloudy envi-
ronment, some discriminative image features might be par-
tially occluded or blurred by the clouds, which causes more
recognition difficulties.

5. Conclusions

In this paper, we proposed a new deep learning network
for remote sensing scene image classification under clear
and cloudy environments. By combing the global and local
features and embedding the inter-class dispersion and intra-
class compactness, our proposed method is more robust and
accurate than the normal CNN networks. The experimental
results on two public remote sensing clear image datasets
and two synthetic cloudy datasets verified the effectiveness
and accuracy of the proposed method.
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Figure 6. Failure cases of the proposed method (using ResNet50 backbone as example) on the RSSCN7 and RSSCN7 _cloud datasets. The
prediction and ground truth are shown under each remote sensing image in red and green colors respectively.
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