
PNNL-28310

Keyless Infrastructure Security
Solution (KISS): VOLTTRONTM
KSI® Blockchain Design and
Specification
Cybersecurity for Energy Delivery Systems (CEDS) Research and
Development

December 2018

M Mylrea R Singh

SN Gourisetti J Plummer, Guardtime

V Tattireddy, Guardtime R Bishop, Guardtime

K Kaur, Washington State University A Hahn, Washington State University

C Allwardt

Prepared for the U.S. Department of Energy
under Contract DE-OE0000190

This material is based upon work supported by the U.S. Department of Energy Office of Electricity under Award

Number M617000254.

PNNL-28310

Choose an item.

Keyless Infrastructure Security Solution
(KISS): VOLTTRONTM KSI® Blockchain
Design and Specification
Cybersecurity for Energy Delivery Systems (CEDS) Research and
Development

December 2018

M Mylrea R Singh
SN Gourisetti J Plummer, Guardtime
V Tattireddy, Guardtime R Bishop, Guardtime
K Kaur, Washington State University A Hahn, Washington State University
C Allwardt

Prepared for

the U.S. Department of Energy

under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352

Choose an item.

PNNL-28310

ii

Revision History

Revision History

Revision Date Deliverable (Reason for Change) Release #

12/15/2018 Original release

PNNL-28310

iii

Summary

Summary

This document provides the technical design specifications that are required for Keyless
Infrastructure Security Solution (KISS) development, including, definitions and roles of the new
KISS-related products—GridAware and LinkLite, an overview of the DNP3 communications the
VOLTTRON™ DNP3 agent is using for distribution control, data flow, historian processing,
setup, and installation. These technical specifications provide step-by-step instructions for
configuration, implementation, and deployment of the KISS subsystem, docket creation, and
verification using the GridAware dashboard.

Based on this document and the KISS specification requirements and device risk assessment
documents, KISS will be developed by integrating keyless signature infrastructure (KSI)
blockchain to increase the cybersecurity, integrity, and trustworthiness of critical energy delivery
systems (EDSs). The KISS architecture consists of a VOLTTRON™ agent-based distribution
control system platform and GridAware (KSI blockchain capability) for secure energy exchanges
in a decentralized electrical network.

PNNL-28310

 iv

Acronyms, Definitions and Abbreviations

Acronyms, Definitions and Abbreviations

DMS distribution management system

docket Guardtime construct that encompasses XDAL and KSI signatures

EDS energy delivery system

EMS energy management system

GridAware Provides security fabric to manage and maintain decentralized

 networks and devices such as the energy delivery systems

ID identifier

JSON JavaScript Object Notation

KISS Keyless Infrastructure Security Solution

KSI Keyless Signature Infrastructure

PNNL Pacific Northwest National Laboratory

RTU Remote Terminal Unit

UUID universally unique identifier

VOLTTRON™ agent-based distribution control system platform

XDAL eXtensible Data Attribution Language

PNNL-28310

Content v

Contents

Revision History .. ii

Summary ... iii

Acronyms, Definitions and Abbreviations ... iv

1.0 Introduction ... 1

1.1 VOLTTRON™ Overview .. 1

1.2 GridAware Overview .. 1

1.3 KISS Platform Overview ... 2

2.0 Architectural Design .. 3

2.1 LinkLite .. 3

2.2 VOLTTRON™ DNP3 Communication .. 4

2.1 Historian Processing .. 4

2.2 Master Driver Processing ... 6

2.2.1 Data Flow .. 6

3.0 KISS GridAware Dashboard .. 9

4.0 Interface Design .. 12

5.0 Next Steps ... 13

Appendix A – KISS Agent Setup ... A.1

Appendix B – KISS Sequence of Events: RabbitMQ, Docket Creation,
and Docket Verification .. B.1

Figures

Figure 1. KISS (VOLTTRON™ + GridAware) Architectural Overview.. 2

Figure 2. DNP3 Agent Logs .. 5

Figure 3. DNP3 Data Points on the VOLTTRON™ Message Bus ... 5

Figure 4. Overview of DNP3 Communication .. 6

Figure 5. Diagram of the Dataflow between Various KISS Components...................................... 8

Figure 6. KISS GridAware Dashboard Rollup View Depicting Illustrative Events 9

Figure 7. KISS GridAware Dashboard Depicting the Existing Dockets, Associated
Universally Unique Identifier (UUID), Event Type, Signer, and the Block
Creation Time .. 10

Figure 8. KISS GridAware Dashboard Depicting the Contents of a Docket Such as the
Data Value and Timestamp .. 11

Tables

Table 1. KISS Components and Their Associations .. 3

Introduction 1

1.0 Introduction

This document provides technical design specifications for Keyless Infrastructure Security
Solution (KISS) software system. KISS will integrate keyless signature infrastructure (KSI)
blockchain to increase the cybersecurity, integrity, and trustworthiness of critical energy delivery
systems. The KISS consists of VOLTTRON™ agent-based distribution control system platform
and GridAware1 for secure energy exchanges in a decentralized electrical network. This
document describes the integration of KSI software system with VOLTTRON™; demonstrates
the process of data ingestion, docket creation, and verification; and describes the VOLTTRONTM
DNP3 agent communication. The DNP3 agent will be used in the use case to secure the data
flow between grid systems such as remote terminal unit (RTU) and Energy Management
System/Distribution Management System (EMS/DMS). This document provides detailed user
guidelines for deploying and testing the KISS subsystem.

1.1 VOLTTRON™ Overview

VOLTTRON™ is an open-source, open-architecture platform that serves as an integration
platform for the components of the transactional network. It provides an environment for agent
execution and serves as a single-point of-contact for interfacing with distributed devices
(e.g., RTUs, building systems, meters, etc.), external resources, and platform services such as
data archiving and retrieval. VOLTTRON™ provides a collection of utility and helper classes,
which simplifies agent development. VOLTTRON™ connects devices to applications
implemented in the platform, a data historian, and signals from the power grid. VOLTTRON™
incorporates a number of open-source products to build a flexible and powerful platform.
Referring back to the use cases defined in the deliverables, “D1.2. White Paper Examining
Security and Trust Gaps” and “D1.3. Blockchain for Complex Grid Edge Transaction Energy
Requirements Document”, the KISS experimentation and testing through the use cases will be
performed by using both the simulated model data as well as the data from the test bed grid
systems deployed at PNNL and WSU.

1.2 GridAware Overview

Guardtime’s GridAware provides a decentralized security fabric for securing, provisioning,
monitoring, maintaining, and managing modern decentralized networks and environments such
as field area networks, critical infrastructure, SmartGrids, and the Internet of Things. GridAware
key components include GridAware data capture agents and services, GridAware support
services, GridAware dashboards, and the KSI blockchain. GridAware provides decentralized
and distributed security by leveraging Guardtime’s KSI blockchain2 and provides new

1 GridAware has previously been referenced as Resonance in KISS documentation. Guardtime changed

their product name; therefore, the KISS project and corresponding documentation is proceeding with
Guardtime’s revised product-naming convention.
2 M. Mylrea et al, “Technology Landscape Analysis Report”, PNNL, April 2018. According to the details

presented in the landscape report, Keyless Signature Infrastructure (KSI) is Guardtime’s software system
that is coupled with their blockchain. The components together are referred to as KSI Blockchain.
Extensive details about Guardtime’s KSI technology was discussed in D1.2. White Paper Examining
Security and Trust Gaps” and “D1.3. Blockchain for Complex Grid Edge Transaction Energy
Requirements Document”.

Introduction 2

approaches and mechanisms to ensure granular security, secure device monitoring and
management, and data exchange in a “Zero-Knowledge” fabric.

1.3 KISS Platform Overview

KISS is based on the Pacific Northwest National Laboratory’s (PNNL) VOLTTRON™ distribution
control system integrated with the Guardtime GridAware platform. Together they provide a
platform for managing energy exchange that requires security and trustworthiness. Figure 1
provides an overview of the KISS architecture. The main components of KISS architecture are
VOLTTRONTM (PNNL developed software platform) and GridAware (Guardtime developed
technology). LinkLite is the software component that will be interacting with external services
such as VOLTTRONTM message bus. The assets and systems that are participating in the KISS
blockchain system will be interacting through the VOLTTRONTM subsystems and respective
agents. Appendix A describes the KISS agent set-up.

Figure 1. KISS (VOLTTRON™ + GridAware) Architectural Overview

Architectural Design 3

2.0 Architectural Design

KISS consists of VOLTTRON™ agent-based distributed control system platform enabled with
Guardtime’s GridAware for managing the exchange of energy-related data, measurements, and
information that requires security and trustworthiness in a decentralized electrical network. Both
VOLTTRON™ and GridAware are composed of various functional components. A high-level
overview of the KISS components is described in Error! Reference source not found..

Table 1. KISS Components and Their Associations

Component Association Description

LinkLite GridAware
GridAware Data Capture Component that interfaces with
VOLTTRON™ agents using RabbitMQ

Master Driver VOLTTRON

VOLTTRON™ platform driver that communicates with grid
systems such as Distributed Management Systems, Energy
Management Systems, etc. and receives data from remote
device units

Historian VOLTTRON
VOLTTRON™ platform agent that enables the storage of device
data obtained by the drivers and provides data retrieval functions
for analysis and support

Dashboard GridAware
GridAware dashboard provides multiple levels of data

visualization to the end user about the state of devices and
associated agents.

Docket GridAware
A docket is an XML document based on Guardtime’s eXtensible
Data Attribution Language (XDAL) schema for a data attribution
construct, containing data and its KSI signature.

Support
Services

GridAware
GridAware support services are backend services for policy
enforcement, storage, data and event correlation, work flow
execution, alerting, and business rule application.

2.1 LinkLite

LinkLite is a GridAware data capture component that provides data capture, docket creation,
docket verification, and docket routing to GridAware support services. A docket is an XML
construct based on the Guardtime XDAL schema for data attribution. Dockets are the basic
building blocks of GridAware components and are used for data normalization, interoperability,
policy enforcement, and workflow automation.

LinkLite captures the data from the master driver agent by creating a docket and routing the
docket to the GridAware support services or other VOLTTRON™ instances for policy
enforcement, storage, workflow execution, and business rule application. LinkLite also provides
the VOLTTRON™ instances with data and command verification services for VOLTTRON™
agents. This process facilitates the VOLTTRON™ platform with cryptographically provable and
granular local data integrity and detailed policy or rules verification via the docket and KSI
blockchain.

LinkLite is a Java-based service that can run on the VOLTTRON™ platform server or a remote
server. The LinkLite service provides flexible and configurable interfaces with the VOLTTRON™
platform via RabbitMQ using a Remote-Procedure-Call Application Programming Interface
(RPC API)-styled message pattern-Request/Response for publication and consumption of data.

Architectural Design 4

2.2 VOLTTRON™ DNP3 Communication

The DNP3 protocol (IEC 60870-5, IEEE 1815-2010) is one of the most widely used protocols in
the energy delivery systems (EDSs) environment. It is commonly used in communication
between the EMS, DMS, and RTU. Further, the communications between the RTU and
protection relays could also be performed using DNP3 protocol. To test the KISS subsystem on
a realistic utility-scale use case, the KISS team has defined the use-cases to secure the data
exchange and communications between the EMS/DMS and RTU. The KISS team will explore
expanding the use cases to other grid systems such as protection relay communication and
data exchange with the RTU. Since the VOLTTRON™ message bus is an integral part of the
KISS subsystem, the existing VOLTTRON™ DNP3 agent will be used for tests and in system
deployment (i.e., both in beta and production software). To have real communication flow within
the KISS system, VOLTTRON™’s DNP3 agent is being used in conjunction with the master
driver.

For example, the configuration of feeder protection relays has been used. Using an OpenDNP33
library, a DNP3 master communicates with the VOLTTRON™ DNP3 agent that acts as an
outstation. The DNP3 agent loads empty data points into the database when it starts. The
configuration file in the DNP3 driver store has a defined set of data points that get added to the
empty points. The agent listens on port 20000 for DNP3 messages and establishes a
connection with the DNP3 master. Figure 2 shows the logs when the DNP3 agent is started.

The agent communicates with the VOLTTRON™ master driver, which has a configuration of all
the data points from the relays. The data points are stored in a csv file with the format <DNP3
Point Name, VOLTTRON Point Name, Group, Index, Scaling, Units, Writable> shown in
Figure 2. The first two parameters determine the data point, and the group and index define the
data type and group to which a specific data point belongs. “Writable” is a True/False field that
states which values can be written. For instance, Switch Operate Commands for the relays are
writable, while the load current or phase voltage are not.

The master driver takes the values of different data points from the DNP3 agent and publishes
them onto the message bus with their names and values. Once the data points are published on
the bus, they can be sent to LinkLite for signing and verification purposes. Figure 3 shows the
data points being published by the VOLTTRON™ master on the message bus.
The values of the data points are being published on the VOLTTRON™ message bus, but it is
required for the values to be updated when a write request is sent from the DNP3 master. This
capability is currently under development. An overview of DNP3 communication is shown in
Figure 4.

2.1 Historian Processing

The VOLTTRON™ historian archives data in persistent storage received from the master driver
by verifying policies and data integrity using LinkLite. For KISS use-cases, a small portion of a
feeder’s historian data is used. These historian data include power system measurements
(e.g., voltages at nodes) and logs (e.g., system alerts). The VOLTTRON™ historian will contain
the dockets of data from the base historian.

3 https://github.com/automatak/dnp3

Architectural Design 5

Figure 2. DNP3 Agent Logs

Figure 3. DNP3 Data Points on the VOLTTRON™ Message Bus

Architectural Design 6

Figure 4. Overview of DNP3 Communication

2.2 Master Driver Processing

The master driver can communicate with any grid system based on its configuration. In the
KISS use-cases, the driver communicates with the EMS/DMS to receive data from devices,
such as an RTU, creates a docket by interfacing with LinkLite, and archives it in the historian.

2.2.1 Data Flow

The master driver requests docket creation for the raw message using the routing key
gt.create_docket in the VOLTTRON™ exchange. The LinkLite service then receives a request
on a queue bound to the gt.create_docket key and returns a docket as the response to the
queue. The historian receives the docket for archiving from the master driver. Before archiving,
the historian verifies the integrity and relevance of the docket by sending a request using the
routing key gt.verify_docket in the VOLTTRON™ exchange. The LinkLite service then accepts
the requests on a queue bound to the gt.verify_docket key and returns the result of the
verification process. The preceding process is a means of verifying that the docket is signed and
cryptographically sound using the KSI signature embedded in the docket.

The LinkLite service can also be configured with granular policy, providing data provenance
verification, specific device requirements, and other detailed policy verification capabilities.

Architectural Design 7

Upon testing KISS’s capabilities to create and verify dockets through the GridAware dashboard
(addressed in Section 3.0), the KISS team will define the policies4 (policies may vary based on
the application and user/customer requirements), requirements, and constraints that need to be
programmed into the LinkLite service in order to ensure cyber secure data exchanges and
verification processes. Upon customizing the LinkLite service policies, the KISS team will test
the robustness of the system by injecting cyber-attacks such as man-in-the-middle, data
spoofing, data loss/theft, historical data manipulation, stealth data injection, etc. The results
from these attack tests will be presented in future documents. The objective of those scenarios
is to test the KISS subsystem for its resilience against common and effective cyber-attack and
to demonstrate the increased cybersecurity of the overall connected grid systems using KSI
blockchain technology. Once the data are stored as a docket, they are now imbued with
cryptographic immutability and they are highly portable. The consumers of these data
(permissioned/registered users) can then request the signed and verified docket from the
historian. At any point in time, permitted/registered users can then verify the received docket
from the historian with the LinkLite service and specific policy. The KISS team is in the process
of articulating and developing test cases (test cases are defined in section 5.0) in which the
KISS system will be tested against cyber-attacks such as data spoofing, data injection,
unauthorized user access, etc. is a sequence diagram illustrating the data flow.

4 KISS team is exploring policy definitions. Policy definition in blockchain is use-case/application specific

and depends on user requirements. Herein the word “policies” will be coded into another software module
called “Sentry”, which is a module within the Guardtime KSI blockchain process. At any given point and
for any operation, the KISS will check the operation request against the policies (a.k.a., “against what is
required in order to be compliant for this operation to execute) defined in Sentry.

Architectural Design 8

Figure 5. Diagram of the Dataflow between Various KISS Components

KISS GridAware Dashboard 9

3.0 KISS GridAware Dashboard

The GridAware dashboard provides multiple levels of data visualization to the users about the
aggregated state of events and data associated with the KISS instance. Visualization is
provided in the dashboard using two views: GridAware Dashboard Rollup View and
GridAware Dashboard Details View. The GridAware dashboard is a frontend service with user
accessible features that visualize all the background processes that happen between
VOLTTRONTM and GridAware (a.k.a., KISS processes). These processes include docket
creation, docket verification, and storage. By using the dashboard, the user is not required to
have the skill set to interact with the software in its raw state. Instead, the user will be able to
track and verify dockets through the GridAware dashboard.

The Dashboard Rollup View provides an aggregate view of various events, commands, and
other impactful data captured over the period of time selected. The event types that are being
visualized are dynamic based on the docket information and VOLTTRON™ configuration. The
GridAware dashboard provides a dynamic platform for visualizing many types of data sets for
specific purposes. The data acquired by the dashboard frontend include events and commands
that are deemed necessary to visualize and monitor for security, audit, or functional purposes.
Some examples of event types being captured and visualized are:

 RTU provisioning events

 DMS commands and events

 DMS data from unknown RTUs

 configuration or state change of RTUs.

The dashboard screen capture depicted in Figure 6 illustrates 82 DMS commands and events
over the course of a short time period. The dashboard is in the early development stages; the
final product will have clear delineations of the content visualized.

Figure 6. KISS GridAware Dashboard Rollup View Depicting Illustrative Events

KISS GridAware Dashboard 10

The GridAware Dashboard Details View provides the users with the ability to select individual
captured events and associated data about the event in the form of a docket. The details view
provides the user with data useful for investigating details of captured data and events, and
provides the ability to sort through the dockets with basic sorting functions. Figure 7 and Figure
8 are screen captures of example detailed views.

Figure 7. KISS GridAware Dashboard Depicting the Existing Dockets, Associated Universally
Unique Identifier (UUID), Event Type, Signer, and the Block Creation Time

KISS GridAware Dashboard 11

Figure 8. KISS GridAware Dashboard Depicting the Contents of a Docket Such as the Data
Value and Timestamp

Interface Design 12

4.0 Interface Design

The LinkLite service interfaces with the VOLTTRON™ platform via RabbitMQ and leverages an
RPC API Request/Response-styled message pattern for data publication and consumption.
Each client creates an exclusive default queue and sends the default queue along with the
request for LinkLite to send back the response. The docket is the basic construct of GridAware
components and is used as the data format for messages within KISS components.

1. VOLTTRON™ RabbitMQ: VOLTTRON™ as a part of the platform creates a RabbitMQ
environment with the following attributes, and it will be used by KISS interface:

a. Request: Request creates an exclusive default queue and correlation identifier
(ID), which are added to the properties field of the RabbitMQ publish API.

b. Response: Response is published to a queue received in the request. Response
is a serialized JavaScript Object Notation (JSON) format string.

2. Docket creation: The VOLTTRON™ agent requests LinkLite to create a docket by
publishing the request to a VOLTTRON™ exchange using routing key
gt.create_docket.

a. Request: The docket creation request uses a queue described below and an

exchange defined by the VOLTTRON™ platform. The requests are JSON
serialized strings that have headers and message fields.

b. Response: The response is published to a queue received in the request. The
response is a JSON serialized string with a docket appended to the UUID string
object received in the request.

3. Docket verification: For verification of a docket, a VOLTTRON™ agent requests LinkLite

to verify a docket for data integrity by publishing to a VOLTTRON™ exchange using the
routing key gt.verify_docket.

a. Request: The docket creation request uses a queue described below and an
exchange defined by the VOLTTRON™ platform. The requests are JSON
serialized strings that have headers and message fields.

b. Response: The response is published to a queue received in the request. A
response is a JSON serialized string with a docket appended to the universally
unique identifier (UUID) string object received in the request.

NOTE: The detailed sequence of events, syntax, and illustrations are shown in Appendix B.

Next Steps 13

5.0 Next Steps

The initial KISS design and development effort focused on specifically addressing integration of
VOLTTRON™ and GridAware and showing data integrity through docket creation and
verification (considered Phase 1 of development). The design phases demonstrated in this
report are focused on the base functionality of KISS subsystem and does not address software
aspects such as policy definitions in sentry, verification and validation process through KSI
blockchain. The demonstrated design phases are for tool development and not considered the
phases of the project. Specific areas that the KISS team will address in further development is
additional data integrity using real-time data and data provenance.

 Phase 2: Develop a “player” that takes the data that has been harvested from the
EMS/DMS and inputs it into a separate data base such as the MySQL or other location
to enable verification of whether or not the docket has been manipulated.

 Phase 3: Integration with PNNL’s EMS and WSU’s DMS and documenting rules for data
specific to those systems.

 Phase 4: Provenance of tool which includes access authorization and authentication to
ensure the integrity of the data, confidentiality of the devices exchanging data with the
KISS platform in the loop. The KISS team will ensure that the additional system and data
integrity elements enforced by KISS will not add data leakages. This phase also includes
addressing potential latency issues.

 Throughout the development cycle through completion, unit testing, integration testing,
functional testing and independent tool testing will be performed. The testing will be
performed by evaluating the KISS system response to attack scenarios. Some of the
cyber-attacks that the KISS team is planning to develop may include:

o Man-in-the-middle attack

o Spoofing attacks such as data theft and data manipulation attack

o Unauthorized user access to the data

o Disruption of services

o Other attacks and scenarios as determined by the KISS team in testing phases

Appendix A A.1

Appendix A – KISS Agent Setup

The following sections highlight the repositories, requirements, and instructions for
implementing KISS in its existing development.

A.1 PNNL Repositories

The following are the development repositories used for tool development:

 https://stash.pnnl.gov/projects/KISS

 kiss-based-agent (master branch)

 VOLTTRON-kiss (KISS-enabled branch [set as default]).

A.2 Requirements

A current requirement during tool development is a xenial base computer (Ubuntu 16.04, mint
18.x).

A.3 Instructions

The following instructions provide a brief introduction to agent installation in the VOLTTRON™
environment. This setup requires that at least three shells be open: (1) the first one will be for
the VOLTTRON™ command and tailing of the volttron.log, (2) the second one will be for issuing
installation commands to the VOLTTRON™ instance, and (3) the third shell will be for LinkLite.
Based on the initial tests performed, it is recommended to execute the below commands
sequentially in the order defined below.

A.3.1 VOLTTRON™ Installation (Shell 1)

1. Clone both of the above repositories to your $HOME directory.

2. Open a shell to $HOME/VOLTTRON™ ($VOLTTRON_ROOT).

3. Install the rabbitmq dependencies by executing bash $VOLTTRON_ROOT/rabbitmq-
volttron/scripts/rabbit_dependencies.sh xenial.

4. Bootstrap VOLTTRON™ by executing python bootstrap.py –rabbitmq.

5. Activate the environment by executing source $VOLTTRON_ROOT/env/bin/activate.

6. Install a master driver (not kiss version) vcfg --agent master_driver.

7. Install a listener agent vcfg --agent listener.

8. Start VOLTTRON™ by executing $VOLTTRON_ROOT/start-volttron.sh.

9. Tail the log by executing tailf volttron.log.

A.3.2 KISS Agents (Shell 2)

1. Activate the shell by executing source $VOLTTRON_ROOT/env/bin/activate.

2. Change directory to kiss-based-agents cd $HOME/kiss-based-agents

($KISS_AGENTS).

https://stash.pnnl.gov/projects/KISS

Appendix A A.2

3. Install KISS master driver agent by executing bash
$KISS_AGENTS/KISSMasterDriverAgent/install-agent.sh.

4. Install KISS historian agent by executing bash
$KISS_AGENTS/KISSSQLHistorian/install-agent.sh.

A.3.3 LinkLite Installation (Shell 3)

1. Install Java JDK 1.8 or greater.

2. Install python-devel package.

3. Install LinkLite debian package.

a. Run dbpg-deb -x link lite.deb <install directory path>

 e.g., dbpg-deb -x linklite.deb /home/user/tmp/

 LinkLite package is installed in linklite sub-directory from the input install

directory.

– e.g., /home/user/tmp/linklite/.

4. Configure KSI, RabbitMQ server and login credentials in

linklite/config/application.properties file.

ksi.agr.userid=<aggregator user>

ksi.agr.secret=<aggregator key>

ksi.ext.userid=<extender user>

ksi.ext.secret=<extender key>

rmq.host = <RMQ server>

rmq.port = 5671

rmq.user = <RMQ username>

rmq.pwd = <RMQ password>

rmq.vhost = <volttron>

rmq.exchange = <volttron>

5. Start RabbitMQ and VOLTTRON™ 6 platform if is not running.

6. Start LinkLite Service unkg init script, which will run as a background process detached

from the terminal.

 linklite/init.d/linklite

 Logs are located in the directory linklite/log/linklite.log.

Appendix B B.1

Appendix B – KISS Sequence of Events: RabbitMQ, Docket
Creation, and Docket Verification

B.1 VOLTTRON™ RabbitMQ

VOLTTRON™, as a part of a platform, creates RabbitMQ environment with the following
attributes and will be used by KISS interface:

 Virtual Host:volttron

 Exchange:volttron

B.1.1 Request

Request creates an exclusive default queue and a correlation ID, which are added to the
properties field of the RabbitMQ publish API. It uses the following JSON format:

{
 "Data":{
 "UUID":"uuid value",
 "Payload":{
 "Headers":{
 "TimeStamp":"TimeStamp",
 "AgentId":"Agentid"
 },
 "Message":"agent data"
 }
 }
}

where,

UUID contains UniqueId.
Headers contains agent metadata that includes TimeStamp and AgentId
Message contains agent data, which can be simple JSON String value or a JSON object or
a JSON array.

B.1.2 Response

Response is published to a queue received in the request. Response is a serialized JSON
format string.

B.2 API

B.2.1 Docket Creation

The VOLTTRON™ agent requests LinkLite to create a docket by publishing the request to a
VOLTTRON™ exchange using routing key gt.create_docket.

Appendix B B.2

B.2.2 Request

The docket creation request uses a queue described below and an exchange defined by the
VOLTTRON™ platform. The requests are JSON serialized strings that have headers and
message fields.

exchange = volttron
routing key = gt.create_docket
properties.reply_to = <queue to send the response>

{"Data": {"UUID"::uuid value", "Payload":{"Headers": { "TimeStamp": "TimeStamp", "AgentId":
"agentid"}, "Message": "agent data for which docket requested"}}

where,

Headers field has agent metadata.
Message field has agent data for which docket is requested, it can be simple string value or
a JSON object or a JSON array.

sample request message:
{"Data": {"UUID": "6d3dd987-7c51-440e-9704-f2835760e8d3", "Payload": {"Headers":
{"TimeStamp": "2018-45-10 16:45:28", "id":
"volttron_agent"}, "Message": {"data": ["value1", "value2"], "data2": ["value1"]}}}}

B.2.3 Response

The response is published to a queue received in the request. The response is a JSON
serialized string with a docket appended to the UUID string object received in the request.

{"UUID":"uuid value received in the request" ,"Docket":"XML string","AgentId":"agentid"}

sample response message:
{"UIID": "96c08581-f70b-4dec-9cf3-f960cbcfed4f", "AgentId": "gt.create_docket", "Docket":
"<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"no\"?><Docket signatureContentType=\"1\"
version=\"kiss-1.0\"><Data>96c08581-f70b-4dec-9cf3-
f960cbcfed4f</Data><Properties><Payload>{\"Message\":{\"data\":[\"value1\",\"valu
e2\"],\"data2\":[\"value1\"]},\"Headers\":{\"id\":\"volttron_agent\",\"TimeStamp\":\"2018-50-12
16:50:34\"}}</Payload></Properties><KSig>iAAHrogBAHICBFvBM0sDAQ8DAgMFAwE=</KSig
></Docket>"}

Appendix B B.3

B.2.4 Sequence of Events

Figure B.1. Docket Creation Sequence of Events

B.3 Docket Verification

For verification of a docket, a VOLTTRON™ agent requests LinkLite to verify a docket for data
integrity by publishing to a VOLTTRON™ exchange using the routing key gt.verify_docket.

B.3.1 Request

The docket creation request uses a queue described below and an exchange defined by the
VOLTTRON™ platform. The requests are JSON serialized strings that have headers and
message fields.

exchange = VOLTTRON™
routing key = gt.verify_docket
properties.reply_to = <queue to send the response>

{"Data":{"UUID": "uuid value", "Payload": {"Headers": {"TimeStamp": "Message time stamp",
"AgentId": "historian_agent"}, "Message": {"Docket" :"docket string"}}}}

where,

Headers field has metadata.
Message field has a Docket String for which verification is requested.

Appendix B B.4

sample request message:
{"Data": {"UUID": "ab4f6d17-f8ef-4db4-a96f-3ae0256d25df", "Payload": {"Headers":
{"TimeStamp": "2018-50-12 16:50:39", "id": "historian_agent"}, "Message": {"Docket": "<?xml
version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?><Docket signatureContentType=\"1\"
version=\"kiss-1.0\"><Data>96c08581-f70b-4dec-9cf3-
f960cbcfed4f</Data><Properties><Payload>{\"Message\":{\"data\":[\"value1\",\"value2\"],\"data2\
":[\"value1\"]},\"Headers\":{\"id\":\"volttron_agent\",\"TimeStamp\":\"2018-50-12
16:50:34\"}}</Payload></Properties><KSig>iAAHrogBAHICBFvBM0sDAQ8DAgMFAwE=</KSig
></Docket>"}}}}

B.3.2 Response

The response is published to a queue received in the request. A response is a JSON serialized
string with a docket appended to the UUID string object received in the request.

{UUID":"uuid value received in the request",,"VerficationResult":"true or
false","AgentId":"agentid"}

sample response message:
{"VerificationResult":"true","UIID":"ab4f6d17-f8ef-4db4-a96f-
3ae0256d25df","AgentId":"gt.verify_docket"}

Appendix B B.5

B.3.3 Sequence of Events

Figure B.2. Docket Verification Sequence of Events

Pacific Northwest
National Laboratory

902 Battelle Boulevard

P.O. Box 999

Richland, WA 99352

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

