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Abstract

In the continuum limit, the theory of dislocations in crystals predicts a divergence in the
elastic energy of the host material at a crystal geometry dependent limiting (or critical) velocity
vc. Explicit expressions for vc are scattered throughout the literature and are available in ana-
lytic form only for special cases with a high degree of symmetry. The fact that in some cases (like
pure edge dislocations in fcc) vc happens to coincide with the lowest shear wave speed of a sound
wave traveling parallel to the dislocation’s gliding direction has led to further confusion in the
more recent literature. The aim of this short review therefore is to provide a concise overview of
the limiting velocities for dislocations of arbitrary character in general anisotropic crystals, and
how to efficiently compute them, either analytically or numerically.

1 Introduction and background

High rate plastic deformation in metals and other crystalline materials is governed by the mobil-
ity of dislocations, as it determines the glide time between obstacles (grain boundaries, impurities,
other defects, etc.), thereby affecting Orowan’s relation [1–4]. In particular, the highest achievable
strain rates are determined not only by the mobile dislocation density but also by the limiting ve-
locities of dislocations. These can be calculated from linear elasticity theory in the limit of perfect,
steady-state dislocations, and neglecting details of the dislocation core [5–8]. At these limiting ve-
locities, vc(ϑ), which in general depend on dislocation character angle ϑ and which in the isotropic
limit coincide with the transverse sound speed, the dislocation self energy is predicted to diverge
[7, 9, 10]. Likewise, the dislocation drag coefficient, which accounts for dislocation motion being
impeded by phonon scattering, is also predicted to diverge [11] — even for accelerating dislocations
[12]. Nonetheless, the vc(ϑ) need not necessarily be viewed as hard barriers, since it was shown that
these velocities can in principle be overcome when the dislocation core is taken into account in a
regularising fashion, see [13–15]. Thus within real crystals, the vc can be seen as dislocation veloc-
ities that, at the very least, are hard to overcome. Indeed, a number of Molecular Dynamics (MD)
simulations [16–26] as well as some experimental data [27] suggest that dislocations can reach
transonic or even supersonic velocities in certain cases. Most strikingly, pure edge dislocations in



some fcc metals seem to asymptotically approach the lowest shear wave speed (which in this special
case happens to coincide with vc) until some critical stress above which transonic motion becomes
possible [16–21].

Even though the theoretical tools to compute the limiting velocities of dislocations were derived
many decades ago [5, 6, 28, 29], most of the modern literature assumes (ad hoc) that vc coincides
with the lowest shear wave speed cs of sound waves traveling in the dislocation glide direction.
This is not the case in general, though it is possible that the two velocities coincide in some cases.
None of Refs. [2, 16–26, 30–33] make any reference to this subtlety, and this is the main reason to
write this short review.

In fact, many of the MD simulations cited above were concerned with fcc edge dislocations where
indeed vc = cs, see [16–21]. Others, like Refs. [23–25], studied bcc tungsten whose second order
elastic constants are “almost isotropic” in the sense that c11 ≈ c12 +2c44 so that vc ≈ cT ≈ cs. Some
authors, however, studied pure screw dislocations in fcc Cu [21] and Ni [16, 17] at room temperature
and misinterpreted their results to report supersonic dislocation motion by overlooking that for fcc
screw dislocations vc > cs; this was recently clarified in Ref. [8].

Here, we aim to review how to compute limiting dislocation velocities in general and for all crys-
tal geometries and slip systems, to present analytical expressions in cases where they are readily
available, and simple “recipes” to compute them efficiently otherwise. Our main objectives are clar-
ity and brevity so that these results can be easily incorporated into future MD simulation (and
other) studies. In so doing, we also make some points that (to my knowledge) have not been elu-
cidated in the literature before, namely the explicit analytic expression of (2.15) and the subtle
cancellations that can occur for slip systems with reflection symmetry (in addition to fcc) discussed
after Eq. (3.5).

2 Limiting velocities of dislocations: Special cases

The displacement field ui of any dislocation must fulfill the following differential equations:

∂iσi j = ρü j , σi j = C′
i jkl∂l uk (2.1)

in coordinates aligned with the dislocations, i.e. ẑ is aligned with the dislocation line and ŷ is
parallel to the slip plane normal. The components of the tensor of second order elastic constants
(SOEC) is always measured in Cartesian coordinates that are aligned with the crystal axes, and
thus this tensor must be rotated into the present coordinate basis, i.e.:

C′
i jkl] =Uii′U j j′Ukk′Ull′Ci′ j′k′l′ (2.2)

with rotation matrix U . If Cartesian unit vector t̂ is parallel to the dislocation line, and n̂0 is the slip
plane normal in Cartesian coordinates aligned with the crystal, and a third unit vector m̂0 = n̂0 × t̂
is normal to the former two, then the rotation matrix is easily determined by stacking the three
row vectors into a matrix, i.e.:

U =
 m̂T

0
n̂T

0
t̂T

 , (2.3)

so that U · m̂0 = x̂, U · n̂0 = ŷ, and U · t̂ = ẑ. Note that the line direction depends on the dislocation
character angle ϑ because both slip plane normal n̂0 and Burgers vector b⃗ are determined by the
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slip system under consideration and by definition ϑ is the angle between t̂ and b⃗. Thus, t̂(ϑ) =
b̂cosϑ+b̂×n̂0 sinϑ with unit vector b̂ = b⃗/|b|. Consequently, also m̂0 and U are character dependent.

Assuming the dislocation moves at constant velocity v in the direction perpendicular to its line
sense and the slip plane normal, i.e. parallel to x̂, the differential equations (2.1) simplify further,
since the dislocation can then only depend on time via the combination x′ ≡ x− vt. Thus, a time
derivative is related via the chain rule to a spatial derivative in x and hence [34]:

C′
i jkl∂i∂l uk =−vρ∂2

xu j . (2.4)

In Ref. [35] Bullough and Bilby make the ansatz

u j(x′, y)=∑
n

CnP jn exp
(−sλn y+ isx′

)
, (2.5)

where the P jn are functions of the elastic constants and the dislocation velocity, Cn are arbitrary
complex constants (determined by the boundary conditions for dislocations), and sgn(y)Re(λn) > 0
ensures that the displacement vanishes at |y| →∞. We will not discuss this solution in full detail
here: the point we would like to make presently is that the λn are functions of the dislocation
velocity and whenever Re(λn(v)) → 0, that velocity is a limiting velocity because the elastic self
energy of the dislocation will diverge there. In general, upon inserting the ansatz (2.5) into the
differential equations (2.4), the λn follow from solving the determinantal sextic equation [5, 6]

det
∣∣C′

i2k2λ
2 − iλ

(
C′

i1k2 +C′
i2k1

)−C′
i1k1 +ρv2δik

∣∣= 0. (2.6)

The solutions λn are complex in general, and for each of the two half-planes |y| ̸= 0, the ones with
sgn(y)Re(λn)> 0 are considered in the sum over n within (2.5).

In order to study pure screw or pure edge dislocations, the rotated tensor of SOEC must fulfill
the following symmetry requirements, shown here in Voigt notation which maps index pairs to
single digits, (11,22,33,32/23,31/13,21/12)→ (1,2,3,4,5,6):

C′
i j =



c′11 c′12 c′13 0 0 c′16
c′12 c′22 c′23 0 0 c′26
c′13 c′23 c′33 c′34 c′35 c′36
0 0 c′34 c′44 c′45 0
0 0 c′35 c′45 c′55 0

c′16 c′26 c′36 0 0 c′66

 , (2.7)

i.e. the six components c′14, c′15, c′24, c′25, c′46, and c′56 must vanish, see Refs. [36] and [37, Sec. 13-4].
This ensures that u3 = 0 implies ∂iσi3 = 0 and likewise that u1 = 0 = u2 implies ∂iσi1 = 0 = ∂iσi2.
Note that in the present coordinates, displacement field ui for a straight dislocation can only depend
on x, y, and t, but not on z. This latter property implies that non-vanishing components c′34 and
c′35 are allowed since they do not enter the differential equations above for pure screw or pure edge
dislocations. On the other hand, the stronger condition c′34 = 0= c′35 implies that the x1, x2 plane is
a reflection plane (and then σ33 = 0 for pure screw dislocations rather than the weaker ∂3σ33 = 0).
If these requirements are fulfilled, the sextic Eq. (2.6) decouples into a quadratic equation for pure
screw dislocations and a quartic equation for pure edge dislocations. We review solutions to these
two simpler equations in the following two subsections. Note, however, that since the dislocation
line direction (w.r.t. to the crystal axes) is dislocation character dependent (because the Burgers
vector direction is the same for all character angles of a given slip system), the rotated tensor of
SOEC, C′

i j, is different for pure screw than pure edge dislocations within the same slip system.
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2.1 Pure screw dislocations with reflection symmetry

If symmetry property (2.7) is fulfilled, the case of a pure screw dislocation follows from setting index
i = 3= k within Eq. (2.6). This leads to the simple quadratic equation [5, 35]

c′44λ
2 −2ic′45λ− c′55 +ρv2 = 0, (2.8)

with the two solutions

λn = i
c′45

c′44
± 1

c′44

√
c′44c′55 − (c′45)2 − c′44ρv2 , (2.9)

whose real part vanishes at the limiting velocity [5, 8, 35, 38]

vscrew
c =

√√√√1
ρ

(
c′55 −

(c′45)2

c′44

)
. (2.10)

Examples of pure screw dislocations with reflection symmetry in cubic and hexagonal crystals in-
clude all 12 fcc slip systems, and the hcp slip systems with Burgers vectors b = 〈2,1,1,0〉 including
basal, prismatic, and pyramidal slip planes. Of course, other crystal geometries (such as tetragonal,
orthorhombic, and others) can also exhibit slip systems with a reflection symmetry for pure screw
dislocations. In the isotropic limit, Ci jkl is invariant under rotations, and c′45 = 0 and c′55 equals
shear modulus µ so that vc is simply given by the transverse sound speed cT.

2.2 Pure edge dislocations with reflection symmetry

For pure edge dislocations, we need to study the 2x2 matrix of Eq. (2.6) with i = 1,2 and k = 1,2
(provided symmetry property (2.7) is fulfilled). The determinant in this case reads [5](

c′66λ
2 −2ic′16λ− c′11 +ρv2)(

c′22λ
2 −2ic′26λ− c′66 +ρv2)− (

c′26λ
2 − iλ

(
c′12 + c′66

)− c′16
)2 = 0. (2.11)

In general, this quartic equation has four roots of the form λn =±pn+ iqn. The analytic expressions
can be determined explicitly, but are very tedious and lengthy. Thus, it is in practice more efficient
to first plug in numerical values for the elastic constants in order to determine λ as a function
of velocity, and to then numerically determine the limiting velocity by setting the product of the
real parts of all four roots λn to zero, i.e. by numerically solving

∏4
n=1 pn(vc) = 0. This is the strat-

egy employed in the open source code PyDislocDyn [39] developed by the present author, which
can be used to not only calculate this special case, but also any limiting velocity for steady state
dislocations of arbitrary character angle in arbitrary crystal and slip system geometry.

Examples of pure edge dislocations with reflection symmetry in cubic and hexagonal crystals
include hcp basal and prismatic slip systems with Burgers vectors b = 〈2,1,1,0〉, as well as the {112}
slip planes in bcc crystals. The latter bcc slip systems have c′26 ̸= 0 and need to be treated the way
we have just discussed above. The basal and prismatic hcp slip systems on the other hand feature
c′16 = 0= c′26 which leads to additional simplifications which we discuss next.
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The special case of c′
16 = 0= c′

26

If c′16 = 0= c′26, Eq. (2.11) simplifies to the following quadratic equation in λ2:

c′22c′66
(
λ4 − qλ2 + s

)= 0, with

q = 1
c′22c′66

[
c′22

(
c′11 −ρv2)+ c′66

(
c′66 −ρv2)− (

c′12 + c′66
)2

]
,

s = 1
c′22c′66

(
c′11 −ρv2)(

c′66 −ρv2)
. (2.12)

There are two distinct cases to consider [5] (see also [40]):

1. If q ≥ 0, the limiting velocity is1

vedge
c =

√
min(c′11, c′66)

ρ
, (2.13)

because then one of the two solutions to λ2
n tends to zero. More precisely, the condition for

this expression to be a limiting velocity for pure edge dislocations is q(vc)≥ 0. Many hcp basal
and prismatic slip systems fall into this category. In the isotropic limit, c′66 =µ and vc = cT, as
expected.

2. If on the other hand q < 0, then the square root in the solution to λ2 would become imaginary
as ρv2 → min(c′11, c′66), and in this case there exists a smaller velocity that renders the real
part of at least one solution to λn zero; in particular vc is determined in this case from the
non-linear equation [5]

q =−2
p

s . (2.14)

Its solution can be derived analytically and thus the smallest (positive) limiting velocity de-
rived in this way reads:

vedge
c =

p
2A−Bp

ρ
∣∣c′22 − c′66

∣∣ , with

A = (c′12 + c′66)
√

c′22c′66
[
c′11(c′66 − c′22)+ (c′12)2 + c′66(2c′12 + c′22)

]
,

B = [
c′11c′22(c′66 − c′22)+ (c′12)2(c′22 + c′66)+2c′12c′22c′66 +2(c′66)2(c′12 + c′22)

]
. (2.15)

The elastic stability criterion c′11c′22 > (c′12)2 (see [5]) together with q < 0 ensures that this
expression is real. An example for this case is the basal slip system of Zn.

3 Limiting velocities of dislocations: The most general case

The most general case can in principle be solved in the same way by studying the full sextic equation
(2.6). This has been done by Teutonico in Ref. [6], but the determination of explicit numerical values
for the limiting velocities is tedious and numerically not very efficient. A computationally faster

1A further special case which falls into this category regarding its limiting velocity, c′12 + c′66 = 0, is considered in
Ref. [41], though it is unclear if any slip systems fulfill this condition: None of the cubic, hexagonal, tetragonal, and
orthorhombic slip systems checked by the present author exhibit this special property.
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and thus better way to study the limiting velocities in this case is to employ the so-called integral
formalism which is based on the work of Stroh and others [42–44], see [45] for a review as well
as [37, pp. 467–478]. The main ideas leading to this solution are summarized as follows [7]. Stroh
made an ansatz for a solution in Cartesian crystal coordinates which depends on perpendicular unit
vectors, m⃗ and n⃗ which are normal to the dislocation sense vector t⃗. Thus, the differential equation
is converted to an eigenvalue problem which, due to Voigt symmetry, can be formulated in terms of
a 6-dimensional vector and associated 6×6 matrix N, known as the “sextic formalism”. Since unit
vectors m⃗ and n⃗ within this ansatz are only defined up to an arbitrary angle φ, Barnett, Lothe, and
others [43, 44] realized that the solution can be written in terms of the average matrix

〈N〉 = 1
2π

∫ 2π

0
Ndφ=

(
S Q
K ST

)
, (3.1)

with

S=− 1
2π

∫ 2π

0
(nn)−1(nm)dφ , ST =− 1

2π

∫ 2π

0
(mn)(nn)−1dφ ,

Q=− 1
2π

∫ 2π

0
(nn)−1dφ , K=− 1

2π

∫ 2π

0

[
(mn)(nn)−1(nm)− (mm)

]
dφ , (3.2)

where we have employed the shorthand notation (ab) jk := ai
(
Ci jkl −ρvivlδ jk

)
bl and unit vectors

m⃗(ϑ,φ)= m̂0(ϑ)cos(φ)+ n̂0 sin(φ) ,

n⃗(ϑ,φ)= n̂0 cos(φ)− m̂0(ϑ)sin(φ) , (3.3)

depend not only on polar angle φ, but also on the dislocation character angle ϑ. In particular, if
n̂0 is the slip plane normal and t̂(ϑ) is the sense vector of the dislocation, then m̂0(ϑ) = n̂0 × t⃗(ϑ).
It is also easy to work out that all integrands in (3.2) are π-periodic in φ due to (3.3), so that∫ 2π

0 (. . .)dφ = 2
∫ π

0 (. . .)dφ. The beauty of this formalism lies in the fact that the computation of the
eigenvalues can be completely circumvented because the eigenvectors happen to be independent
of the choice of basis m⃗, n⃗ which is parametrized by polar angle φ. This is of course due to the
symmetry properties of the steady-state problem.

Within this ‘integral method’, whose derivation is very nicely explained in the review article
of Ref. [45], the solution to the dislocation displacement gradient field takes the form ∂ku j(r,φ) =
ũ jk(φ)/r, where

ũ jk(φ)= −bl

2π

{
nk

[
(nn)−1(nm)S

]
jl −mkS jl +nk(nn)−1

ji K il

}
(3.4)

is a function of the Burgers vector b⃗, and polar angle φ. Furthermore, matrices S and K are inde-
pendent of position and thus need to be computed only once. Due to the explicit character angle ϑ
dependence, this solution can be easily applied to any dislocation of mixed character.

Having this solution at hand, it is no longer necessary to solve a sextic equation in order to
determine the limiting velocities. Instead, one has to study the determinant of a 3× 3 matrix,
namely [7, 45]

0= det(nn)= (
n⃗ ·C · n⃗−ρ (n⃗ · v⃗)2 1

)
, (3.5)

where ρ is the material density, C is once more the tensor of second order elastic constants, the
3x3 identity matrix is denoted as 1, and v⃗ = vm̂0 is the dislocation velocity vector. For any given
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dislocation character angle ϑ there are three solutions to Eq. (3.5), vn(φ), and each one is a function
of polar angle φ because basis vector n⃗ depends on φ according to (3.3). The smallest value for each
branch vc,n = min(vn(φ)) is found by minimizing these functions in the interval φ ∈ [0,2π]. There
is, however, another caveat to this problem: A divergence at vc occurs in ∂ku j because det(nn) = 0
implies a divergence in the inverse of matrix (nn), but it is nonetheless possible that subtle cancel-
lations in the matrix products within ũ jk lead to a finite result despite the vanishing determinant.
The most prominent example is the pure screw dislocation in an fcc crystal, where it was shown in
Ref. [8] that such a cancellation occurs for the smallest vc,n computed from det(nn) = 0, and that
the true limiting velocity is given by the second branch of that solution instead of the first. The
true limiting velocity then of course coincides with (2.10). In fact, this type of cancellation within
ũ jk at det(nn) = 0 requires a high degree of symmetry within the crystal, which we identify as the
reflection symmetry discussed above in Sec. 2. It can be checked by direct computation, that only a
subset of pure screw or edge dislocations with reflection symmetry feature this type of subtlety.

To sum up: In order to determine the limiting velocity for a pure screw or edge dislocation with
reflection symmetry, one best employs the results discussed above in Sec. 2. For all other cases,
including any mixed dislocation with arbitrary dislocation character angle ϑ, the smallest value
of vc,n determined from det(nn) = 0 after minimization with respect to polar angle φ will be the
limiting velocity. This strategy is for instance implemented in the open source code PyDislocDyn
[39] developed by the present author.

3.1 Relation to sound speeds and the Rayleigh wave speed

The sound speeds in the direction of dislocation motion, v̂ = v⃗/v (parallel to the dislocation glide
direction), are in general determined from [45, 46]

det
(
v̂ ·C · v̂−ρv21

)∣∣∣
v=vshear

= 0. (3.6)

This equation clearly differs from (3.5) for the limiting dislocation velocities above, and therefore
the smallest of the three solutions for sound speed v in the direction of v̂, may or may not coincide
with the limiting velocity of a dislocation [7, 8]. In fact, circling back to the example of an fcc crystal,
the limiting velocity for a pure edge dislocation does happen to coincide with the lowest shear wave
speed for a sound wave propagating in the same direction, but the limiting velocity of a pure screw
dislocation is higher than the corresponding lowest shear wave speed [8]. On the other hand, all
limiting velocities for dislocations must lie within the range of all shear wave speeds of the crystal,
e.g. for a cubic crystal ρv2

c ∈ [
min(c44, c′),max(c44, c′)

]
with c′ = (c11 − c12)/2 for all dislocations and

slip systems. In the isotropic limit, c44 = µ = c′ and there is only one shear wave speed cT which
coincides with the limiting velocity regardless of the dislocation character angle.

There is another velocity that plays a crucial role in dislocation dynamics, namely the general-
ized Rayleigh wave speed. In a general anisotropic setting, it can take any value between 0 and the
limiting velocity (depending on the elastic constants) [6], whereas in the isotropic limit it always
lies within the interval [0.69cT,0.96cT] (depending on Poisson’s ratio ν and with typical values
around 0.93cT for ν∼ 1/3) [5]. Above this velocity, the force between edge dislocations is known to
change sign. This was first pointed out in the isotropic case by Weertman [9, 10]. As Weertman also
pointed out, the dislocation self energy is regular at this speed and therefore the Rayleigh velocity
is not a limiting velocity itself. In general, the Rayleigh velocity can be calculated on a per character
basis from the necessary and sufficient condition [47]

1
2

(K11 +K22)+
√

1
4

(K11 −K22)2 + (K12)2 = 0, (3.7)
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with K i j(v,ϑ) given in Eq. (3.2). It was shown in Ref. [47], that the left hand side of (3.7) is monoton-
ically decreasing with velocity (below the limiting dislocation velocity), so that the Rayleigh velocity
can be efficiently computed numerically.

4 Examples

The fcc slip systems

With the Burgers vector directions 〈110〉 and slip planes {111}, the pure screw dislocations fulfill
the symmetry requirements for the limiting velocity vscrew

c to be given by Eq. (2.10) with the rotated
elastic constants [8]

c′44 =
1
3

(c44 +2c′) , c′45 =
p

2
3

(c44 − c′) , c′55 =
1
3

(c′+2c44) , (4.1)

with c′ = (c11−c12)/2. Pure edge dislocations, on the other hand do not feature a reflection symmetry,
but the determinantal equation det(nn)= 0 is simple enough to determine in this case analytically
that vfcc,edge

c =√
min(c44, c′)/ρ coincides with the smallest shear wave speed of the fcc crystal.

The {112} slip planes in bcc crystals

None of the pure screw dislocations in the 48 bcc slip systems with Burgers vector directions 〈111〉
fulfill the reflection symmetry requirement, so their limiting velocities are determined from Eq.
(3.5). The only family of slip systems where pure edge dislocations feature the reflection symmetry
are the {112} slip planes. They fall into the most general sub-category with c′26 ̸= 0 as discussed in
the first paragraph of Sec. 2.2, and are determined numerically from the solutions to the quartic
equation (2.11).

Basal slip in hcp crystals

With Burgers vector directions 〈2̄110〉 and slip planes {0001}, the pure screw dislocations fulfill the
symmetry requirements for the limiting velocity vscrew

c to be given by Eq. (2.10) with the rotated
elastic constants

c′44 = c44 , c′45 = 0, c′55 = (c11 − c12)/2. (4.2)

The limiting velocity for pure edge dislocations is given by either Eq. (2.13) with c′66 = c44 or by Eq.
(2.15), and which of these two solutions is the correct one depends on the numerical values of the
elastic constants; this needs to be determined on a case by case basis by checking if q is greater or
smaller than zero. For example, one may check that the basal slip system of Zn falls into the second
category (q < 0), whereas Mg and Ti fall into the first (q ≥ 0).

Prismatic slip in hcp crystals

With Burgers vector directions 〈2̄110〉 and slip planes {1̄010}, the pure screw dislocations fulfill the
symmetry requirements for the limiting velocity vscrew

c to be given by Eq. (2.10) with the rotated
elastic constants

c′44 = (c11 − c12)/2, c′45 = 0, c′55 = c44 . (4.3)

The limiting velocity for pure edge dislocations is given by either Eq. (2.13) with c′66 = (c11 − c12)/2
or by Eq. (2.15) in principle, though all metals checked by the present author (Cd, Mg, Ti, Zn, and
Zr) fall into the former category.
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Pyramidal slip in hcp crystals

With Burgers vector directions 〈2̄110〉 and slip planes {1̄011}, the pure screw dislocations fulfill the
symmetry requirements for the limiting velocity vscrew

c to be given by Eq. (2.10) with the rotated
elastic constants

c′44 =
c2c′+ 3

4 a2c44
3
4 a2 + c2

, c′45 =
p

3
2 ac(c′− c44)

3
4 a2 + c2

, c′55 =
c2c44 + 3

4 a2c′
3
4 a2 + c2

, (4.4)

with c′ = (c11− c12) and where a and c denote the two lattice constants within and perpendicular to
the basal plane. Thus,

vpyr,screw
c =

√√√√ c44c′
(3

4 a2 + c2
)

ρ
(3

4 a2c44 + c2c′
) . (4.5)

The limiting velocity for pure edge dislocations does not feature a reflection symmetry in this case
and is hence determined numerically from Eq. (3.5).

Dislocations of mixed character

The special cases outlined in the preceding examples entailed only pure screw or pure edge dislo-
cations. Dislocations of arbitrary mixed character always need to be calculated along the lines of
Section 3.

5 Conclusion

In this short paper, we have reviewed how to compute the limiting velocities of pure screw and
edge as well as mixed dislocations in arbitrary slip systems and crystal geometries. We emphasized
once more that these do not necessarily coincide with the lowest share wave speed of sound waves
traveling in the dislocation glide direction, contrary to common lore. In Sec. 4, we presented a
number of simple examples for typical slip systems in cubic and hexagonal crystals. A reference
implementation of how to compute limiting velocities in the most general case is given within the
open source code PyDislocDyn [39] developed by the present author.
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