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Experiment Setup

Information Communication

v The information, such as velocity, following distance, and images, is transmitted to the reinforcement learning
(RL) network by a socket API using User Datagram Protocol (UDP). The suggested throttle/brake force is
calculated and transmitted back to the simulation environment using the same API.

Host Vehicle Control

v The host vehicle can be controlled by the suggested throttle/brake force from the RL network.
Preceding Vehicle Control

Introduction

This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an
end-to-end vision-based adaptive cruise control (ACC) system. A simulation environment of a highway scene
was set up in Unity, which is a game engine that provided both physical models of vehicles and feature data for
training and testing. Well-designed reward functions associated with the following distance and throttle/brake
force were implemented in the reinforcement learning model for both internal combustion engine (ICE) vehicles
and electric vehicles (EV) to perform adaptive cruise control. The gap statistics and total energy consumption are
evaluated for different vehicle types to explore the relationship between reward functions and powertrain

Case Study
Simulation Environment: a two-way freeway segment is created in Unity for the simulation study.
Both virtual trajectories and real-world data are used during training and testing (see Table 2).
Four trajectories with 4 minutes each are generated to compare between different methods.
Four driving strategies: 1) gap-based DDQN; 2) force-based DDQN; 3) traditional ACC; 4) human-in-the-loop.

Table 2. Trajectory parameters for ICE Vehicles and EVs in the simulation.

characteristics. Compared with the traditional radar-based ACC systems or human-in-the-loop simulation, the v The velocity data of the preceding vehicle is generated from a large pool of trajectories. Both virtual Pﬂr“mﬂfﬁ ICE Vehicle Electric Vehicle
proposed vision-based ACC system can generate either a better gap regulated trajectory or a smoother speed trajectories and real-world data are used during training and testing. P“T velocity ranse (m/s) [27. 33] [0, 30]
trajectory depending on the preset reward function. The proposed system can be well adaptive to different speed « Simulation Environment Reset P“: ?‘:‘:‘51“3““"_ range (m/s’) [-3.5.3.5] [-5.5. 3.5]
trajectories of the preceding vehicle and operated in real-time. v When a collision occurs or the vehicle following distance is greater than 300m, the current episode is Initial PV velocity range (m/s) [27, 33] [11.2. 15.6]
terminated, and the simulation environment is reset with all the object settings to be new initial states for the Initial HV velocity range (m/s) [25. 30] [11. 16]
Simulation Environment Reinforcement Learning Network next episode. Initial following distance range (m) | [25. 3] [25. 35]
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Figure 2. Bird’s eye view (left) and elevation view (right) of the simulation environment. I — oo | 25/
Table 1. Reward Function for Gap-based and Force-based DDQN Model.
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« System Workflow Gap 2 -5 o
v’ System consists of two stages, training and testing. The interaction between the simulation environment 10 | Conclusions and Future Work
and RL network occurs at every time step (see Figure 1). 15, 0 200 300 | fe2l V . . . : :
: | . . * An end-to-end vision-based ACC using DRL under Unity simulation environment was proposed.
* EXxperiment Setup 539 Figure 3. CNN structure in the system J y Prop

v" Freeway scene with trees, buildings, and traffic flows are built in the simulation environment (Figure 2).
« DDQN and Network Structure
v" Different reward functions (see Table 1) associated with following distance and throttle/brake force were

Implemented in the reinforcement learning model for both internal combustion engine (ICE) vehicles and
electric vehicles (EV).

v The CNN architecture (see Figure 3) applied in the learning receives both image and speed inputs.

In the network, the image input is a time series sequence of 8 images with size 105 by 150 in grayscale, and the speed
Input Is a time series sequence of 8 speed values of the host vehicle. Conv represents the convolutional layer and fc is the
fully connected layer. The 21 output values indicate the 21 Q values of the discretized brake/throttle forces to the vehicle
at the given state. We test two different reward functions for ICE vehicles and EVs, one is only related to the gap (gap-
based DDQN), while the other one is also related to force (force-based DDQN). We encourage a gap between 30 to 80m
and forces from -0.3 to 0.3. The sum of the reward is normalized between -1 to 1 to ensure faster learning.

Training and testing result over virtually generated and real-world driving trajectories show the effectiveness and
robustness of the following ability for both ICE or EV models.
The inference time of 3.58 ms indicates the real-time working ability of the proposed method.
Further research will be conducted to integrate the energy model into DRL reward function and apply other
reinforcement learning algorithms and recurrent neural network (RNN) structures, such as Actor-Critic and Long
short-term memory (LSTM).



