
Introduction

End-to-End Vision-Based Adaptive Cruise Control (ACC) Using Deep Reinforcement Learning
Zhensong Wei (zwei030@ucr.edu), Yu Jiang (yjian091@ucr.edu), Xishun Liao (xliao016@ucr.edu), Xuewei Qi (qixuewei@gmail.com), Ziran Wang (zwang050@ucr.edu), Guoyuan Wu (gywu@cert.ucr.edu), Peng Hao (haop@cert.ucr.edu), and Matthew Barth (barth@ece.ucr.edu)

Conclusions and Future Work

• An end-to-end vision-based ACC using DRL under Unity simulation environment was proposed.

• Training and testing result over virtually generated and real-world driving trajectories show the effectiveness and

robustness of the following ability for both ICE or EV models.

• The inference time of 3.58 ms indicates the real-time working ability of the proposed method.

• Further research will be conducted to integrate the energy model into DRL reward function and apply other

reinforcement learning algorithms and recurrent neural network (RNN) structures, such as Actor-Critic and Long

short-term memory (LSTM).

• System Workflow

✓ System consists of two stages, training and testing. The interaction between the simulation environment

and RL network occurs at every time step (see Figure 1).

• Experiment Setup

✓ Freeway scene with trees, buildings, and traffic flows are built in the simulation environment (Figure 2).

• DDQN and Network Structure

✓ Different reward functions (see Table 1) associated with following distance and throttle/brake force were

implemented in the reinforcement learning model for both internal combustion engine (ICE) vehicles and

electric vehicles (EV).

✓ The CNN architecture (see Figure 3) applied in the learning receives both image and speed inputs.

Methodology

• Simulation Environment: a two-way freeway segment is created in Unity for the simulation study.

• Both virtual trajectories and real-world data are used during training and testing (see Table 2).

• Four trajectories with 4 minutes each are generated to compare between different methods.

• Four driving strategies: 1) gap-based DDQN; 2) force-based DDQN; 3) traditional ACC; 4) human-in-the-loop.

Case Study
This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an

end-to-end vision-based adaptive cruise control (ACC) system. A simulation environment of a highway scene

was set up in Unity, which is a game engine that provided both physical models of vehicles and feature data for

training and testing. Well-designed reward functions associated with the following distance and throttle/brake

force were implemented in the reinforcement learning model for both internal combustion engine (ICE) vehicles

and electric vehicles (EV) to perform adaptive cruise control. The gap statistics and total energy consumption are

evaluated for different vehicle types to explore the relationship between reward functions and powertrain

characteristics. Compared with the traditional radar-based ACC systems or human-in-the-loop simulation, the

proposed vision-based ACC system can generate either a better gap regulated trajectory or a smoother speed

trajectory depending on the preset reward function. The proposed system can be well adaptive to different speed

trajectories of the preceding vehicle and operated in real-time.

Figure 1. System workflow for training (upper) and testing (lower).

• Information Communication

✓ The information, such as velocity, following distance, and images, is transmitted to the reinforcement learning

(RL) network by a socket API using User Datagram Protocol (UDP). The suggested throttle/brake force is

calculated and transmitted back to the simulation environment using the same API.

• Host Vehicle Control

✓ The host vehicle can be controlled by the suggested throttle/brake force from the RL network.

• Preceding Vehicle Control

✓ The velocity data of the preceding vehicle is generated from a large pool of trajectories. Both virtual

trajectories and real-world data are used during training and testing.

• Simulation Environment Reset

✓ When a collision occurs or the vehicle following distance is greater than 300m, the current episode is

terminated, and the simulation environment is reset with all the object settings to be new initial states for the

next episode.

Experiment Setup

Figure 2. Bird’s eye view (left) and elevation view (right) of the simulation environment.

Table 1. Reward Function for Gap-based and Force-based DDQN Model.

Figure 3. CNN structure in the system

In the network, the image input is a time series sequence of 8 images with size 105 by 150 in grayscale, and the speed

input is a time series sequence of 8 speed values of the host vehicle. Conv represents the convolutional layer and fc is the

fully connected layer. The 21 output values indicate the 21 Q values of the discretized brake/throttle forces to the vehicle

at the given state. We test two different reward functions for ICE vehicles and EVs, one is only related to the gap (gap-

based DDQN), while the other one is also related to force (force-based DDQN). We encourage a gap between 30 to 80m

and forces from -0.3 to 0.3. The sum of the reward is normalized between -1 to 1 to ensure faster learning.

Table 2. Trajectory parameters for ICE Vehicles and EVs in the simulation.

Figure 4. Training and testing result for virtual trajectory. Figure 5. Training and testing result for real trajectory

Table 3. Energy consumption and pollutant emission for 

combustion engine vehicles between different methods
Table 4. Energy Consumption for EV between different 

methods


