
DYFLOW: A flexible framework for orchestrating scientific
workflows on supercomputers

Swati Singhal

University of Maryland

swati@cs.umd.edu

Alan Sussman

University of Maryland

als@cs.umd.edu

Matthew Wolf

Oak Ridge National Lab

wolfmd@ornl.gov

Kshitij Mehta

Oak Ridge National Lab

mehtakv@ornl.gov

Jong Youl Choi

Oak Ridge National Lab

choij@ornl.gov

Abstract
Modern scientific workflows are increasing in complexity with

growth in computation power, incorporation of non-traditional

computation methods, and advances in technologies enabling data

streaming to support on-the-fly computation. These workflows

have unpredictable runtime behaviors, and a fixed, predetermined

resource assignment on supercomputers can be inefficient for over-

all performance and throughput. Inability to change resource as-

signments further limits the scientists to avail of science-driven op-

portunities or respond to failures. We introduce DYFLOW, a flexible

framework that orchestrates scientific workflows on supercomput-

ers based on user-designed policies. DYFLOW compartmentalizes

orchestration stages into simplified constructs, and end-users can

program and reuse them according to their workflow requirements

through an easy-to-use interface. These constructs hide the intrica-

cies involved in runtime management from end-users, for instance,

procurement of information to understand the workflow state, as-

sessment, and supervision of the runtime changes. DYFLOW is

designed to work alongside existing workflow management sys-

tems and reuse the available (static) support for workflow man-

agement. We have integrated DYFLOW with an existing workflow

management tool as a demonstration. With experiments performed

on use cases from three types of scientific workflows and two dif-

ferent parallel architectures, we show that DYFLOW achieves the

desired orchestration incurring a small cost to carry out the runtime

changes.

Keywords
policy-driven workflow management, performance monitoring,

user-defined dynamic workflows, in situ analysis, data-driven or-

chestration, resource adaptation, resilience

1 Introduction
Scientific workflows have typically contained a set of loosely

coupled tasks – i.e., simulation, analysis, or visualization – inter-

connected via the filesystem. Technological and methodological

advances have enabled scientific workflows to expand both in scale

and complexity [6]. The use of in situ (or in transit) techniques, for
instance, to filter, digest, and reduce data stream sizes, is becom-

ing an increasingly popular option to overcome I/O bottlenecks.

These techniques reduce disk storage requirements by managing

dataflow between workflow tasks, employing in-memory staging

(buffering), or node-to-node data transfers. Managing such complex

workflows is challenging as workflow tasks often run concurrently

with input/output dependencies, potentially affecting performance

across workflow tasks and also system resource usage [8]. There are

additional complications when the workflows themselves are com-

posed of tasks derived from non-traditional HPC methods, such as

machine learning and graph algorithms that exhibit unpredictable

computation patterns.

On supercomputers, resource management support for user

jobs is usually static, where resources are assigned once based

on an initial resource requirement specification, thereby unable to

accommodate dynamically changing requirements. Predetermin-

ing an efficient resource assignment becomes challenging for a

workflow with changing runtime requirements, resulting in over-

provisioning of resources or loss of workflow performance due

to under-provisioning. Modern supercomputers provide abundant

resources on a single node for workflow tasks to share and take

advantage of data locality. Due to the unpredictable behavior of

workflow tasks, scientists often hesitate to avail themselves of such

opportunities. An orchestration service is hence desirable that can

monitor workflows to adapt the resource assignments according to

changing runtime needs of the workflow. Such a service can further

enable scientists to respond to failure events and avail science-

driven opportunities provided by on-the-fly analysis to improve

overall experiment accuracy. Throughout this paper, we refer to the

dynamic management of scientific workflows as the orchestration

service.

Therefore, this paper presents DYFLOW – a flexible framework

that can orchestrate scientific workflows based on user-designed

policies to take advantage of the benefits of dynamic resource

assignment. DYFLOW contains programmable constructs corre-

sponding to different stages of dynamic management. These con-

structs are available to the user through an easy-to-use interface

(XML) that enables the desired runtime management of a work-

flow without user involvement. For instance, DYFLOW can support

science-driven functionality, improve resource assignments based

on performance-driven events, and aid in providing resilience to

workflow task failures. DYFLOW internally handles acquiring mon-

itoring information (i.e. performance measurements) at scale from

system resources and performs the processing required to plan

the appropriate resource reassignment and other workflow actions

at runtime. Furthermore, the framework executes the final plan

of action and determines the appropriate resource assignments

while ensuring that the workflow state remains consistent after the

runtime reassignment.

02:15.6

02:15.6

02:15.6

GrayScott_320_procs, 09:03
Isosurface_60_procs, 02:15
Rendering_20_procs, 02:15

Isosurface_40_procs, 07:00
Rendering_20_procs, 07:00
FFT_20_procs, 06:39

01
:4

4

01
:5

2

02
:0

1

02
:1

0

02
:1

8

02
:2

7

02
:3

6

02
:4

4

02
:5

3

Overprovisioning correction (Deepthought2): Event timestamps (min:sec) and duration

8.3 seconds

START FFT
RESTART RENDERING

RESTART ISOSURFACE

Figure 1: DYFLOW improves the throughput of an in situ work-
flow by rebalancing execution parameters in response to perfor-
mance variations. The red vertical bars show the response window
ofDYFLOWfor a dynamic eventwhere the resources are taken from
the running analysis tasks and used to launch additional analysis
task to improve overall throughput.

DYFLOW uses services from existing workflow management

systems for interacting with the system resource manager, setting

the initial resource assignments, and applying the final actions on

workflow tasks at runtime. It also utilizes support from application

profilers, e.g., TAU [16], for acquiring real-time monitoring infor-

mation. As a demonstration, we have implemented DYLOW using

an existing workflow management system, Cheetah/Savanna [9].

We have tested the integrated system on two cluster configurations

while applying our strategies to three scientific workflows with

different runtime requirements. The results indicate that our frame-

work accommodates and fulfills the dynamic needs of scientific

workflows incurring a small cost to carry out the runtime changes.

As Figure 1 shows, DYFLOW improves the throughput of an in
situ workflow at runtime by launching additional tasks and correct-

ing resource over-provisioning. Dynamic changes are applied to

meet the user expectation of keeping the runtime performance (i.e.,

average time per timestep) within the desired interval, ensuring

that the experiment finishes on time and resources are well utilized.

Our work provides two research contributions; (1) an abstrac-

tion that compartmentalizes the dynamic management stages into

simplified constructs that support state-of-the-art-workflows, and

(2) an easy-to-use interface that enables scientific end users to pro-

gram and reuse these constructs. DYFLOW’s compartmentalization

empowers users with controls to dictate fine-grained operational

semantics for different stages of the runtime. Together with the

focus on ease-of-use, this work aims to provide a generic, user-

accessible platform for identifying, managing, and capitalizing on

runtime events at scale that can generate end-user benefits such

as improved workflow performance and throughput, early result

validation, and failure recovery. This work further provides a plat-

form for exploring new ways of conducting scientific studies on

supercomputers.

Extensive research in workflow management and task sched-

uling has resulted in numerous systems that focus on different

aspects of managing workflows, and we have built DYFLOW lever-

aging these prior systems and their insights. In addition to the

scientific workflow community, we also draw substantial guidance

from cloud/enterprise service orchestration runtimes. Elastic scal-

ing of resources to handle performance fluctuations is a critical

capability in today’s cloud stacks, yet they have proven difficult to

incorporate into traditional, batch-oriented scientific workflows. By

staying focused on the dynamic management components that are

most relevant for scientific end users, DYFLOW offers a platform

for further study of the connections between content-driven in

situ scientific workflow control and the quality-of-service service

compositions of cloud-based systems.

The organization of the paper is as follows. Section 2 discusses

the details of the DYFLOW framework. Section 3 discusses the

implementation used as a demonstration for the experiments and

the XML interface. Section 4 showcases experiments performed

on two HPC systems executing three scientific workflows with

different runtime requirements to demonstrate the benefits of using

DYFLOW. Section 5 described related work, and Section 6 discusses

potential directions for future work.

2 DYFLOW framework
DYFLOW is a conceptual model that compartmentalizes dynamic

management into four stages; Monitor, Decision, Arbitration
and Actuation. All these stages exist simultaneously and function

continuously on the input received from the previous stage. The

first stage is the Monitor that gathers runtime data from the run-

ning workflow tasks that is needed to identify dynamic events and

construct metric values. The changes in the metric values pass on

to the Decision stage. The second stage is the Decision that assesses

the metric values to identify if an event of interest has occurred and

then determine the actions needed in response to the event. The se-

lected actions are passed on to the Arbitration stage. The third stage

is Arbitration that constructs a plan of action that is feasible and

consistent with the workflow specifications on receiving the input

from Decision. The last stage is Actuation that executes the final

plan of action received from Arbitration. For each of these stages,

DYFLOW exposes features that enable users to express events that

can change the behavior of the workflow at runtime through the

actions in response to those events.

2.1 Monitor
The Monitor stage defines the data to procure for runtime assess-

ment, the input method to employ for real-time procurement of this

data, and the translation operations necessary to convert the pro-

cured data into metrics for identifying events of interest. This stage

allows users to define different monitoring requirements through

sensors that support abstract features. These features provide the

set of commands to users for expressing wide-ranging needs that

vary from simple metrics like the maximum memory consumed by

a task to complex metrics computed from workflow measurements.

Monitor features include:

Source type: Depending on theworkflow, the required information

could be organized in a specific format and available through a

given medium. Source type determines how data of interest is

generated and exchanged at runtime for a sensor. For instance, the

desired data can be generated by an online profiler, the running

task or system, and is available through a database service, a

streaming service, or files.

Preprocessing: Preprocessing operations distill the data before it
is processed into the desired metric. It is useful when the input

read from each process is sizeable, for instance, a vector or multi-

dimensional array.

Group-by and reduction: These operations dictate metric formu-

lation. Group-by collects the data from running tasks and orga-

nizes it based on the granularity, while the reduction operation

2

summarizes the grouped information into a metric. A granularity-

based grouping enables expressing metrics from the collected

data that can capture events in different scopes. For instance, the

physical memory usage can have two metrics: one that keeps

track of the physical memory used by a task on each compute

node used, while the other keeps track of the overall physical

memory used by the task to assess the memory usage pattern.

Some examples of granularity levels include node-task, task-level,

node-workflow, and workflow-level. The node-task granularity

groups data from every process belonging to the same workflow

that shares the compute node. The node-workflow granularity

performs the same grouping for all the processes belonging to

the workflow. With task-level granularity, the groups define the

data from all the processes belonging to the same task, while

with workflow-level granularity, the groups define data from all

the tasks belonging to the same workflow.

Join: A sensor can join its output with another sensor to compute

a complex metric that relies on multiple data inputs. For instance,

Instructions Per Cycle (IPC), a metric used for measuring CPU

performance, is computed by dividing the number of instructions

completed by the number of CPU cycles used.

Sensors act as portable functions invoked using inputs that vary

across workflow tasks and architectures. For example, workflow

tasks have different variable names representing the desired in-

formation, or the hardware counter information used for defining

metrics can differ across architectures. The Monitor stage manages

the background activities of the user-defined sensors to ensure cor-

rectness. These include setting (or resetting) connections to input

streams or databases when the workflow tasks start (or restart),

gathering the sensor outputs, and sending the information to the

Decision stage for evaluation and updating sensors about changes

performed on the workflow at runtime.

2.2 Decision
Once a metric is defined, a set of guidelines must be determined

that clarifies what evaluation criteria should be employed to capture

the events of interest from the metric values. Should the evaluation

be based on the instantaneous values or observing the values over

a period of time? What actions should be taken in response to the

events at runtime? And, how frequently should the evaluation be

performed? The Decision stage allows users to define policies that

provide abstract features that simplify setting these guidelines and

supporting a broad range of policies. Decision guidelines include:

Sensor(s) to use: Defines the sensor output(s) to employ for the

policy with the desired granularity level(s).

History and pre-analysis: The policy could maintain a history

of sensor outputs, like a sliding window of a specified size, and

perform a preliminary analysis to capture a pattern. For instance,

to identify the events based on the running average rather than

the last observed value of the IPC metric.

Evaluation condition: The evaluation condition compares the

input against a threshold, and the result determines if an event of

interest has occurred. The evaluation could use the instantaneous

or pre-analyzed output from a single sensor or a value derived

from a set of sensor outputs.

Suggested action: The suggested actions represent the high-level

operations applied to one or more tasks in response to the event

of interest. These high-level operations are concise and easy to

understand as they encapsulate different low-level operations

required to perform the desired action. For example, a SWITCH

operation represents the following low-level operations; signal-

ing a running task to stop, estimating resources for launching the

replacement task, acquiring the required resources, and initiating

the replacement task if enough resources are available. Other

examples of high-level actions include ADDCPU, RMCPU, STOP,

START, and RESTART. These correspond to increasing or de-

creasing the number of CPUs assigned to the task to increase or

decrease the number of processes, stopping a running task, and

starting a task or restarting the current task. Each high-level oper-

ation supports additional parameters to guide the action, e.g., the

desired number of CPUs to increase or decrease or user settings

to apply (i.e., using a shell script) before starting or restarting

tasks.

Evaluation frequency: Every policy has a defined frequency to

decide when to trigger the evaluation condition. Evaluation fre-

quency helps in avoiding events that have transitory effects.

Like sensors, policies act as portable and reusable functions. The

inputs to these policies vary with different workflows and tasks.

For example, evaluation thresholds or the tasks to which the policy

action would apply can differ across the monitored tasks.

2.3 Arbitration
The Arbitration stage is a complex stage of dynamic manage-

ment that determines which actions – if any – will be applied to

modify the current state of the workflow. This stage ensures that

the final set of actions are feasible and consistent with the work-

flow specification. Arbitration screens the high-level operations

suggested by the Decision stage resolving conflicts, inconsistencies,

and dependencies. For instance, conflict results when one policy

suggests stopping a task while another suggests increasing the

number of processes for the same task. Similarly, some high-level

operations depend on additional operations to ensure consistency.

For instance, whenever a running task is terminated or restarted, all

the (tightly) coupled dependent tasks need to be signaled. Resolu-

tion of conflicts results in filtering out a set of high-level actions and

deferring others. To construct a plan of action, Arbitration maps

the filtered high-level operations to low-level operations. These

low-level operations represent the function calls understood by a

resource manager or underlying resource management service.

Resource management is the primary responsibility of Arbitra-

tion as a feasible final plan is dependent on the available resources.

Hence, it maintains recent information about the resources that in-

clude the total allocated resources, resource health, and the current

resource assignment to workflow tasks. Arbitration issues requests

for additional resources whenever necessary and resolves conflicts

and incompatibilities among low-level operations when resources

are insufficient to meet all requirements. For instance, if tasks A and

B want to increase their number of processes while the available

resources cannot allow both operations, then one of these would be

denied. A final executable plan with revised resource assignments

consists of all the selected low-level operations sequenced in the

order in which to apply them. Ordering is required to avoid exe-

cution inconsistencies. For example, if any operation reduces the

3

Decision thread

Monitor
Clients

Actuation thread

<xml>
<policy>

<monitor>
</monitor>
<decision>
</decision>
<arbitration>
</arbitration>

</policy>
</xml>

Streams data
through

ADIOS2 or
scan/read files

from disk

Arbitration thread
High-level

actions

User dynamic requirements
Initialization

Low-level operations

Monitor Server thread

sensor
outputs

Cluster job
scheduler

Request resources,
launch tasks,

resource healthSavanna/Cheetah

Bootstrap

Figure 2: Overview of DYFLOW implementation as an extension to
the Cheetah/Savanna workflow service. Arrows represent the ex-
change of data using JSONmessages (in red), function call (in black)
or file/stream reads (in blue).

number of processes of a task releasing resources, it should precede

others that use those resources.

Arbitration provides users with the flexibility to define rules that

guide the plan of action.

Policy priorities: Assign priorities to policies according to their

relevance. This helps in resolving conflicting high-level actions.

Task priorities: Assign priorities to tasks according to their rele-

vance. This helps in resolving conflicting low-level operations.

Task inter-dependencies: Determine the dependent tasks and their

parent tasks and if the dependency is tight (i.e., the dependent

task runs concurrently with the parent and gets data via an in
situ medium) or loose (i.e., the dependent task runs uncoupled

from the parent and gets data via disk). This information helps

in identifying dependent operations.

2.4 Actuation
This stage implements all the low-level operations invoked by

Arbitration in the final plan of action. These low-level operations

serve as a plugin to any static service that interacts directly with the

cluster resource manager and launches workflow tasks on the com-

pute node. Having a pluggable Actuation stage allows the DYFLOW

model to be portable across cluster architectures and build on the

services supported by the existing workflow management systems.

Some examples of such low-level operations include starting a task

with a resource assignment(start_task_with_resources), sending

signals to a task (signal_*_task), terminating a task (stop_task),

requesting or releasing extra resources from cluster resource man-

ager(request_resources, release_resources), and enquiring resources’

health (get_resource_status).

3 DYFLOW Implementation
The design of a model implementation of DYFLOW is shown

in Figure 2. Our implementation extends the functionality of an ex-

isting workflow management service, Cheetah/Savanna. The Chee-

tah and Savanna tools are a Department of Energy CODAR (Co-

designing of Online Data Analysis and Reduction) project [9, 13]

effort to investigate various resource allocation trade-offs as part

of broader co-design studies. Cheetah is a composition tool used

to specify the workflow; Savanna is a runtime environment that

runs on launch/service cluster nodes, communicates with the clus-

ter scheduler, allocates the required resources, and spawns the

workflow tasks on the allocated resources. Cheetah/Savanna incor-

porates the orchestration functionality of DYFLOW as an external

Algorithm 1 Arbitration Protocol

1: function Arbitration(𝐴𝑠𝑢𝑔𝑔, 𝑅𝑓 𝑟𝑒𝑒 , 𝑅𝑎𝑠𝑔𝑛,𝑇𝑝𝑟𝑖 , 𝐷𝑝𝑟𝑖 ,𝑇𝑑𝑒𝑝 ,𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔)

2: 𝐴𝑓 𝑖𝑙𝑡𝑒𝑟 ← resolve conflicts in𝐴𝑠𝑢𝑔𝑔 using 𝐷𝑝𝑟𝑖

3: 𝐴𝑡𝑜𝑡𝑎𝑙 ← (get dependent actions for𝐴𝑓 𝑖𝑙𝑡𝑒𝑟) ∪𝐴𝑓 𝑖𝑙𝑡𝑒𝑟

4: 𝑆𝑜𝑝 ← Get low level operations for𝐴𝑡𝑜𝑡𝑎𝑙

5: 𝑁𝑑𝑒𝑠 ← Calculate required resources from 𝑆𝑜𝑝
6: while 𝑁𝑑𝑒𝑠 > 𝐶𝑜𝑢𝑛𝑡 (𝑅𝑓 𝑟𝑒𝑒) do
7: 𝑅𝑟𝑒𝑙 ← Find the lowest priority running task (and any dependent tasks)

using𝑇𝑝𝑟𝑖 and𝑇𝑑𝑒𝑝 that can shed resources

8: if 𝐶𝑜𝑢𝑛𝑡 (𝑅𝑟𝑒𝑙) > 0 then
9: 𝑆𝑜𝑝 ← add operation to stop task(victim) (and dependents) in 𝑆𝑜𝑝
10: add victim(and dependents) to𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔

11: 𝑅𝑓 𝑟𝑒𝑒 ← 𝑅𝑓 𝑟𝑒𝑒 ∪ 𝑅𝑟𝑒𝑙
12: else
13: Select the least significant operation from𝐴𝑡𝑜𝑡𝑎𝑙 that acquire resources

based on𝑇𝑝𝑟𝑖 . Update 𝑆𝑜𝑝 and 𝑁𝑑𝑒𝑠 .

14: end if
15: end while
16: while 𝑁𝑑𝑒𝑠 < 𝐶𝑜𝑢𝑛𝑡 (𝑅𝑓 𝑟𝑒𝑒) and a task (with highest priority) from

𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 can be started do
17: Update 𝑆𝑜𝑝 ,𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 and 𝑁𝑑𝑒𝑠 .

18: end while
19: 𝑜𝑝𝑓 𝑖𝑛𝑎𝑙 ← Order operations in 𝑆𝑜𝑝
20: 𝑅𝑟𝑒𝑎𝑠𝑛𝑔 ← Determine new resource assignment for 𝑜𝑝𝑓 𝑖𝑛𝑎𝑙

21: end function

Python library and its modules implement the different dynamic

management stages.

Bootstrap: This module parses the XML file with user orches-

tration specifications of the workflow and initiates threads corre-

sponding to the Monitor, Decision, Arbitrator modules providing

them with essential information. For instance, the Monitor module

receives the sensor information while the Decision module gets the

policies details. All communications between the service threads

occur through shared queues and JSON
1
formatted messages. The

Actuation module is a wrapper for the plugin inside Savanna that

executes all the low-level operations.

Monitor: This module is a client-server service. A client(s) is a

hybrid MPI and Python threads-based service that can run on a

compute node or launch node of a cluster. The server service runs

on the launch node within the DYFLOW library and connects to the

client(s) using PyZMQ
2
. Flexibility to launchmultiple clients on the

compute or launch nodes benefits the Monitor to address requisite

scaling needs. Running the server on the launch node ensures its

availability in events of computing resource failures. The server

manages the client(s): starts (or restart) client(s) with the sensors

along with the tasks to monitor, updates the client(s) whenever the

runtime status of monitored tasks is changed, filters the out of order

messages from the client(s), and sends updates from the client(s) to

the Decision module. A client(s) manages and executes the sensors

by connecting to workflow tasks, collecting the monitoring data,

and sending the sensor outputs to the server. Our implementation

supports sensors that can stream user data through ADIOS2, or

stream data generated by the TAU [16] profiler using ADIOS2,

scan disks for files, and read files. TAU is an online profiler that

collects performance data via code instrumentation and event-based

sampling. ADIOS2
3
is a state-of-the-art unified I/O framework that

encompasses a variety of transformations and transport methods,

including file I/O and other in situ methods for task coupling (e.g.,

Sustainable Staging transport (SST)). We employ SST transport in

1
JavaScript Object Notation(JSON):https://www.json.org/json-en.html

2
Python ZeroMQ website: https://zeromq.org/languages/python

3
ADIOS2 website: https://csmd.ornl.gov/software/adios2

4

https://csmd.ornl.gov/software/adios2

Figure 3: XML illustrating a sensor for tracking main iteration time
using code instrumentation support from the TAU profiler

ADIOS2 to enable both dynamic connections between workflow

tasks and high-performance data movement.

Decision: This module screens incoming sensor messages(s) for

out-of-order updates and maps them to the policies. Each policy

uses these updates to trigger evaluation at defined frequency in-

tervals; otherwise, the updates are either discarded or stored to

maintain history. Policy responses (if any) are collected and sent as

a single JSON message to the Arbitration module.

Arbitration and Actuation: Arbitration uses the protocol de-

scribed in Algorithm 1 to finalize runtime modifications. The pro-

tocol has two limiting factors: (1) MPI-based tasks that depend

on inter-and intra-task communication cannot grow and shrink

without restart, and (2) resource manager support for on-demand

resource allocation and de-allocation is not commonplace on su-

percomputers.

The protocol takes the following inputs; the set of suggested

actions (𝐴𝑠𝑢𝑔𝑔), the allocated free (healthy) resources (𝑅𝑓 𝑟𝑒𝑒), the

allocated (healthy) resources assigned to tasks (𝑅𝑎𝑠𝑔𝑛), task priori-

ties (𝑇𝑝𝑟𝑖), task dependencies (𝑇𝑑𝑒𝑝), decision priorities (𝐷𝑝𝑟𝑖), and

a list of tasks waiting to acquire resources (𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔). It outputs an

action plan with an ordered set of low-level operations (𝑜𝑝 𝑓 𝑖𝑛𝑎𝑙)

with the revised resource assignment (𝑅𝑟𝑒𝑎𝑠𝑔𝑛).

The protocol begins with conflict resolution across high-level op-

erations (utilizing decision priorities) and filtering the suggestion

set (𝐴𝑓 𝑖𝑙𝑡𝑒𝑟). The types of conflicts resolved include: STOP-START,
STOP-RESTART, or RMCPU-ADDCPU. Next, it identifies dependent
operations for the filtered suggestions (through task dependen-

cies) and finalizes the set of high-level operations (𝐴𝑡𝑜𝑡𝑎𝑙). The set,

𝐴𝑡𝑜𝑡𝑎𝑙 , is then mapped to low-level operations, and an initial plan

of action (𝑆𝑜𝑝) is determined along with computing the additional

resources (i.e., CPU cores) required (𝑁𝑑𝑒𝑠) to execute the plan.

When free resources are not available to satisfy the additional

resource request, a running task with the lowest priority becomes

the victim. The victim task relinquishes the resources (represented

by the set 𝑅𝑟𝑒𝑙) and waits in a queue for computation resources to

become available. If a victim task is not available, the lowest priority

operation requesting additional resources gets discarded from the

plan. This process repeats until the available resources can meet

the requirements of the revised plan. On the other hand, when

resources are freed by the plan, the waiting list tasks (𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔)

are provided the opportunity to start with preference given to

high priority tasks. Finally, the operations in the finalized plan are

ordered (e.g., STOP, RMCPUS proceeds START, ADDCUPS), and

the revised resource assignment is determined. Once the protocol

completes, the Arbitration module waits for the Actuation module

Figure 4: XML illustrating policies for changing the number of
CPUs when the pace of the task is outside a desired interval.

Figure 5: XML illustrating arbitration rules for determining task de-
pendencies and prioritizing task and decision policies.

to execute the plan. If the Actuationmodule returns successfully, the

Arbitration module discards new decision messages for a sufficient

time, allowing the workflow state to settle down after the changes.

User Interface:We choose XML for the user interface because it

is portable and easy to use and extend. The XML contains sections

corresponding to the Monitor, Decision, and Arbitration stages.

The monitor section defines the sensors and the workflow tasks to

monitor using the sensors
4
. The decision section sets the policies

and the workflow tasks for which these policies will perform the

assessment. The arbitration section sets the rules for the workflow

that corresponds to setting priorities and dependencies.

The monitor section, demonstrated in Fig. 3, sets a sensor, PACE,

to track the time spent in the main loop of the workflow tasks. This

information is generated through the TAU code instrumentation

facility and collected in real-time using ADIOS2. The sensor returns

a metric representing the time taken to complete an iteration, or

timestep, of the task. The metric is the maximum of values received

from all the processes of the monitored workflow task. The example

further illustrates how the sensor is configured for monitoring a

workflow task, Isosurface, with the details of the variable to be read.

The example for the decision section, shown in Fig. 4, defines

two policies that act on the output of the PACE sensor. One policy

increases the number of CPUs of a task if the average time per

timestep is more than a threshold value, and the other decreases

the number of CPUs when the average time per timestep is less

than a threshold value. The policies maintain a running average of

the sensor output using the latest 10 values. The policies evaluate

the sensor output every 5 seconds.

Finally, the example for the arbitration section, shown in Fig. 5,

demonstrates the rules that set the priority value for a workflow

4
Detailed semantics of the DYFLOW XML can be found at https://github.com/

swatisgupta/DYFLOW

5

https://github.com/swatisgupta/DYFLOW
https://github.com/swatisgupta/DYFLOW

Table 1: A single run configuration of XGC1 and XGCa
TASK(S) SETTING Summit Deepthought2

XGC1 XGCa PROCESSES 192 (14 PER NODE) 192 (4 PER NODE)

XGC1 XGCa THREADS PER PROCESS 10 10

XGC1 XGCa TIMESTEPS PER RUN 100 100

XGC1 XGCa PARTICLES PER PROCESS 250K 250K

task, GrayScott, and specifies that the task 𝐼𝑠𝑜𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒 has a tightly

coupled dependency on 𝐺𝑟𝑎𝑦𝑆𝑐𝑜𝑡𝑡 .

4 Experiments
We showcase examples from three scientific workflows highlight-

ing some of the dynamic capabilities achievable through DYFLOW.

In the examples, DYFLOWflexibly enables modification of the work-

flow state in response to science-driven events, re-assignment of

computation resources in response to performance-driven events,

and recovery from failure. Our experiments test DYFLOW based

on the model implementation that builds on Savanna/Cheetah. To

show the costs incurred by DYFLOW, we conducted these experi-

ments on a standard Unix cluster and a state-of-the-art high-end

supercomputer. The results show that DYFLOW accommodates

varied dynamic workflow requirements and incurs a low cost to

carry out the desired changes to the workflow execution.

4.1 Clusters
Summit: A high-end supercomputer with 4, 608 nodes, where

each node consists of 2 IBM Power9 CPUs (i.e., 42 cores with each

core is 4-way hyper-threaded), 6 NVIDIA Volta GPUS, 512 GB of

DDR4 memory and additional 96 GB of High Bandwidth Memory

(HBM2). All the nodes are interconnected using Mellanox EDR

100𝐺 InfiniBand.

Deepthought2: A standard Linux cluster with 448 nodes, where

each node has 20 cores (with 2 hardware threads/core) and 128
GB of DDR3 memory running at 1866 MHz. Each node has dual

Intel Ivy Bridge E5-2680v2 processors running at 2.80 GHz and the

nodes are interconnected with Mellanox FDR Infiniband.

4.2 Use cases
This section describes the three use cases: XGC1-XGCa, Gray-

Scott, and LAMMPS. These use cases are specifically selected to

represent workflows based on different types of scientific simula-

tion techniques. For instance, XGC1-XGCa is an exemplar of the

workflows that synthesize particle-in-cell computations; Gray-Scott

is a MiniApp that represents workflows that synthesize mesh-based

fluids; the LAMMPS use case exemplifies workflows that synthesize

a combination of both particles and mesh-based computations.

XGC1-XGCa coupling based fusion simulation:
XGC1 [12] and XGCa are gyrokinetic particle-in-cell codes devel-

oped to study complex multi-scale simulations of turbulence and

transport dynamics of the fusion processes in state-of-the-art fu-

sion reactors, called Tokamaks, including D3D, JET, KSTAR, and

the next-generation ITER reactors. XGC1 is highly complex and

computation-intensive software that often takes several days to

simulate a short time interval of fusion reactions in the reactors.

On the other hand, XGCa uses a simplified physical model that

can simulate fusion reactions for a longer physical time within a

fixed amount of wall clock time. A complete simulation of Toka-

mak reactors requires a femtosecond-scale resolution, which is very

expensive to complete in a reasonable time frame with XGC1; there-

fore, scientists have to resort to a coarser-scale in the micro- to

millisecond range in practice. An alternative employed to maintain

the precision of the fully converged simulation is alternating the

simulation between XGC1 and XGCa such that XGCa pushes the

simulation forward at a faster rate [11]. The scientists choose the

alternation frequency to enable the experiment to moves forward

quickly in simulation time with confidence that the statistics (if not

exact values) of the result will be the same as that produced with

XGC1 alone.

Gray-Scott based reaction-diffusion online analysis:
Gray-Scott is amathematicalmodel that simulates reaction-diffusion

systems and is used to study chemical species that can produce a

variety of patterns (stripes, spots, periodicity) often seen in nature.

There are many applications found in biology, geology, physics,

ecology, etc. that undergo similar chemical reactions, and Gray-

Scott can be employed as a simplified system to represent them.

Hence there are also a variety of concurrent data analysis functions

that may be useful, based on the target of study.

For this study, we used several data analysis tasks, the most com-

putationally intensive of which is a 3D Fast Fourier Transform (FFT)
of the output arrays from the Gray-Scott model. Some of the other

analyses are inexpensive to compute, such as computing the norm

of a set of output vectors (PDF_Calc), while others are complicated

and can change in computational complexity based on the data

(e.g., Isosurface and Rendering compute and render the iso-surfaces

of the output vectors). This combination of very regular and highly

variable analyses means it is easy for a user to make poor resource

allocation decisions that lead to either under-or over- provisioning

depending on what analysis process(es) are used for a particular

scientific study.

LAMMPS based Molecular Dynamics online analysis:
LAMMPS

5
is a prominent molecular dynamics simulation code,

used for applications ranging from engineering nano-materials to

designing new alloys to exploring protein-folding. The great variety

of uses and user communities means that there is intense interest

in building and sharing tools for online analysis and management

of data that can be customized to each research team’s needs. We

focus on a scenario where a set of tools are integrated for analyzing

solids as they break and melt under stress. In particular, LAMMPS

is coupled with three analysis processes that compute the radial

distribution function (RDF_Calc), perform common neighbor anal-

ysis (CNA_Calc), and compute central symmetry (CS_Calc).

4.3 Managing workflow tasks in response to
science- or data-driven events

Wedemonstrate the utilization of DYFLOW to orchestrate science-

driven events by employing the loosely coupled workflow with two

tasks, XGC1 and XGCa, to simulate fusion reaction. The tasks run

alternately, each for a fixed number of simulation timesteps until

they jointly complete the desired total number of timesteps. For

correctness, the experiment relies on the error assessment of XGCa

so that XGC1 takes over the simulation whenever the error accu-

mulation is high.

Two sensors and two policies were defined to address the dy-

namic requirements, as shown in the sample XML in Figure 7. The

5
LAMMPS website: https://lammps.sandia.gov

6

https://lammps.sandia.gov

0:15
0:06

0:15
0:04

0:15 0:02

0:
00

0:
01

0:
02

0:
04

0:
05

0:
07

0:
08

0:
10

0:
11

0:
12

0:
14

0:
15

0:
17

0:
18

0:
20

0:
21

0:
23

0:
24

0:
25

0:
27

0:
28

0:
30

0:
31

0:
33

0:
34

0:
36

0:
37

0:
38

0:
40

0:
41

0:
43

0:
44

0:
46

0:
47

0:
48

0:
50

0:
51

0:
53

0:
54

0:
56

0:
57

0:
59

1:
00

XGC1 (1-100)

XGCA (101-200)

XGC1 (201-300)

XGCA (301- STOPPED ON 374)

XGC1 (375-475)

XGCA (476- STOPPED ON 500)

TIME ELAPSED (HR:MIN)

Data driven events (alernation between XGC1 and XGCa utilizing error function) on Summit: Event timestamps (in hr:min) and duration

START
XGCa

0.1 secs

START
XGC1

8 secs

START
XGCa

0.2 secs STOP
XGCa

START
XGC1

13 secs

START
XGCa

0.1 secs
STOP
XGCa

2 secs

Figure 6: Gantt-chart showing the experiment performed on Summit for the XGC1-XGCa workflow to demonstrate running iterative experi-
ments and terminating tasks based on runtime events.

first sensor, NSTEPS, tracks progress, i.e., the number of global

timesteps completed during the simulation. Both XGC1 and XGCa

write an output file once a fixed number of global simulation

timesteps complete; therefore, the source type for this sensor is

’DISKSCAN’. The metric for this sensor computes the maximum

number of timesteps completed by the workflow. The second sen-

sor, ERROR, is defined to compute the error in the output from

XGCa. The XGCa output is available in ADIOS2 format, so the

source type for this sensor is ’ADIOS2’. The properties of the fusion
simulation output that could define an error estimation function

is ongoing research by fusion scientists, so the definition of this

sensor is incomplete.

To register the two dynamic events, we set three policies as fol-

lows. RESTART_UNTIL_COND starts XGC1 (or XGCa) if the output

of NSTEPS of the workflow is less than 500 for XGCa (or XGC1).

STOP_ON_ COND stops XGC1 (or XGCa) if the output of NSTEPS is
greater than 500 for XGCa (or XGC1). SWITCH_ON_COND stops

XGCa and starts XGC1 when high error accumulates in the sim-

ulation output generated by XGCa. Instead of using the ERROR

sensor, we use the NSTEPS sensor output at task granularity to

generate a proxy error condition. The proxy error condition causes

termination of XGCa after the 374th timestep of the simulation

completes, based on the assumption that error accumulation can

be high after that many timesteps. Before starting XGC1 a user

script, restart-xgc.sh, runs to set XGC1 inputs to restart from the

last saved output of XGCa. Both tasks have priority 0 (the highest

priority) since they run alternately. Further, we prioritize the poli-

cies so that STOP_ON_COND has the highest priority as it signifies

experiment completion, and SWITCH_ON_COND is preferred over

RESTART_UNTIL_COND to resolve conflicts.

Table 1 shows the initial setup for the experiments on both

clusters. Summit: Figure 6 shows the individual timestamps and

durations of the workflow tasks and all the events. The timestamps

in the figure are relative to the start of the experiment. The green

bars show the times XGC1 runs, the blue bars show the times XGCa

runs, and the red intervals show the dynamic adjustment period.

On average, XGC1 runs 2.5𝑥 slower than XGCa to simulate 100
timesteps. The simulation starts with XGC1 while XGCa waits in

the queue due to their loosely coupled dependency. Because of

RESTART_UNTIL_COND, XGCa starts three times with the same

resources when XGC1 terminates as resources become available.

The response time to finalize the plan and execute it for these events

is ≈ 0.1-0.2 seconds. Similarly, XGC1 starts when XGCa finishes

(when 200 global simulation steps complete). The response time,

in this case, is 8 seconds - 4 seconds of this time is due to the

Figure 7: XML example illustrating the user specification for switch-
ing on error and restarting the experiment for the desired number
of timesteps.

delay enforced by frequency settings of the policy in evaluating the

sensor output. The time to start XGC1 is greater than that of XGCa

due to running the user script. Because of SWITCH_ON_COND,
XGCa stops after completing 74 steps (i.e., 374 global simulation

steps complete at this point) with a response time of ≈ .13 seconds.

From STOP_ON_COND, XGCa stops after completing 502 global

timesteps with a response time of 2 seconds. Deepthought2: In
a similar experiment on Deepthought2 (graph not shown), the

response times as follows: 0.8 − 0.2 seconds for starting XGCa, 11
seconds for staring XGC1, 24 seconds for switching to XGC1 from

XGCa, and 42 seconds to stop XGCa.

Without DYFLOW, the simulation completes only using XGC1

and takes approximately 25% more time on each cluster.

7

Table 2: Initial configuration forGray-Scottworkflow that results in
resource under- provisioning

TASK SETTING Summit Deepthought2

GRAY-SCOTT PROCESSES 340 (34 PER NODE) 320 (16 PER NODE)

GRAY-SCOTT GRID/PROCESS 42 × 140 × 175 88 × 88 × 140
ISOSURFACE PROCESSES 20 (2 PER NODE) 20 (2 PER NODE)

RENDERING PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)

FFT PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)

PDF_CALC PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)

GRAY-SCOTT TOTAL STEPS 50 50

ALL TIME LIMIT 30 MINS 35 MINS

4.4 Managing resource distribution in response
to performance-driven events

This section focuses on the performance concerns of tightly cou-

pled workflows where tasks communicate data through in-memory

streams and may affect each others’ runtime behavior via changes

in data flow at runtime. Using the Gray-Scott workflow, we demon-

strate how to utilize DYFLOW to respond to performance-driven

events at runtime. Modern profilers, like TAU [16], enable users

to access different types of performance measurements that can

be collected indirectly via system support or directly through code

instrumentation. For example, system-generated information in-

cludes memory footprint, CPU utilization, and network bandwidth,

while code instrumentation can measure time spent in various code

sections. For the experiments in this section, the time taken to com-

plete an iteration (or a single iteration of the outermost loop in the

application) represents the pace at which the tasks are progressing.

Using the above performance metric, we performed experiments

capturing two types of runtime events; (a) Under-provisioning: a

task is assigned fewer resources than required, slowing the overall

workflow performance (for instance, the simulation task waits for

analysis tasks to read data for a timestep), such that the experiment

may not finish in the allotted time, and (b) Over-provisioning: a

task is assigned more resources than required, so there are times

when resources are under-utilized.

Figures 3 to 5 show sample XML for such an experiment. To

set the monitoring metric we define a sensor, PACE, which reads

the TAU-generated information using code instrumentation. The

generated information represents the time spent in each iteration

and is available in real-time through ADIOS2. To identify the under-

and over-provisioning events, we set two policies, INC_ON_PACE
and DEC_ON_PACE, that increase or decrease the number of CPUs

assigned to any monitored task (by 20) if the average pace is slower
or faster than the desired values (i.e., thresholds) respectively. The

average is computed over a sliding window of 10 values to avoid

decisions based on a single timestep.

For the threshold for INC_ON_PACE, we used a value of 36 sec-

onds based on the desire that the workflow complete 50 timesteps

in 30minutes; therefore, the tasks spend a maximum of 36 seconds

per timestep. If any workflow task takes more time per timestep,

then it needs more processes to complete the experiment on time.

For DEC_ON_PACE, the threshold value is 24 seconds which uti-

lizes a variant percentage, such that if the task is more than a third

faster than the maximum time per time step (i.e., two thirds of

36, or 24), then it can use fewer resources. Further, in our experi-

ments, the task priorities are assigned high to low (0 to 4) in the

following order; Gray-Scott, Isosurface, Rendering, FFT, PDF_Calc.
The priorities indicate the relevance of these tasks over others. For

rectifying the effects of runtime performance of the analysis tasks

Gray-Scott_340_procs, 30:00
Isosurface_20_procs, 04:31
Rendering_20_procs, 04:27
FFT_20_procs, 08:00
PDF_Calc_20_procs, 03:42

Isosurface_40_procs, 03:29
Rendering_20_procs, 03:29

Isosurface_60_procs
Rendering_20_procs

02
:1

0

02
:3

3

02
:5

6

03
:2

0

03
:4

3

04
:0

6

04
:3

0

04
:5

3

05
:1

6

05
:4

0

06
:0

3

06
:2

6

06
:5

0

07
:1

3

07
:3

6

08
:0

0

08
:2

3

08
:4

6

09
:1

0

RESTART ISOSURFACE

RESTART RENDERING
STOP PDF_CALC

RESTART
RENDERING

RESTART
ISOSURFACE

STOP FFT

Underprovisioing correction (Summit): Event timestamps (min:sec) and duration

107 seconds 36 seconds

Figure 8: Gantt-chart showing the experiment performed on Sum-
mit with the Gray-Scott workflow to demonstrate correcting
under-provisioning of resources along with the response times of
DYFLOW

on the simulation to maximize the simulation performance, these

policies are only applied to the analysis tasks. We did not have to

set policy priories in the XML as the policies cannot conflict for the

same workflow task.

We discuss the under-provisioning scenario in detail. In all our

experiments (including the experiments in other sections), Arbitra-

tion processes the suggested actions only after 2 minutes from the

start of the experiment to ensure all the running tasks have made

some progress. For a similar reason, it discards all the suggested

actions for 2 mins after the running workflow is modified.

Table 2 provides the initial configuration for the under-provisioning

experiment on Summit andDeepthought2. Summit: Figure 8 shows
all the dynamic events, giving the timestamps and durations. Fig-

ure 9 shows the average time per timestep as Decision receives them.

Gray-Scott was started along with all the analysis tasks; Isosurface,
Rendering, PDF_Calc and FFT. After 2 mins into the experiment, Ar-

bitration considers the suggestion from policy 𝐼𝑁𝐶_𝑂𝑁_𝑃𝐴𝐶𝐸 to

increase the number of processes for all the analysis processes – the

average time per timestep was above the threshold of 36 seconds.

Arbitration only enables the action to increase the number of pro-

cesses of Isosurface from 20 to 40 by acquiring the extra resources

from PDF_Calc. Due to the runtime dependency on Isosurface, Ren-
dering was also restarted. Arbitration took 107 seconds to finalize

the plan and wait for Actuation to finish executing it.

After waiting for 2mins, Arbitration again considered the actions

suggested. At this time, policy INC_ON_PACE suggests increasing

the number of processes for the analysis as the average time per

timestep was above the threshold of 36 seconds. Only the action to

increase the processes of Isosurface from 40 to 60 processes is en-

abled by acquiring the extra resources from FFT_Calc. As previously
noted, Rendering was restarted due to its runtime dependency on

Isosurface. Arbitration took 36 seconds to finalize the plan and wait

for Actuation to apply the plan. After these changes, the average

time per timestep for all the tasks was within the desired interval.

Deepthought2: In a similar experiment on Deepthought2 (graphs

not shown), Isosurface was restarted by acquiring resources from

PDF_Calc and FFT_Calc while Rendering was restarted due to its

runtime dependency. The time to finalize the plan of action and

execute it was 87 seconds. The response times significantly reduce

on both clusters if the tasks are not allowed to terminate gracefully

(i.e., the time to finish the current timestep after receiving a kill

signal). Without using DYFLOW, the experiment exceeds the allo-

cation time limit, and the workflow tasks terminate prematurely

due to timeout (requiring 10-12% additional time to finish).

8

Step	5
Step	4

Step 7
Step	12

Step	4

Step	7

Step	12Step	8Step	3

10
20
30
40
50
60
70
80
90

100
110
120
130

01
:5

9

02
:3

7

03
:4

0

04
:2

6

05
:1

5

05
:5

6

07
:2

3

07
:5

9

08
:1

4

08
:2

3

08
:3

1

09
:0

0

09
:3

1

10
:0

4

10
:3

8

GrayScott Isosurface Rendering FFT PDC_Calc

c

User desired time interval

Underprovisioing correction (Summit): Sensor updates with timestamps

Av
er

ag
e t

im
e p

er

tim
es

tep
 (i

n s
ec

on
ds

)

Figure 9: Average time per timestep information obtained from the
Gray-Scott workflow tasks used by DYFLOW to improve perfor-
mance on Summit.

Figure 10: XML example illustrating the user specification for
restarting tasks on failure.

4.5 Managing workflow state in response to
failures

Large-scale workflows sometimes desire the capability to re-

spond to failure events. Different runtime failures can affect the

workflow tasks, for instance, hardware failures such as a node or

network failure or software failures such as memory corruption due

to software errors. With in situ workflows, another type of failure

is losing timestep information when the tasks reset, i.e., stopping

and restarting at runtime (as evident in Fig. 9), or buffer overwrites

when buffer capacity is exceeded. Failure diagnosis can be difficult,

specifically in the case of software-generated or dataflow-related

failures. Identifying the cause of failure in these scenarios requires

deep analysis. Therefore, the focus of this section is demonstrating

how DYFLOW can helps workflow achieve resilience to some types

of hardware failures.

Arbitration continually collects the status of allocated resources

from Actuation, which (indirectly) relies on the underlying job

scheduler to provide this information. During resource reassign-

ment, Arbitration ensures the exclusion of problematic resources.

In the experiment, we show a form of resilience to node failure(s)

in the cluster.

We use the molecular dynamics in situ workflow where the

simulation is tightly coupled and co-located with three analysis

tasks at runtime. Figure 10 shows the sample XML to enable the

workflow tasks to restart after failure. To become aware of failures,

we define a sensor, STATUS, that reads the error files generated by

job schedulers when tasks fail to get the error number returned. The

metric is computed at task granularity and returns the error number

read by the first MPI process (rank 0). From the cluster scheduler’s

view, Savanna is the job script; therefore, we read the exit status

saved by Savanna after the workflow task completes or fails. To

detect failure, we define a policy, 𝑅𝐸𝑆𝑇𝐴𝑅𝑇_𝑂𝑁_𝐹𝐴𝐼𝐿𝑈𝑅𝐸, that

restarts the workflow tasks whenever the error number is greater

than 128 (the standard exit codes for system signals). A user can

provide a script to run before the restart to ensure that the tasks

resume correctly. Further, the task priorities are assigned high to

Simulation_1500_procs, 10:09
CS_Calc_200_procs, 10:09
CNA_Calc_200_procs, 10:09
RDF_Calc_200_procs, 10:09

Simulation_1500_procs, 32:40
CS_Calc_200_procs, 32:40
CNA_Calc_200_procs, 32:40
RDF_Calc_200_procs, 32:40

04
:1
9

05
:0
2

05
:4
6

06
:2
9

07
:1
2

07
:5
5

08
:3
8

09
:2
2

10
:0
5

10
:4
8

11
:3
1

12
:1
4

12
:5
8

13
:4
1

14
:2
4

15
:0
7

15
:5
0

16
:3
4

17
:1
7

18
:0
0

18
:4
3

19
:2
6

20
:1
0

20
:5
3

21
:3
6

RESTART SIMULATION
RESTART CS_CALC
RESTART CNA_CALC

Failure recovery (Summit): Event timestamps (min:sec) and duration

RESTART RDF_CALC

Approx.
30 sec

Figure 11: Gantt-chart showing the experiment performed on Sum-
mit with LAMMPS workflow to demonstrate resilience to node fail-
ures.

Table 3: Initial configuration for LAMMPSworkflow on Summit and
Deepthought2 used for failure resilience

TASK SETTING Summit Deepthought2

LAMMPS PROCESSES 1500 (30 PER NODE) 100 (14 PER NODE)

LAMMPS TOTAL ATOMS 65536000 8192000

LAMMPS TOTAL STEPS 1000 1000

CNA_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)

RDF_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)

CS_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)

ALL ANALYSIS TOTAL STEPS 100 50

low (0 to 3) in the following order; Simulation, CS_Calc, CNA_Calc,
RDF_Calc.

Table 3 shows the initial configurations of LAMMPS on Sum-

mit and Deepthought2. Summit: Figure 11 shows the timestamps

and durations of the dynamic events. 10 mins into the experiment

one of the allocated nodes was taken out of service, causing the

entire workflow to fail. Arbitration restarts all the tasks by exclud-

ing the failed node from the resource assignment and replace it

using one of the free nodes in the allocation. In this experiment,

we allocated 2 additional nodes. However, if free nodes were not

available, DYFLOW will use the resources from low-priority tasks

to restart the higher priority tasks. After restart, the simulation

resumes from the last checkpoint(i.e., timestep 412), and all the

tasks repeat several timesteps. The response time for Arbitration

to finalize and wait for execution of the plan was ≈ 0.2 seconds.

The additional time results from the delay imposed by frequency

settings in evaluating the sensor output. Deepthought2: In a simi-

lar experiment on Deepthought2 (graph not shown), the response

time for the reconfiguration was 0.4 seconds.

4.6 Cost analysis for using DYFLOW
On average the lag between an event and initiation of a response

was less than 1 second based on results from both clusters. These

times exclude the effects of the decision frequency set by a user. The

lag time varies depending on the volume of data processed for met-

ric computations. For instance, the average lag time is lower when

a single variable is read from a file on disk (i.e., 0.2 seconds). When

TAU-generated data is read that is actively streamed using ADIOS2

(as one of the values in a two-dimension variable), the average lag

time is approx. 0.5 second. The total response time includes the

time spent by Arbitration to finalize the plan and Actuation to apply

the resultant changes to the workflow. The time taken by workflow

tasks to terminate gracefully (i.e., the time to finish the current

timestep after receiving a kill signal) dominates the response time.

In our experiments, approximately 97% of the response time was

spent waiting for tasks to terminate after receiving the signal, on

both clusters. Overall, DYFLOW incurs a small cost to apply the

workflow modifications at runtime, which can vary significantly

9

with the experiment setup and environment. However, the time

spent formulating the plan is low.

5 Related work
To cope with the complexity of specifying and executing scien-

tific workflows, manyworkflowmanagement systems (WMSs) have

emerged [2, 4, 7, 14, 19]. These systems focus on providing support

via simplified scripting languages to ease workflow design on su-

percomputers and other systems. Systems like RADICAL [17] use a

building blocks approach to enable interoperability across HPC ma-

chines supporting large-scale science. For workflow orchestration,

cloud computing [3] has emerged as an alternative to dedicated clus-

ters. Employing on-the-fly resource acquisition and release support

they easily enable management systems to automate workflows.

Various scheduling and provisioning strategies have been studied

to optimize resource utilization or time or cost under various QoS

constraints such as deadline or budget.Container-based solutions,

such as Kubernetes
6
, extend this automation by allowing users

to define and customize performance metrics to adapt resources

(scaling up and down) at runtime. However, all these solutions are

limited to loosely-coupled workflows, where data exchanges are

done through files and dependent workflow tasks run at different

times.

Recent studies [5, 10, 20] have demonstrated the benefits of

dynamic resource management on supercomputers. For instance,

Dayal et al. [5] introduced queue monitoring policies that increase

or decrease the number of task processes based on the work pend-

ing in the queue. Zheng et al. [20] and Goswami et al. [10] show

improvements in overall runtime performance by running analysis

tasks on CPUs and GPUs that have been allocated to simulations

and are idle or waiting on other resources (e.g., large I/O opera-

tions). Several projects, for example Perarnau et al. [15] and Vallee

et al. [18], introduce container-based solutions on supercomputers

to enable dynamic resource management. Emerging workflow man-

agement systems, such as Flux [1], introduce nested hierarchical

scheduling to address various workflow management challenges

including high throughput, job monitoring, co-scheduling, and job

portability on supercomputers. Our work addresses modern scien-

tific workflow runtime challenges such as those imposed by in situ
analysis, providing a flexible platform to take advantage of dynamic

orchestration on the supercomputers.

6 Conclusion and future work
In this paper, we have shown a flexible framework that enables

complex scientific workflows to employ various benefits of dynamic

orchestration on supercomputers. Our framework compartmen-

talizes dynamic management into four stages; Monitor, Decision,

Arbitration, and Actuation. These stages are exposed as sensors,

policies, and rules supporting fine constructs that enable workflow

users to easily and inclusively express different dynamic require-

ments. The framework supports an in-build arbitration protocol

that reserves the final authority over the runtime changes ensuring

that the workflow runtime state is always valid and consistent.

Via experiments on three different scientific workflows, 𝑋𝐺𝐶1−
𝑋𝐺𝐶𝑎,𝐺𝑟𝑎𝑦−𝑆𝑐𝑜𝑡𝑡 and 𝐿𝐴𝑀𝑀𝑃𝑆 on a standard Linux cluster and

a state-of-the-art supercomputing cluster, we have illustrated that

6
Kubernetes website: https://kubernetes.io

a dynamic management system based on our framework enables

users to easily employ runtime orchestration capabilities for both

loosely- and tightly- coupled workflows, incurring low cost to carry-

out runtime changes. These scenarios show that the framework

enables workflow tasks to respond to science-driven events, re-

assign resources in response to performance assessment, or recover

from failure events.

We see great potential in investigating additional complex run-

time scenarios where the role of Arbitration can be extended from

a reactive to be a pro-active or predictive stage that can also assist

in decision making. We also foresee opportunities in exploring in-

strumentation for in situ applications so that finer-grained control

operations, beyond just stopping and relaunching, can be used to

reconfigure a workflow.

References
[1] D. H. Ahn, et al. 2018. Flux: Overcoming Scheduling Challenges for ExascaleWork-

flows. In 2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS).
IEEE, 10–19.

[2] M. Albrecht, et al. 2012. Makeflow: A portable abstraction for data intensive

computing on clusters, clouds, and grids. In Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies.

[3] E. N. Alkhanak, et al. 2016. Cost optimization approaches for scientific workflow

scheduling in cloud and grid computing: A review, classifications, and open

issues. Journal of Systems and Software 113 (2016), 1–26.
[4] D. Barseghian, et al. 2010. Workflows and extensions to the Kepler scientific

workflow system to support environmental sensor data access and analysis.

Ecological Informatics 5, 1 (1 Jan 2010), 42–50.

[5] J. Dayal, et al. 2015. SODA: Science-Driven Orchestration of Data Analytics. In

2015 IEEE 11th International Conference on e-Science. 475–484.
[6] E. Deelman, et al. 2018. The Future of Scientific Workflows. Int. J. High Perform.

Comput. Appl. 32, 1 (Jan. 2018), 159–175.
[7] E. Deelman, et al. 2016. Pegasus in the cloud: Science automation through

workflow technologies. IEEE Internet Computing 20, 1 (2016), 70–76.

[8] M. Dorier, et al. 2019. The Challenges of Elastic in Situ Analysis and Visualization.

In Proceedings of theWorkshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV ’19). ACM, 23–28.

[9] I. Foster, et al. 2017. Computing Just What You Need: Online Data Analysis and

Reduction at Extreme Scales. In Euro-Par 2017: Parallel Processing, F. F. Rivera,
T. F. Pena, et al. (Eds.). Springer International Publishing, Cham, 3–19.

[10] A. Goswami, et al. 2016. Landrush: Rethinking In-Situ Analysis for GPGPU

Workflows. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid). 32–41.

[11] S. Janhunen, et al. 2015. Integrated multi-scale simulations of drift-wave turbu-

lence: coupling of two kinetic codes XGC1 and XGCa. In APS Meeting Abstracts.
[12] S. Ku, et al. 2009. Full-f gyrokinetic particle simulation of centrally heated global

ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak

geometry. Nuclear Fusion 49, 11 (2009), 115021.

[13] K. Mehta, et al. 2019. A Codesign Framework for Online Data Analysis and Re-

duction. In 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS).
IEEE, 11–20.

[14] E. Ogasawara, et al. 2013. Chiron: a parallel engine for algebraic scientific

workflows. Concurrency and Computation: Practice and Experience 25, 16 (2013),
2327–2341.

[15] S. Perarnau, et al. 2017. Argo NodeOS: Toward Unified Resource Management for

Exascale. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 153–162.

[16] S. S. Shende et al. 2006. The Tau Parallel Performance System. Int. J. High Perform.
Comput. Appl. 20, 2 (May 2006), 287–311.

[17] M. Turilli, et al. 2018. Building blocks for workflow system middleware. In 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). IEEE, 348–349.

[18] G. Vallee, et al. 2019. On-node Resource Manager for Containerized HPC Work-

loads. In 2019 IEEE/ACM International Workshop on Containers and New Orches-
tration Paradigms for Isolated Environments in HPC (CANOPIE-HPC). 43–48.

[19] M. Wilde, et al. 2011. Swift: A language for distributed parallel scripting. Parallel
Comput. 37 (2011), 633–652.

[20] F. Zheng, et al. 2013. GoldRush: Resource Efficient in Situ Scientific Data An-

alytics Using Fine-grained Interference Aware Execution. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC13). ACM, Article 78.

10

https://kubernetes.io

	Abstract
	1 Introduction
	2 DYFLOW framework
	2.1 Monitor
	2.2 Decision
	2.3 Arbitration
	2.4 Actuation

	3 DYFLOW Implementation
	4 Experiments
	4.1 Clusters
	4.2 Use cases
	4.3 Managing workflow tasks in response to science- or data-driven events
	4.4 Managing resource distribution in response to performance-driven events
	4.5 Managing workflow state in response to failures
	4.6 Cost analysis for using DYFLOW

	5 Related work
	6 Conclusion and future work
	References

