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Abstract

Modern scientific workflows are increasing in complexity with
growth in computation power, incorporation of non-traditional
computation methods, and advances in technologies enabling data
streaming to support on-the-fly computation. These workflows
have unpredictable runtime behaviors, and a fixed, predetermined
resource assignment on supercomputers can be inefficient for over-
all performance and throughput. Inability to change resource as-
signments further limits the scientists to avail of science-driven op-
portunities or respond to failures. We introduce DYFLOW, a flexible
framework that orchestrates scientific workflows on supercomput-
ers based on user-designed policies. DYFLOW compartmentalizes
orchestration stages into simplified constructs, and end-users can
program and reuse them according to their workflow requirements
through an easy-to-use interface. These constructs hide the intrica-
cies involved in runtime management from end-users, for instance,
procurement of information to understand the workflow state, as-
sessment, and supervision of the runtime changes. DYFLOW is
designed to work alongside existing workflow management sys-
tems and reuse the available (static) support for workflow man-
agement. We have integrated DYFLOW with an existing workflow
management tool as a demonstration. With experiments performed
on use cases from three types of scientific workflows and two dif-
ferent parallel architectures, we show that DYFLOW achieves the
desired orchestration incurring a small cost to carry out the runtime
changes.
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1 Introduction

Scientific workflows have typically contained a set of loosely
coupled tasks — i.e., simulation, analysis, or visualization — inter-
connected via the filesystem. Technological and methodological
advances have enabled scientific workflows to expand both in scale
and complexity [6]. The use of in situ (or in transit) techniques, for
instance, to filter, digest, and reduce data stream sizes, is becom-
ing an increasingly popular option to overcome I/O bottlenecks.
These techniques reduce disk storage requirements by managing
dataflow between workflow tasks, employing in-memory staging
(buffering), or node-to-node data transfers. Managing such complex
workflows is challenging as workflow tasks often run concurrently
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with input/output dependencies, potentially affecting performance
across workflow tasks and also system resource usage [8]. There are
additional complications when the workflows themselves are com-
posed of tasks derived from non-traditional HPC methods, such as
machine learning and graph algorithms that exhibit unpredictable
computation patterns.

On supercomputers, resource management support for user
jobs is usually static, where resources are assigned once based
on an initial resource requirement specification, thereby unable to
accommodate dynamically changing requirements. Predetermin-
ing an efficient resource assignment becomes challenging for a
workflow with changing runtime requirements, resulting in over-
provisioning of resources or loss of workflow performance due
to under-provisioning. Modern supercomputers provide abundant
resources on a single node for workflow tasks to share and take
advantage of data locality. Due to the unpredictable behavior of
workflow tasks, scientists often hesitate to avail themselves of such
opportunities. An orchestration service is hence desirable that can
monitor workflows to adapt the resource assignments according to
changing runtime needs of the workflow. Such a service can further
enable scientists to respond to failure events and avail science-
driven opportunities provided by on-the-fly analysis to improve
overall experiment accuracy. Throughout this paper, we refer to the
dynamic management of scientific workflows as the orchestration
service.

Therefore, this paper presents DYFLOW - a flexible framework
that can orchestrate scientific workflows based on user-designed
policies to take advantage of the benefits of dynamic resource
assignment. DYFLOW contains programmable constructs corre-
sponding to different stages of dynamic management. These con-
structs are available to the user through an easy-to-use interface
(XML) that enables the desired runtime management of a work-
flow without user involvement. For instance, DYFLOW can support
science-driven functionality, improve resource assignments based
on performance-driven events, and aid in providing resilience to
workflow task failures. DYFLOW internally handles acquiring mon-
itoring information (i.e. performance measurements) at scale from
system resources and performs the processing required to plan
the appropriate resource reassignment and other workflow actions
at runtime. Furthermore, the framework executes the final plan
of action and determines the appropriate resource assignments
while ensuring that the workflow state remains consistent after the
runtime reassignment.
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Figure 1: DYFLOW improves the throughput of an in situ work-
flow by rebalancing execution parameters in response to perfor-
mance variations. The red vertical bars show the response window
of DYFLOW for a dynamic event where the resources are taken from
the running analysis tasks and used to launch additional analysis
task to improve overall throughput.

DYFLOW uses services from existing workflow management
systems for interacting with the system resource manager, setting
the initial resource assignments, and applying the final actions on
workflow tasks at runtime. It also utilizes support from application
profilers, e.g., TAU [16], for acquiring real-time monitoring infor-
mation. As a demonstration, we have implemented DYLOW using
an existing workflow management system, Cheetah/Savanna [9].
We have tested the integrated system on two cluster configurations
while applying our strategies to three scientific workflows with
different runtime requirements. The results indicate that our frame-
work accommodates and fulfills the dynamic needs of scientific
workflows incurring a small cost to carry out the runtime changes.

As Figure 1 shows, DYFLOW improves the throughput of an in
situ workflow at runtime by launching additional tasks and correct-
ing resource over-provisioning. Dynamic changes are applied to
meet the user expectation of keeping the runtime performance (i.e.,
average time per timestep) within the desired interval, ensuring
that the experiment finishes on time and resources are well utilized.

Our work provides two research contributions; (1) an abstrac-
tion that compartmentalizes the dynamic management stages into
simplified constructs that support state-of-the-art-workflows, and
(2) an easy-to-use interface that enables scientific end users to pro-
gram and reuse these constructs. DYFLOW’s compartmentalization
empowers users with controls to dictate fine-grained operational
semantics for different stages of the runtime. Together with the
focus on ease-of-use, this work aims to provide a generic, user-
accessible platform for identifying, managing, and capitalizing on
runtime events at scale that can generate end-user benefits such
as improved workflow performance and throughput, early result
validation, and failure recovery. This work further provides a plat-
form for exploring new ways of conducting scientific studies on
supercomputers.

Extensive research in workflow management and task sched-
uling has resulted in numerous systems that focus on different
aspects of managing workflows, and we have built DYFLOW lever-
aging these prior systems and their insights. In addition to the
scientific workflow community, we also draw substantial guidance
from cloud/enterprise service orchestration runtimes. Elastic scal-
ing of resources to handle performance fluctuations is a critical
capability in today’s cloud stacks, yet they have proven difficult to
incorporate into traditional, batch-oriented scientific workflows. By
staying focused on the dynamic management components that are
most relevant for scientific end users, DYFLOW offers a platform
for further study of the connections between content-driven in

situ scientific workflow control and the quality-of-service service
compositions of cloud-based systems.

The organization of the paper is as follows. Section 2 discusses
the details of the DYFLOW framework. Section 3 discusses the
implementation used as a demonstration for the experiments and
the XML interface. Section 4 showcases experiments performed
on two HPC systems executing three scientific workflows with
different runtime requirements to demonstrate the benefits of using
DYFLOW. Section 5 described related work, and Section 6 discusses
potential directions for future work.

2 DYFLOW framework

DYFLOW is a conceptual model that compartmentalizes dynamic
management into four stages; Monitor, Decision, Arbitration
and Actuation. All these stages exist simultaneously and function
continuously on the input received from the previous stage. The
first stage is the Monitor that gathers runtime data from the run-
ning workflow tasks that is needed to identify dynamic events and
construct metric values. The changes in the metric values pass on
to the Decision stage. The second stage is the Decision that assesses
the metric values to identify if an event of interest has occurred and
then determine the actions needed in response to the event. The se-
lected actions are passed on to the Arbitration stage. The third stage
is Arbitration that constructs a plan of action that is feasible and
consistent with the workflow specifications on receiving the input
from Decision. The last stage is Actuation that executes the final
plan of action received from Arbitration. For each of these stages,
DYFLOW exposes features that enable users to express events that
can change the behavior of the workflow at runtime through the
actions in response to those events.

2.1 Monitor

The Monitor stage defines the data to procure for runtime assess-
ment, the input method to employ for real-time procurement of this
data, and the translation operations necessary to convert the pro-
cured data into metrics for identifying events of interest. This stage
allows users to define different monitoring requirements through
sensors that support abstract features. These features provide the
set of commands to users for expressing wide-ranging needs that
vary from simple metrics like the maximum memory consumed by
a task to complex metrics computed from workflow measurements.
Monitor features include:

Source type: Depending on the workflow, the required information
could be organized in a specific format and available through a
given medium. Source type determines how data of interest is
generated and exchanged at runtime for a sensor. For instance, the
desired data can be generated by an online profiler, the running
task or system, and is available through a database service, a
streaming service, or files.

Preprocessing: Preprocessing operations distill the data before it
is processed into the desired metric. It is useful when the input
read from each process is sizeable, for instance, a vector or multi-
dimensional array.

Group-by and reduction: These operations dictate metric formu-
lation. Group-by collects the data from running tasks and orga-
nizes it based on the granularity, while the reduction operation



summarizes the grouped information into a metric. A granularity-
based grouping enables expressing metrics from the collected
data that can capture events in different scopes. For instance, the
physical memory usage can have two metrics: one that keeps
track of the physical memory used by a task on each compute
node used, while the other keeps track of the overall physical
memory used by the task to assess the memory usage pattern.
Some examples of granularity levels include node-task, task-level,
node-workflow, and workflow-level. The node-task granularity
groups data from every process belonging to the same workflow
that shares the compute node. The node-workflow granularity
performs the same grouping for all the processes belonging to
the workflow. With task-level granularity, the groups define the
data from all the processes belonging to the same task, while
with workflow-level granularity, the groups define data from all
the tasks belonging to the same workflow.

Join: A sensor can join its output with another sensor to compute
a complex metric that relies on multiple data inputs. For instance,
Instructions Per Cycle (IPC), a metric used for measuring CPU
performance, is computed by dividing the number of instructions
completed by the number of CPU cycles used.

Sensors act as portable functions invoked using inputs that vary

across workflow tasks and architectures. For example, workflow

tasks have different variable names representing the desired in-
formation, or the hardware counter information used for defining
metrics can differ across architectures. The Monitor stage manages
the background activities of the user-defined sensors to ensure cor-
rectness. These include setting (or resetting) connections to input
streams or databases when the workflow tasks start (or restart),
gathering the sensor outputs, and sending the information to the

Decision stage for evaluation and updating sensors about changes

performed on the workflow at runtime.

2.2 Decision

Once a metric is defined, a set of guidelines must be determined
that clarifies what evaluation criteria should be employed to capture
the events of interest from the metric values. Should the evaluation
be based on the instantaneous values or observing the values over
a period of time? What actions should be taken in response to the
events at runtime? And, how frequently should the evaluation be
performed? The Decision stage allows users to define policies that
provide abstract features that simplify setting these guidelines and
supporting a broad range of policies. Decision guidelines include:
Sensor(s) to use: Defines the sensor output(s) to employ for the

policy with the desired granularity level(s).

History and pre-analysis: The policy could maintain a history
of sensor outputs, like a sliding window of a specified size, and
perform a preliminary analysis to capture a pattern. For instance,
to identify the events based on the running average rather than
the last observed value of the IPC metric.

Evaluation condition: The evaluation condition compares the
input against a threshold, and the result determines if an event of
interest has occurred. The evaluation could use the instantaneous
or pre-analyzed output from a single sensor or a value derived
from a set of sensor outputs.

Suggested action: The suggested actions represent the high-level
operations applied to one or more tasks in response to the event

of interest. These high-level operations are concise and easy to
understand as they encapsulate different low-level operations
required to perform the desired action. For example, a SWITCH
operation represents the following low-level operations; signal-
ing a running task to stop, estimating resources for launching the
replacement task, acquiring the required resources, and initiating
the replacement task if enough resources are available. Other
examples of high-level actions include ADDCPU, RMCPU, STOP,
START, and RESTART. These correspond to increasing or de-
creasing the number of CPUs assigned to the task to increase or
decrease the number of processes, stopping a running task, and
starting a task or restarting the current task. Each high-level oper-
ation supports additional parameters to guide the action, e.g., the
desired number of CPUs to increase or decrease or user settings
to apply (i.e., using a shell script) before starting or restarting
tasks.

Evaluation frequency: Every policy has a defined frequency to
decide when to trigger the evaluation condition. Evaluation fre-
quency helps in avoiding events that have transitory effects.

Like sensors, policies act as portable and reusable functions. The

inputs to these policies vary with different workflows and tasks.

For example, evaluation thresholds or the tasks to which the policy

action would apply can differ across the monitored tasks.

2.3 Arbitration

The Arbitration stage is a complex stage of dynamic manage-
ment that determines which actions — if any — will be applied to
modify the current state of the workflow. This stage ensures that
the final set of actions are feasible and consistent with the work-
flow specification. Arbitration screens the high-level operations
suggested by the Decision stage resolving conflicts, inconsistencies,
and dependencies. For instance, conflict results when one policy
suggests stopping a task while another suggests increasing the
number of processes for the same task. Similarly, some high-level
operations depend on additional operations to ensure consistency.
For instance, whenever a running task is terminated or restarted, all
the (tightly) coupled dependent tasks need to be signaled. Resolu-
tion of conflicts results in filtering out a set of high-level actions and
deferring others. To construct a plan of action, Arbitration maps
the filtered high-level operations to low-level operations. These
low-level operations represent the function calls understood by a
resource manager or underlying resource management service.

Resource management is the primary responsibility of Arbitra-
tion as a feasible final plan is dependent on the available resources.
Hence, it maintains recent information about the resources that in-
clude the total allocated resources, resource health, and the current
resource assignment to workflow tasks. Arbitration issues requests
for additional resources whenever necessary and resolves conflicts
and incompatibilities among low-level operations when resources
are insufficient to meet all requirements. For instance, if tasks A and
B want to increase their number of processes while the available
resources cannot allow both operations, then one of these would be
denied. A final executable plan with revised resource assignments
consists of all the selected low-level operations sequenced in the
order in which to apply them. Ordering is required to avoid exe-
cution inconsistencies. For example, if any operation reduces the
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Figure 2: Overview of DYFLOW implementation as an extension to
the Cheetah/Savanna workflow service. Arrows represent the ex-
change of data using JSON messages (in red), function call (in black)
or file/stream reads (in blue).

number of processes of a task releasing resources, it should precede

others that use those resources.
Arbitration provides users with the flexibility to define rules that

guide the plan of action.

Policy priorities: Assign priorities to policies according to their
relevance. This helps in resolving conflicting high-level actions.

Task priorities: Assign priorities to tasks according to their rele-
vance. This helps in resolving conflicting low-level operations.

Task inter-dependencies: Determine the dependent tasks and their
parent tasks and if the dependency is tight (i.e., the dependent
task runs concurrently with the parent and gets data via an in
situ medium) or loose (i.e., the dependent task runs uncoupled
from the parent and gets data via disk). This information helps
in identifying dependent operations.

2.4 Actuation

This stage implements all the low-level operations invoked by
Arbitration in the final plan of action. These low-level operations
serve as a plugin to any static service that interacts directly with the
cluster resource manager and launches workflow tasks on the com-
pute node. Having a pluggable Actuation stage allows the DYFLOW
model to be portable across cluster architectures and build on the
services supported by the existing workflow management systems.
Some examples of such low-level operations include starting a task
with a resource assignment( start_task_with_resources), sending
signals to a task (signal_*_task), terminating a task (stop_task),
requesting or releasing extra resources from cluster resource man-
ager(request_resources, release_resources), and enquiring resources’
health (get_resource_status).

3 DYFLOW Implementation

The design of a model implementation of DYFLOW is shown
in Figure 2. Our implementation extends the functionality of an ex-
isting workflow management service, Cheetah/Savanna. The Chee-
tah and Savanna tools are a Department of Energy CODAR (Co-
designing of Online Data Analysis and Reduction) project [9, 13]
effort to investigate various resource allocation trade-offs as part
of broader co-design studies. Cheetah is a composition tool used
to specify the workflow; Savanna is a runtime environment that
runs on launch/service cluster nodes, communicates with the clus-
ter scheduler, allocates the required resources, and spawns the
workflow tasks on the allocated resources. Cheetah/Savanna incor-
porates the orchestration functionality of DYFLOW as an external

Algorithm 1 Arbitration Protocol

1: function ARBITRATION( Asygg, Rfrees Rasgns> Tpris Dpris Tdeps Twaiting)

2: Afilrer < resolve conflicts in Asygg using Dpr;

3: Atoral < (get dependent actions for Afijrer) U Afilter

4: Sop « Get low level operations for A;oral

5 Nges < Calculate required resources from Sop

6 while Nges > Count(Rfree) do

7 Rye1 < Find the lowest priority running task (and any dependent tasks)
using Tpr; and Tgep that can shed resources

8: if Count(Ry¢;) > 0 then
9: Sop < add operation to stop task(victim) (and dependents) in S,
10: add victim(and dependents) to Tiaiting
11: Rfree < Rfree U Rrel
12: else
13: Select the least significant operation from A4/ that acquire resources
based on T;. Update Spp and Nges.
14: end if

15: end while
16: while Ngs < Count(Rfree) and a task (with highest priority) from
Twaiting can be started do

17: Update Sop, Trwaiting and Nyes.

18: end while

19: 0pfinal < Order operations in S

20: Rreasng < Determine new resource assignment for opinal

21: end function

Python library and its modules implement the different dynamic
management stages.

Bootstrap: This module parses the XML file with user orches-
tration specifications of the workflow and initiates threads corre-
sponding to the Monitor, Decision, Arbitrator modules providing
them with essential information. For instance, the Monitor module
receives the sensor information while the Decision module gets the
policies details. All communications between the service threads
occur through shared queues and JSON ! formatted messages. The
Actuation module is a wrapper for the plugin inside Savanna that
executes all the low-level operations.

Monitor: This module is a client-server service. A client(s) is a
hybrid MPI and Python threads-based service that can run on a
compute node or launch node of a cluster. The server service runs
on the launch node within the DYFLOW library and connects to the
client(s) using PyZMQ 2. Flexibility to launch multiple clients on the
compute or launch nodes benefits the Monitor to address requisite
scaling needs. Running the server on the launch node ensures its
availability in events of computing resource failures. The server
manages the client(s): starts (or restart) client(s) with the sensors
along with the tasks to monitor, updates the client(s) whenever the
runtime status of monitored tasks is changed, filters the out of order
messages from the client(s), and sends updates from the client(s) to
the Decision module. A client(s) manages and executes the sensors
by connecting to workflow tasks, collecting the monitoring data,
and sending the sensor outputs to the server. Our implementation
supports sensors that can stream user data through ADIOS2, or
stream data generated by the TAU [16] profiler using ADIOS2,
scan disks for files, and read files. TAU is an online profiler that
collects performance data via code instrumentation and event-based
sampling. ADIOS2? is a state-of-the-art unified I/O framework that
encompasses a variety of transformations and transport methods,
including file I/O and other in situ methods for task coupling (e.g.,
Sustainable Staging transport (SST)). We employ SST transport in

JavaScript Object Notation(JSON):https://www.json.org/json-en.html
2Python ZeroMQ website: https://zeromq.org/languages/python
3 ADIOS2 website: https://csmd.ornl.gov/software/adios2
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<monitor>
<Sensors>
<sensor id="PACE" type="TAUADIOS2">
<group-by> <group granularity="task" reduction-operation="MAX" />
</group-b> </sensor>
</sensors>
<monitor-tasks>
<monitor-task name="lsosurface" workflowld="GS-WORKFLOW" info-source="tau-iso.bp.*">
<use-sensor sensor-id="PACE" info="looptime”>
<parameter key="info-type" value="double"/>
<Juse-sensor>
</monitor-task>

</monitor>
Figure 3: XML illustrating a sensor for tracking main iteration time
using code instrumentation support from the TAU profiler

ADIOS2 to enable both dynamic connections between workflow
tasks and high-performance data movement.

Decision: This module screens incoming sensor messages(s) for
out-of-order updates and maps them to the policies. Each policy
uses these updates to trigger evaluation at defined frequency in-
tervals; otherwise, the updates are either discarded or stored to
maintain history. Policy responses (if any) are collected and sent as
a single JSON message to the Arbitration module.

Arbitration and Actuation: Arbitration uses the protocol de-
scribed in Algorithm 1 to finalize runtime modifications. The pro-
tocol has two limiting factors: (1) MPI-based tasks that depend
on inter-and intra-task communication cannot grow and shrink
without restart, and (2) resource manager support for on-demand
resource allocation and de-allocation is not commonplace on su-
percomputers.

The protocol takes the following inputs; the set of suggested

actions (Asugg), the allocated free (healthy) resources (Ryye.), the
allocated (healthy) resources assigned to tasks (Rgsgn), task priori-
ties (Tpr;), task dependencies (Tye,), decision priorities (Dpri), and
a list of tasks waiting to acquire resources (Tyqiting). It outputs an
action plan with an ordered set of low-level operations (0pfina1)
with the revised resource assignment (Ryeqsgn)-
The protocol begins with conflict resolution across high-level op-
erations (utilizing decision priorities) and filtering the suggestion
set (Afjizer)- The types of conflicts resolved include: STOP-START,
STOP-RESTART, or RMCPU-ADDCPU. Next, it identifies dependent
operations for the filtered suggestions (through task dependen-
cies) and finalizes the set of high-level operations (A;,;47). The set,
Ayorals 1s then mapped to low-level operations, and an initial plan
of action (Sop) is determined along with computing the additional
resources (i.e., CPU cores) required (N,) to execute the plan.

When free resources are not available to satisfy the additional
resource request, a running task with the lowest priority becomes
the victim. The victim task relinquishes the resources (represented
by the set R,.;) and waits in a queue for computation resources to
become available. If a victim task is not available, the lowest priority
operation requesting additional resources gets discarded from the
plan. This process repeats until the available resources can meet
the requirements of the revised plan. On the other hand, when
resources are freed by the plan, the waiting list tasks (Twaiting)
are provided the opportunity to start with preference given to
high priority tasks. Finally, the operations in the finalized plan are
ordered (e.g., STOP, RMCPUS proceeds START, ADDCUPS), and
the revised resource assignment is determined. Once the protocol
completes, the Arbitration module waits for the Actuation module

<decision>
<policies>
«policy id="INC_ON_PACE" >
<eval operation="GT" threshold="36" />
<sensors-to-use> <use-sensor id="PACE" granularity="task" /></sensors-to-use>
<action> ADDCPU </action>
<history window="10" operation="AVG "/>
<frequency seconds="5"/> </policy>
<policy id="DEC_ON_PACE" >
<eval operation="LT" threshold="22" />
<sensors-to-use> <use-sensor id="PACE" granularity="task"/> </sensors-to-use>
<action> RMCPU </action>
</policies>
<apply-on workflowld=" GS-WORKFLOW">
<apply-policy policyld="INC_ON_PACE" assess-task name="Isosurface”>
<act-on-tasks> Isosurface</act-on-tasks>
<action-params> <param key="adjust-by" value="20"/> </action-params>
</apply-on>
</decision>

Figure 4: XML illustrating policies for changing the number of
CPUs when the pace of the task is outside a desired interval.

<arbitration>
<rules>
<rule-for workflowld="GS-WORKFLOW">
<task-priorities>
<task-priority name="GrayScott" priority="0"/>

<task-dependencies workflowld="GS-WORKFLOW ">
<task-dep name="Isosurface" type="TIGHT" parent="GrayScott"/>

</rules>
</arbitration>

Figure 5: XML illustrating arbitration rules for determining task de-
pendencies and prioritizing task and decision policies.

to execute the plan. If the Actuation module returns successfully, the
Arbitration module discards new decision messages for a sufficient
time, allowing the workflow state to settle down after the changes.

User Interface: We choose XML for the user interface because it
is portable and easy to use and extend. The XML contains sections
corresponding to the Monitor, Decision, and Arbitration stages.
The monitor section defines the sensors and the workflow tasks to
monitor using the sensors 4. The decision section sets the policies
and the workflow tasks for which these policies will perform the
assessment. The arbitration section sets the rules for the workflow
that corresponds to setting priorities and dependencies.

The monitor section, demonstrated in Fig. 3, sets a sensor, PACE,
to track the time spent in the main loop of the workflow tasks. This
information is generated through the TAU code instrumentation
facility and collected in real-time using ADIOS2. The sensor returns
a metric representing the time taken to complete an iteration, or
timestep, of the task. The metric is the maximum of values received
from all the processes of the monitored workflow task. The example
further illustrates how the sensor is configured for monitoring a
workflow task, Isosurface, with the details of the variable to be read.

The example for the decision section, shown in Fig. 4, defines
two policies that act on the output of the PACE sensor. One policy
increases the number of CPUs of a task if the average time per
timestep is more than a threshold value, and the other decreases
the number of CPUs when the average time per timestep is less
than a threshold value. The policies maintain a running average of
the sensor output using the latest 10 values. The policies evaluate
the sensor output every 5 seconds.

Finally, the example for the arbitration section, shown in Fig. 5,
demonstrates the rules that set the priority value for a workflow

4Detailed semantics of the DYFLOW XML can be found at https://github.com/
swatisgupta/ DYFLOW


https://github.com/swatisgupta/DYFLOW
https://github.com/swatisgupta/DYFLOW

Table 1: A single run configuration of XGC1 and XGCa

| TASK@S) | SETTING | Summit | Deepthought2 |
XGC1 | XGCa | PROCESSES 192 (14 PER NODE) | 192 (4 PER NODE)
XGC1 | XGCa | THREADS PER PROCESS 10 10
XGC1 | XGCa | TIMESTEPS PER RUN 100 100
XGC1 | XGCa | PARTICLES PER PROCESS 250K 250K

task, GrayScott, and specifies that the task Isosur face has a tightly
coupled dependency on GrayScott.

4 Experiments

We showcase examples from three scientific workflows highlight-
ing some of the dynamic capabilities achievable through DYFLOW.
In the examples, DYFLOW flexibly enables modification of the work-
flow state in response to science-driven events, re-assignment of
computation resources in response to performance-driven events,
and recovery from failure. Our experiments test DYFLOW based
on the model implementation that builds on Savanna/Cheetah. To
show the costs incurred by DYFLOW, we conducted these experi-
ments on a standard Unix cluster and a state-of-the-art high-end
supercomputer. The results show that DYFLOW accommodates
varied dynamic workflow requirements and incurs a low cost to
carry out the desired changes to the workflow execution.

4.1 Clusters

Summit: A high-end supercomputer with 4, 608 nodes, where

each node consists of 2 IBM Power9 CPUs (i.e., 42 cores with each
core is 4-way hyper-threaded), 6 NVIDIA Volta GPUS, 512 GB of
DDR4 memory and additional 96 GB of High Bandwidth Memory
(HBM2). All the nodes are interconnected using Mellanox EDR
100G InfiniBand.
Deepthought2: A standard Linux cluster with 448 nodes, where
each node has 20 cores (with 2 hardware threads/core) and 128
GB of DDR3 memory running at 1866 MHz. Each node has dual
Intel Ivy Bridge E5-2680v2 processors running at 2.80 GHz and the
nodes are interconnected with Mellanox FDR Infiniband.

4.2 Use cases

This section describes the three use cases: XGC1-XGCa, Gray-
Scott, and LAMMPS. These use cases are specifically selected to
represent workflows based on different types of scientific simula-
tion techniques. For instance, XGC1-XGCa is an exemplar of the
workflows that synthesize particle-in-cell computations; Gray-Scott
is a MiniApp that represents workflows that synthesize mesh-based
fluids; the LAMMPS use case exemplifies workflows that synthesize
a combination of both particles and mesh-based computations.

XGC1-XGCa coupling based fusion simulation:

XGC1 [12] and XGCa are gyrokinetic particle-in-cell codes devel-
oped to study complex multi-scale simulations of turbulence and
transport dynamics of the fusion processes in state-of-the-art fu-
sion reactors, called Tokamaks, including D3D, JET, KSTAR, and
the next-generation ITER reactors. XGC1 is highly complex and
computation-intensive software that often takes several days to
simulate a short time interval of fusion reactions in the reactors.
On the other hand, XGCa uses a simplified physical model that
can simulate fusion reactions for a longer physical time within a
fixed amount of wall clock time. A complete simulation of Toka-
mak reactors requires a femtosecond-scale resolution, which is very
expensive to complete in a reasonable time frame with XGC1; there-
fore, scientists have to resort to a coarser-scale in the micro- to

millisecond range in practice. An alternative employed to maintain
the precision of the fully converged simulation is alternating the
simulation between XGC1 and XGCa such that XGCa pushes the
simulation forward at a faster rate [11]. The scientists choose the
alternation frequency to enable the experiment to moves forward
quickly in simulation time with confidence that the statistics (if not
exact values) of the result will be the same as that produced with
XGC1 alone.

Gray-Scott based reaction-diffusion online analysis:
Gray-Scott is a mathematical model that simulates reaction-diffusion
systems and is used to study chemical species that can produce a
variety of patterns (stripes, spots, periodicity) often seen in nature.
There are many applications found in biology, geology, physics,
ecology, etc. that undergo similar chemical reactions, and Gray-
Scott can be employed as a simplified system to represent them.
Hence there are also a variety of concurrent data analysis functions
that may be useful, based on the target of study.

For this study, we used several data analysis tasks, the most com-
putationally intensive of which is a 3D Fast Fourier Transform (FFT)
of the output arrays from the Gray-Scott model. Some of the other
analyses are inexpensive to compute, such as computing the norm
of a set of output vectors (PDF_Calc), while others are complicated
and can change in computational complexity based on the data
(e.g., Isosurface and Rendering compute and render the iso-surfaces
of the output vectors). This combination of very regular and highly
variable analyses means it is easy for a user to make poor resource
allocation decisions that lead to either under-or over- provisioning
depending on what analysis process(es) are used for a particular
scientific study.

LAMMPS based Molecular Dynamics online analysis:
LAMMPS? is a prominent molecular dynamics simulation code,
used for applications ranging from engineering nano-materials to
designing new alloys to exploring protein-folding. The great variety
of uses and user communities means that there is intense interest
in building and sharing tools for online analysis and management
of data that can be customized to each research team’s needs. We
focus on a scenario where a set of tools are integrated for analyzing
solids as they break and melt under stress. In particular, LAMMPS
is coupled with three analysis processes that compute the radial
distribution function (RDF_Calc), perform common neighbor anal-
ysis (CNA_Calc), and compute central symmetry (CS_Calc).

4.3 Managing workflow tasks in response to
science- or data-driven events

We demonstrate the utilization of DYFLOW to orchestrate science-
driven events by employing the loosely coupled workflow with two
tasks, XGC1 and XGCa, to simulate fusion reaction. The tasks run
alternately, each for a fixed number of simulation timesteps until
they jointly complete the desired total number of timesteps. For
correctness, the experiment relies on the error assessment of XGCa
so that XGC1 takes over the simulation whenever the error accu-
mulation is high.

Two sensors and two policies were defined to address the dy-
namic requirements, as shown in the sample XML in Figure 7. The

SLAMMPS website: https://lammps.sandia.gov
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Figure 6: Gantt-chart showing the experiment performed on Summit for the XGC1-XGCa workflow to demonstrate running iterative experi-

ments and terminating tasks based on runtime events.

first sensor, NSTEPS, tracks progress, i.e., the number of global
timesteps completed during the simulation. Both XGC1 and XGCa
write an output file once a fixed number of global simulation
timesteps complete; therefore, the source type for this sensor is
"DISKSCAN’. The metric for this sensor computes the maximum
number of timesteps completed by the workflow. The second sen-
sor, ERROR, is defined to compute the error in the output from
XGCa. The XGCa output is available in ADIOS2 format, so the
source type for this sensor is ’ADIOS2’. The properties of the fusion
simulation output that could define an error estimation function
is ongoing research by fusion scientists, so the definition of this
sensor is incomplete.

To register the two dynamic events, we set three policies as fol-
lows. RESTART_UNTIL_COND starts XGC1 (or XGCa) if the output
of NSTEPS of the workflow is less than 500 for XGCa (or XGC1).
STOP_ON_ COND stops XGC1 (or XGCa) if the output of NSTEPS is
greater than 500 for XGCa (or XGC1). SWITCH_ON_COND stops
XGCa and starts XGC1 when high error accumulates in the sim-
ulation output generated by XGCa. Instead of using the ERROR
sensor, we use the NSTEPS sensor output at task granularity to
generate a proxy error condition. The proxy error condition causes
termination of XGCa after the 374th timestep of the simulation
completes, based on the assumption that error accumulation can
be high after that many timesteps. Before starting XGC1 a user
script, restart-xgc.sh, runs to set XGC1 inputs to restart from the
last saved output of XGCa. Both tasks have priority O ( the highest
priority) since they run alternately. Further, we prioritize the poli-
cies so that STOP_ON_COND has the highest priority as it signifies
experiment completion, and SWITCH_ON_COND is preferred over
RESTART UNTIL COND to resolve conflicts.

Table 1 shows the initial setup for the experiments on both
clusters. Summit: Figure 6 shows the individual timestamps and
durations of the workflow tasks and all the events. The timestamps
in the figure are relative to the start of the experiment. The green
bars show the times XGC1 runs, the blue bars show the times XGCa
runs, and the red intervals show the dynamic adjustment period.
On average, XGC1 runs 2.5x slower than XGCa to simulate 100
timesteps. The simulation starts with XGC1 while XGCa waits in
the queue due to their loosely coupled dependency. Because of
RESTART UNTIL _COND, XGCa starts three times with the same
resources when XGC1 terminates as resources become available.
The response time to finalize the plan and execute it for these events
is ~ 0.1-0.2 seconds. Similarly, XGC1 starts when XGCa finishes
(when 200 global simulation steps complete). The response time,
in this case, is 8 seconds - 4 seconds of this time is due to the

<sensors>
<sensor id="NSTEPS" type="DISKSCAN">
<group-by> <group granularity="task" reduction-operation="MAX"/>
<group granularity="workflow" reduction-operation="MAX" />
</group-by> </sensor>

<sensor id="ERROR" type="ADIOS2">

<preprocess operation="..." />
<group-by> <group granularity="task" reduction-operation=" ... "/> </group-by>
<policies>

<policy id="RESTART_UNTIL_COND" >
<eval operation="LT" threshold="500" />
<sensors-to-use> <use-sensor id="NSTEPS" granularity="workflow"/> </sensors-to-use>
<action> START </action>
<frequency seconds="5"/> </policy>

<policy id="SWITCH_ON_COND " >
<eval operation="EQ" threshold="374" />
<sensors-to-use> <use-sensor id=" NSTEPS" granularity="workflow" /> </sensors-to-use>
<action> SWITCH </action>
<frequency seconds="5"/> </policy>

<policy id="STOP_ON_COND" >
<eval operation="GT" threshold="500" />
<sensors-to-use> <use-sensor id=" NSTEPS" granularity="workflow" /> </sensors-to-use>
<action> STOP </action>
<frequency seconds="5"/> </palicy>

<apply-policy policyld="RESTART UNTIL_COND" assess-task="XGCA">
<act-on-tasks> XGC1 </act-on-tasks>
<action-params> <param key="restart-script" value="restart-xgc1.sh"/> </action-params>
</apply-policy>

<apply-policy policyld="SWITCH_ON_COND" assess-task="XGCA">
<act-on-tasks> XGC1 </act-on-tasks>

<apply-policy policyld="STOP_ON_COND" assess-task="XGCA">
<act-on-tasks> XGCA </act-on-tasks>

<rules>
<rule-for workflowld="FUSION-WORKFLOW">
<policy-priorities>
<policy-priority name="STOP_ON_COND" priority="0"/>
<policy-priority name="RESTART_UNTIL_COND" priority="1"/>

Figure 7: XML example illustrating the user specification for switch-
ing on error and restarting the experiment for the desired number
of timesteps.

delay enforced by frequency settings of the policy in evaluating the
sensor output. The time to start XGCl1 is greater than that of XGCa
due to running the user script. Because of SWITCH_ON_COND,
XGCa stops after completing 74 steps (i.e., 374 global simulation
steps complete at this point) with a response time of ~ .13 seconds.
From STOP_ON_COND, XGCa stops after completing 502 global
timesteps with a response time of 2 seconds. Deepthought2: In
a similar experiment on Deepthought2 (graph not shown), the
response times as follows: 0.8 — 0.2 seconds for starting XGCa, 11
seconds for staring XGC1, 24 seconds for switching to XGC1 from
XGCa, and 42 seconds to stop XGCa.

Without DYFLOW, the simulation completes only using XGC1
and takes approximately 25% more time on each cluster.



Table 2: Initial configuration for Gray-Scott workflow that results in
resource under- provisioning

l TASK [ SETTING [ Summit [ Deepthought2 ‘
GRAY-SCOTT PROCESSES 340 (34 PER NODE) 320 (16 PER NODE)
GRAY-SCOTT GRID/PROCESS 42 X140 X 175 88 X 88 x 140
ISOSURFACE PROCESSES 20 (2 PER NODE) 20 (2 PER NODE)
RENDERING PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)
FFT PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)
PDF_CALC PROCESSES 20 (2 PER NODE) 20 (1 PER NODE)
GRAY-SCOTT TOTAL STEPS 50 50
ALL TIME LIMIT 30 MINS 35 MINS

4.4 Managing resource distribution in response
to performance-driven events

This section focuses on the performance concerns of tightly cou-
pled workflows where tasks communicate data through in-memory
streams and may affect each others’ runtime behavior via changes
in data flow at runtime. Using the Gray-Scott workflow, we demon-
strate how to utilize DYFLOW to respond to performance-driven
events at runtime. Modern profilers, like TAU [16], enable users
to access different types of performance measurements that can
be collected indirectly via system support or directly through code
instrumentation. For example, system-generated information in-
cludes memory footprint, CPU utilization, and network bandwidth,
while code instrumentation can measure time spent in various code
sections. For the experiments in this section, the time taken to com-
plete an iteration (or a single iteration of the outermost loop in the
application) represents the pace at which the tasks are progressing.

Using the above performance metric, we performed experiments
capturing two types of runtime events; (a) Under-provisioning: a
task is assigned fewer resources than required, slowing the overall
workflow performance (for instance, the simulation task waits for
analysis tasks to read data for a timestep), such that the experiment
may not finish in the allotted time, and (b) Over-provisioning: a
task is assigned more resources than required, so there are times
when resources are under-utilized.

Figures 3 to 5 show sample XML for such an experiment. To
set the monitoring metric we define a sensor, PACE, which reads
the TAU-generated information using code instrumentation. The
generated information represents the time spent in each iteration
and is available in real-time through ADIOS2. To identify the under-
and over-provisioning events, we set two policies, INC_ON_PACE
and DEC_ON_PACE, that increase or decrease the number of CPUs
assigned to any monitored task (by 20) if the average pace is slower
or faster than the desired values (i.e., thresholds) respectively. The
average is computed over a sliding window of 10 values to avoid
decisions based on a single timestep.

For the threshold for INC_ON_PACE, we used a value of 36 sec-
onds based on the desire that the workflow complete 50 timesteps
in 30 minutes; therefore, the tasks spend a maximum of 36 seconds
per timestep. If any workflow task takes more time per timestep,
then it needs more processes to complete the experiment on time.
For DEC_ON_PACE, the threshold value is 24 seconds which uti-
lizes a variant percentage, such that if the task is more than a third
faster than the maximum time per time step (i.e., two thirds of
36, or 24 ), then it can use fewer resources. Further, in our experi-
ments, the task priorities are assigned high to low (0 to 4) in the
following order; Gray-Scott, Isosurface, Rendering, FFT, PDF Calc.
The priorities indicate the relevance of these tasks over others. For
rectifying the effects of runtime performance of the analysis tasks
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Figure 8: Gantt-chart showing the experiment performed on Sum-
mit with the Gray-Scott workflow to demonstrate correcting
under-provisioning of resources along with the response times of
DYFLOW

on the simulation to maximize the simulation performance, these
policies are only applied to the analysis tasks. We did not have to
set policy priories in the XML as the policies cannot conflict for the
same workflow task.

We discuss the under-provisioning scenario in detail. In all our
experiments (including the experiments in other sections), Arbitra-
tion processes the suggested actions only after 2 minutes from the
start of the experiment to ensure all the running tasks have made
some progress. For a similar reason, it discards all the suggested
actions for 2 mins after the running workflow is modified.

Table 2 provides the initial configuration for the under-provisioning
experiment on Summit and Deepthought2. Summit: Figure 8 shows
all the dynamic events, giving the timestamps and durations. Fig-
ure 9 shows the average time per timestep as Decision receives them.
Gray-Scott was started along with all the analysis tasks; Isosurface,
Rendering, PDF_Calc and FFT. After 2 mins into the experiment, Ar-
bitration considers the suggestion from policy INC_ON_PACE to
increase the number of processes for all the analysis processes — the
average time per timestep was above the threshold of 36 seconds.
Arbitration only enables the action to increase the number of pro-
cesses of Isosurface from 20 to 40 by acquiring the extra resources
from PDF_Calc. Due to the runtime dependency on Isosurface, Ren-
dering was also restarted. Arbitration took 107 seconds to finalize
the plan and wait for Actuation to finish executing it.

After waiting for 2 mins, Arbitration again considered the actions
suggested. At this time, policy INC_ON_PACE suggests increasing
the number of processes for the analysis as the average time per
timestep was above the threshold of 36 seconds. Only the action to
increase the processes of Isosurface from 40 to 60 processes is en-
abled by acquiring the extra resources from FFT_Calc. As previously
noted, Rendering was restarted due to its runtime dependency on
Isosurface. Arbitration took 36 seconds to finalize the plan and wait
for Actuation to apply the plan. After these changes, the average
time per timestep for all the tasks was within the desired interval.
Deepthought2: In a similar experiment on Deepthought2 (graphs
not shown), Isosurface was restarted by acquiring resources from
PDF _Calc and FFT_Calc while Rendering was restarted due to its
runtime dependency. The time to finalize the plan of action and
execute it was 87 seconds. The response times significantly reduce
on both clusters if the tasks are not allowed to terminate gracefully
(i.e., the time to finish the current timestep after receiving a kill
signal). Without using DYFLOW, the experiment exceeds the allo-
cation time limit, and the workflow tasks terminate prematurely
due to timeout (requiring 10-12% additional time to finish).
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Figure 9: Average time per timestep information obtained from the
Gray-Scott workflow tasks used by DYFLOW to improve perfor-
mance on Summit.

<Sensors>
<sensor id="STATUS" type="ERRORSTATUS">
<group-by> <group granularity="task" red uction-operation="FIRST"/> </group-by>
</sensor>
<policies>
<policy id="RESTART_ON_FAILURE" >
<eval operation="GT" threshold="128" />
<sensors-to-use> <use-sensor id="STAUS" granularity="task"/> </sensors-to-use>
<action> RESTART </action>
<frequency seconds="5"/>

Figure 10: XML example illustrating the user specification for
restarting tasks on failure.

4.5 Managing workflow state in response to
failures

Large-scale workflows sometimes desire the capability to re-
spond to failure events. Different runtime failures can affect the
workflow tasks, for instance, hardware failures such as a node or
network failure or software failures such as memory corruption due
to software errors. With in situ workflows, another type of failure
is losing timestep information when the tasks reset, i.e., stopping
and restarting at runtime (as evident in Fig. 9), or buffer overwrites
when buffer capacity is exceeded. Failure diagnosis can be difficult,
specifically in the case of software-generated or dataflow-related
failures. Identifying the cause of failure in these scenarios requires
deep analysis. Therefore, the focus of this section is demonstrating
how DYFLOW can helps workflow achieve resilience to some types
of hardware failures.

Arbitration continually collects the status of allocated resources
from Actuation, which (indirectly) relies on the underlying job
scheduler to provide this information. During resource reassign-
ment, Arbitration ensures the exclusion of problematic resources.
In the experiment, we show a form of resilience to node failure(s)
in the cluster.

We use the molecular dynamics in situ workflow where the
simulation is tightly coupled and co-located with three analysis
tasks at runtime. Figure 10 shows the sample XML to enable the
workflow tasks to restart after failure. To become aware of failures,
we define a sensor, STATUS, that reads the error files generated by
job schedulers when tasks fail to get the error number returned. The
metric is computed at task granularity and returns the error number
read by the first MPI process (rank 0). From the cluster scheduler’s
view, Savanna is the job script; therefore, we read the exit status
saved by Savanna after the workflow task completes or fails. To
detect failure, we define a policy, RESTART_ON_FAILURE, that
restarts the workflow tasks whenever the error number is greater
than 128 (the standard exit codes for system signals). A user can
provide a script to run before the restart to ensure that the tasks
resume correctly. Further, the task priorities are assigned high to

Failure recovery (Summit): Event timestamps (min:sec) and duration
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Figure 11: Gantt-chart showing the experiment performed on Sum-
mit with LAMMPS workflow to demonstrate resilience to node fail-

ures.

CNA_Calc_200_procs, 10:09
CS Calc 200 procs, 10:09
Simulation_1500_procs, 10:

RDF_Calc_200_procs, 10:0]
9

Table 3: Initial configuration for LAMMPS workflow on Summit and
Deepthought2 used for failure resilience

| TASK | SETTING | Summit |  Deepthoughtz |
LAMMPS PROCESSES 1500 (30 PER NODE) | 100 (14 PER NODE)
LAMMPS TOTAL ATOMS 65536000 8192000
LAMMPS TOTAL STEPS 1000 1000
CNA_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)
RDF_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)
CS_CALC PROCESSES 200 (4 PER NODE) 20 (2 PER NODE)
ALL ANALYSIS | TOTAL STEPS 100 50

low (0 to 3) in the following order; Simulation, CS_Calc, CNA_Calc,
RDF Calc.

Table 3 shows the initial configurations of LAMMPS on Sum-
mit and Deepthought2. Summit: Figure 11 shows the timestamps
and durations of the dynamic events. 10 mins into the experiment
one of the allocated nodes was taken out of service, causing the
entire workflow to fail. Arbitration restarts all the tasks by exclud-
ing the failed node from the resource assignment and replace it
using one of the free nodes in the allocation. In this experiment,
we allocated 2 additional nodes. However, if free nodes were not
available, DYFLOW will use the resources from low-priority tasks
to restart the higher priority tasks. After restart, the simulation
resumes from the last checkpoint( i.e., timestep 412), and all the
tasks repeat several timesteps. The response time for Arbitration
to finalize and wait for execution of the plan was ~ 0.2 seconds.
The additional time results from the delay imposed by frequency
settings in evaluating the sensor output. Deepthought2: In a simi-
lar experiment on Deepthought2 (graph not shown), the response
time for the reconfiguration was 0.4 seconds.

4.6 Cost analysis for using DYFLOW

On average the lag between an event and initiation of a response
was less than 1 second based on results from both clusters. These
times exclude the effects of the decision frequency set by a user. The
lag time varies depending on the volume of data processed for met-
ric computations. For instance, the average lag time is lower when
a single variable is read from a file on disk (i.e., 0.2 seconds). When
TAU-generated data is read that is actively streamed using ADIOS2
(as one of the values in a two-dimension variable), the average lag
time is approx. 0.5 second. The total response time includes the
time spent by Arbitration to finalize the plan and Actuation to apply
the resultant changes to the workflow. The time taken by workflow
tasks to terminate gracefully (i.e., the time to finish the current
timestep after receiving a kill signal) dominates the response time.
In our experiments, approximately 97% of the response time was
spent waiting for tasks to terminate after receiving the signal, on
both clusters. Overall, DYFLOW incurs a small cost to apply the
workflow modifications at runtime, which can vary significantly



with the experiment setup and environment. However, the time
spent formulating the plan is low.

5 Related work

To cope with the complexity of specifying and executing scien-
tific workflows, many workflow management systems (WMSs) have
emerged [2, 4, 7, 14, 19]. These systems focus on providing support
via simplified scripting languages to ease workflow design on su-
percomputers and other systems. Systems like RADICAL [17] use a
building blocks approach to enable interoperability across HPC ma-
chines supporting large-scale science. For workflow orchestration,
cloud computing [3] has emerged as an alternative to dedicated clus-
ters. Employing on-the-fly resource acquisition and release support
they easily enable management systems to automate workflows.
Various scheduling and provisioning strategies have been studied
to optimize resource utilization or time or cost under various QoS
constraints such as deadline or budget.Container-based solutions,
such as Kubernetes®, extend this automation by allowing users
to define and customize performance metrics to adapt resources
(scaling up and down) at runtime. However, all these solutions are
limited to loosely-coupled workflows, where data exchanges are
done through files and dependent workflow tasks run at different
times.

Recent studies [5, 10, 20] have demonstrated the benefits of
dynamic resource management on supercomputers. For instance,
Dayal et al. [5] introduced queue monitoring policies that increase
or decrease the number of task processes based on the work pend-
ing in the queue. Zheng et al. [20] and Goswami et al. [10] show
improvements in overall runtime performance by running analysis
tasks on CPUs and GPUs that have been allocated to simulations
and are idle or waiting on other resources (e.g., large I/O opera-
tions). Several projects, for example Perarnau et al. [15] and Vallee
et al. [18], introduce container-based solutions on supercomputers
to enable dynamic resource management. Emerging workflow man-
agement systems, such as Flux [1], introduce nested hierarchical
scheduling to address various workflow management challenges
including high throughput, job monitoring, co-scheduling, and job
portability on supercomputers. Our work addresses modern scien-
tific workflow runtime challenges such as those imposed by in situ
analysis, providing a flexible platform to take advantage of dynamic
orchestration on the supercomputers.

6 Conclusion and future work

In this paper, we have shown a flexible framework that enables
complex scientific workflows to employ various benefits of dynamic
orchestration on supercomputers. Our framework compartmen-
talizes dynamic management into four stages; Monitor, Decision,
Arbitration, and Actuation. These stages are exposed as sensors,
policies, and rules supporting fine constructs that enable workflow
users to easily and inclusively express different dynamic require-
ments. The framework supports an in-build arbitration protocol
that reserves the final authority over the runtime changes ensuring
that the workflow runtime state is always valid and consistent.

Via experiments on three different scientific workflows, XGC1 —
XGCa, Gray — Scott and LAMMPS on a standard Linux cluster and
a state-of-the-art supercomputing cluster, we have illustrated that

SKubernetes website: https://kubernetes.io

a dynamic management system based on our framework enables
users to easily employ runtime orchestration capabilities for both
loosely- and tightly- coupled workflows, incurring low cost to carry-
out runtime changes. These scenarios show that the framework
enables workflow tasks to respond to science-driven events, re-
assign resources in response to performance assessment, or recover
from failure events.

We see great potential in investigating additional complex run-
time scenarios where the role of Arbitration can be extended from
a reactive to be a pro-active or predictive stage that can also assist
in decision making. We also foresee opportunities in exploring in-
strumentation for in situ applications so that finer-grained control
operations, beyond just stopping and relaunching, can be used to
reconfigure a workflow.
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