Reusability First: Toward FAIR Workflows

Matthew Wolf*
0000-0002-8393-4436

Jeremy Logan*
0000-0003-1529-3048

Angelica M. Walker?
0000-0003-4308-6302

Greg Eisenhauer!
0000-0002-2070-043X

*Qak Ridge National Laboratory
Oak Ridge, TN

1Bredesen Center for Interdisciplinary Research and Graduate Education

University of Tennessee, Knoxville
Knoxville, TN

Abstract—The FAIR principles of open science (Findable,
Accessible, Interoperable, and Reusable) have had transformative
effects on modern large-scale computational science. In partic-
ular, they have encouraged more open access to and use of
data, an important consideration as collaboration among teams
of researchers accelerates and the use of workflows by those
teams to solve problems increases. How best to apply the FAIR
principles to workflows themselves, and software more generally,
is not yet well understood. We argue that the software engineering
concept of technical debt management provides a useful guide
for application of those principles to workflows, and in particular
that it implies reusability should be considered as ‘first among
equals’. Moreover, our approach recognizes a continuum of
reusability where we can make explicit and selectable the trade-
offs required in workflows for both their users and developers.

To this end, we propose a new abstraction approach for
reusable workflows, with demonstrations for both synthetic work-
loads and real-world computational biology workflows. Through
application of novel systems and tools that are based on this
abstraction, these experimental workflows are refactored to right-
size the granularity of workflow components to efficiently fill
the gap between end-user simplicity and general customizability.
Our work makes it easier to selectively reason about and
automate the connections between trade-offs across user and
developer concerns when exposing degrees of freedom for reuse.
Additionally, by exposing fine-grained reusability abstractions we
enable performance optimizations, as we demonstrate on both
institutional-scale and leadership-class HPC resources.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Scientific software, the data that it consumes and produces,
and the insights that they together enable are at the core
of many areas of modern science. Software development

Funding was provided by the Plant-Microbe Interfaces (PMI) SFA, the
Exascale & Petascale Networks for KBase project and by The Center for
Bioenergy Innovation (CBI). These are all supported by the Genomic Sciences
Program of Office of Biological and Environmental Research in the DOE
Office of Science. This work was also supported in part by the joint U.S.
Department of Veterans Affairs, US Department of Energy MVP CHAMPION
program, and the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

Kshitij Mehta*
0000-0002-9714-9981

Mikaela Cashman™
0000-0003-0620-7830

Daniel Jacobson**
0000-0002-9822-8251

Patrick Widener?
0000-0002-5882-0816

Ashley CIiff*
0000-0001-7809-5546

TGeorgia Institute of Technology
Atlanta, GA

§Sandia National Laboratories
Albuquerque, NM

practices in computational science have grown organically
from a variety of disciplinary, group-level, and even per-
researcher standards and assumptions. However, this has led to
the accumulation of significant and frequently overwhelming
difficulties not only in maintaining individual solutions, but
also in enabling collaborations within and across disciplines.
There is a need for a new approach to the construction, deploy-
ment, and evolution of scientific workflows, software, and their
interdependent data sets which addresses both the convergence
of multiple scientific disciplines and the increasing prevalence
of heterogeneous and extreme-scale computing technologies.

Workflows are a constant presence in everyone’s day as
the ‘flow of work’ that one undertakes, and yet they are
difficult to clearly define and work with in a computational
environment [1]]. The variety of runtime engines [2[-[5],
interfaces [6]], [[7]], and efforts toward generality [8]], [9] makes
it exceedingly difficult to create a workflow instance in a
particular system and then be able to share it with someone
else or to reuse it after months or years have passed. However,
there is a great need to increase the reusability not only of
scientific data sets but also of the codes and environments
that are built to create and consume that data. Building a better
abstraction for creating, maintaining, and accessing Reusable
Workflows is a key challenge for computational and computer
scientists alike.

The practical root of the problem is that much scientific
software begins its life in idiosyncratic, small-group investi-
gations that leave the resulting code as a black box for most
outside researchers or developers. Research software engineer-
ing [10] (RSE) teaches practices for constructing software
from reusable, testable, and shareable components, and this
enables an ecosystem of tools that can enforce standards and
practice. Naively implementing this would require a complete
rewrite and reworking of much of the practical code being used
to do science today, and the RSE practices generally focus
on software components rather than whole workflows. Thus
we are focusing on a solution that enables low-to-zero-cost

https://orcid.org/0000-0002-8393-4436
https://orcid.org/0000-0003-1529-3048
https://orcid.org/0000-0002-9714-9981
https://orcid.org/0000-0002-9822-8251
https://orcid.org/0000-0003-0620-7830
https://orcid.org/0000-0003-4308-6302
https://orcid.org/0000-0002-2070-043X
https://orcid.org/0000-0002-5882-0816
https://orcid.org/0000-0001-7809-5546

entry for software where code can easily begin in a black-
box configuration and progressively expand to become more
‘white-box’, reusable, and performant.

The publication of the FAIR principles [11] helped crys-
tallize a broad coalition of scientists, policy makers, and
innovators around specific ways to make open science data
more Findable, Accessible, Interoperable, and Reusable. There
has been a great deal of conversation particularly on the last
two points of interoperability and reusability for data sets,
but there are at least emerging standards for how to achieve
those for data. Attempts to broaden these principles of open
science for research software [[12] and workflows have had
more limited success, particularly because the concepts of
interoperability and reusability are significantly more complex
when one is talking about actions that one can take, rather
than tracking the behavior of data objects upon which those
actions take place. That is the crux of the slow emergence
of a community consensus on what reusability should mean
for research software, and the situation becomes even more
complex when trying to reason about reusable workflows [13]].

From a practitioner’s point of view, this issue is well known.
Technical debt [[14], [15]] is a common concept that can be
formulated as tracking the degree of human effort needed to
repurpose or reuse a piece of data or code. Anything that isn’t
explicitly implemented in the item incurs technical debt. The
need to run down the hall to ask how to find an experiment
in the old file-naming scheme, restructuring a build system
so that it will work on a new machine, or the fragile library
dependency on one particular old version of a math library
all require human time to service the technical debt incurred
by the previous approach. In all of these exemplars, the key
commonality is in the human intervention. Technical debt must
be serviced when the data, software, or workflow is reused
(by others or simply in a new context), and we contend that
meeting the goals of a FAIR workflow in particular go beyond
insuring efficient human intervention for reuse to structuring
metadata catalogs to offer new abstractions for automation. If
the mechanics of reusability can be partially or fully automated
through new abstraction approaches, both at initial creation
and at the time of reuse, the barriers for driving community
interactions and innovations are lowered as a result.

As desirable as reusability is as a concept, it is exceedingly
difficult to define exactly what might represent reusability
in practice. For one scientist, it might mean that there is
an easy way to transfer someone else’s successful Parsl [3]
workflow into something that Pegasus [4] would support. For
another scientist, the goal of reuse would be to encapsulate
both the imported and pre-existing workflows so that the Parsl
workflow fragment would remain as is and just exchange data
cleanly with the pre-existing parts of their workflow, regardless
of runtime or specification language. In many cases, reusability
does not require any change in software environment at all
but instead is part of the normal exchange within a research
collaboration as people join or leave. Our view is that none
of these types of reusability is the correct one to use as a
basis for measure (or indeed any of the many other possible

variants). Instead, the key insight is that reuse represents a
continuum of actions that may require human intervention or
may be automatable, and no single metric should be expected
to assess whether a particular factorization of a workflow is
ideally reusable. Instead, we propose six gauge properties,
outlined in Box [} for understanding reusability of workflows.
Each of these properties represents a category axis along which
one can track the progress of a workflow toward reusability.

Box I: Gauge Properties
for Reusable Workflows.

o Data: o Software:
— Access — Granularity
— Schema — Customizability
— Semantics — Provenance

The six properties are aimed at representing actionable
metadata characteristics that can be attached to data and
computational aspects of workflow components, respectively.
For example, we define properties for data access, data
schema/format structure, and data semantics. Each collection
of properties has multiple stages; at a base level, perhaps
nothing is known about any of them. The next step up on data
access might be to understand the basic protocol (e.g., POSIX
file, zeroMQ queue). From there, increasing levels of the
gauge would reflect further knowledge of the data I/O interface
(e.g., CSV file, HDFS). Similarly, the other data aspects of
schema representation and data semantics have multiple stages
of increasing explicitness of representation, and the software
aspects can be tracked in how they represent the granularity,
customizability, and provenance of the execution environment.
Further details on these six gauge properties and how they
might be applied to system abstractions are presented in
Section

Although reusability’s intersection with technical debt
should be familiar to any computer or computational scientist,
we outline several specific examples that we can leverage
to illustrate the technical contributions of our workflow ab-
straction in Section For each of these, we highlight not
only the challenges of these exemplar science workflows
but also the opportunities for automation in enhancing reuse
within their respective communities. These examples serve as
a reference point as we then further explore the implications
of the abstraction and its six gauges in Section From
there we describe the tools and interfaces that we developed
and/or leveraged for this work in Section [IV] before turning
to experimental evaluations in Section [V} These experiments
demonstrate that introducing higher-level models for the cre-
ation and composition of workflow components can improve
reusability based on our multi-axis system without harming
overall performance; indeed we show in some cases that the
resulting workflows are more performant.

II. MOTIVATING SCENARIOS

Our highlighted science use cases and scenarios all use
workflows that combine aspects of human-in-the-loop and

automation in their components. Although each of these can
(and have) been the basis of papers in their own right, here we
focus specifically on the community-driven scenarios and their
associated issues surrounding the technical debt/automatable
reuse trade-off, establishing a clear basis for further discussion.

A. Genome-Wide Association Studies at Scale

Genome-Wide Associate Studies (GWAS) are a standard
computational biology technique to identify genotype to phe-
notype associations. A typical use of GWAS is to use mixed
linear models to associate single nucleotide polymorphisms
(SNPs) to a phenotypic trait such as a disease state or other
properties of an organism, to help discover the genomic archi-
tectures that contribute to phenotypes. Software tools used for
GWAS analysis require specific formatting of the input data.
Raw genotype and phenotype data need to be reformatted by
the user for tool use. This type of data formatting task is not
limited to GWAS; data wrangling is usually a time-consuming
process in data science workflows, often taking up to 80% of
the time in any given project. This phenomena, often referred
to as the 80/20 rule of data science has been highlighted
by the National Academies of Sciences, Engineering, and
Medicine [16] and thoroughly discussed in the data science
pedagogical literature [17]-[22].

Data formatting tasks in bioinformatics can take on several
challenges. There can exist multiple formats for single types
of data (e.g. genome annotations can be in BED, GTF2,
GFF3, or PSL formats), data formats may not be consistent
between workflow steps, and custom format structures can
be used for specific use cases (e.g. to accommodate sparse
data, different computational systems, or incorporate unique
data fields). Handling this lack of consistency is often left
to the bioinformatician. In cases where automated conversion
tools do not exist, the researcher may create their own.
However, this can come at a time and monetary cost, and
often custom tools are poorly tested [23]] which could result
in downstream consequences such as incorrect scientific con-
clusions. Furthermore, custom tools may be created to only
fit certain types and sizes of data, as well as to adhere to
specific computing systems. In many cases, modular design
of custom tools falls victim to the available resources of the
researcher. Data processing and workflow software are also
often shared both within and between research groups. For
example, it is increasingly common that publications require
releasing related source code. This further highlights the need
for flexible software that is reusable across users and systems.
For these reasons, bioinformatics users could benefit from
frameworks that encourage automation and customizability.

GWAS provides a good example of the need for reusability
through automation in scientific workflows. Here, scripted,
multi-step workflows are often reused to process different
data sets. Much of the workflow is static from use to use,
but new data sets must be preprocessed to work with the
static workflow components. These preprocessing workflows
are typically under-engineered, with exactly enough effort
applied to process the current dataset, creating technical debt

with corresponding costs that must be incurred during any
subsequent use.

B. iRF-LOOP for Genome Knowledge Graph Generation

Iterative Random Forest Leave One Out Prediction (iRF-
LOOP) is a form of machine learning algorithm that can
extract explainable properties of the datasets. It can be used on
a multitude of data sets to produce all-to-all associations [24],
[25]. Using a matrix with n features and m samples, iRF-
LOOP will treat each individual feature as the dependent
variable, or Y vector, and create an iRF model with the
remaining n-1 features as the independent variables, or the X
matrix. Like iRF, iRF-LOOP can produce meaningful insights
even in cases where n is much larger than m. The result
of each individual iRF run is a vector of size n of the
importance for each independent feature in predicting the Y
vector. Following the completion of the n individual iRF runs,
the n importance vectors are normalized and concatenated into
an n x n directional adjacency matrix, with values that can be
viewed as edge weights between the features.

In practice, the iRF-LOOP model is created by running
a separate iRF process for each dependent variable. The
larger the set of features, the more iRF runs that are needed.
Due to the different requirements of different HPC systems,
setting up the runs themselves involves manually assigning
the runtime parameters and gauging the compute resource
division, and then manually creating the submit scripts for all
of the iRF runs. Because the run times between the individual
iRF processes can differ within one submission, estimating
run times for a set of features becomes difficult. Due to the
static nature of the submit script submission process, the run
time differences can lead to idle nodes. Once a submission
has completed, a list of failed runs is manually curated and
requires a new submit script to be created and resubmitted.

Because of these manual requirements, the user must have a
deep understanding of the process to appropriately create the
model. Teaching new users itself adds time to the process and
may result in incorrect parameters or run set ups if rushed,
leading to more allocation usage and more wasted time. A
model-driven, reusable workflow framework for building the
iRF-LOOP model would better enable sharing the program
with others and speed the reuse of the model even by the
original team when applying it to new data or new hardware.

C. Model-driven Abstractions for Codesign Campaigns

Codesign evaluations differ from regular simulation runs in
that they are meant to explore a wide parameter space spanning
the application, middleware, and system layers, as opposed to
conducting a few runs using the main simulation. The output
of a codesign campaign is a catalog that describes the impact
of different parameters on different output metrics. A codesign
campaign tool is thus different from several existing tools in
the scientific community [26]] that are mostly focused on one-
off workflow executions or simple ensemble-based runs. A
codesign abstraction that allows declaring an objective of the
study using different metrics such as searching for optimal

runtime, minimizing storage space, reducing communication
overhead etc. can further help build high-level composition and
query interfaces with more portable and reusable workflows.

Building a new workflow tool for codesign studies from
the ground-up is both cumbersome and expensive. Several
components for running codesign workflows already exist
across the wide spectrum of currently available workflow tools.
It is thus of interest to adapt a model-driven approach towards
designing workflow technologies for codesign campaigns to
be able to reuse existing software. Reusability being a primary
metric, defining clear interfaces and models for using existing
tools forms our core motivation.

We build upon our experience developing the Cheetah and
Savanna suite [27] of workflow tools for conducting codesign
studies for online data analysis and reduction for large data
as part of the Exascale Computing Project. Cheetah and
Savanna are designed around the fundamental ‘Campaign’
model, which allows end users to compose and execute
campaigns of experiments that evaluate the performance of
various parameters. Parameters of interest are scattered across
the application domain (coupling and other ways to tune
application behavior), middleware (data streaming, staging,
file I/O), and the underlying distributed system (concurrency,
process placement). Abstractions that facilitate reusability can
be grouped in the composition and execution layers of the
toolset. Because multi-disciplinary exchanges are so important
to codesigning for exascale computing, reuse and interoper-
ability have been central system requirements throughout.

ITII. MODEL

One of our key goals is to tease apart unnecessary couplings
between the lifetime, visibility, and modality of software
artifacts. Technical debt results in part from all artifacts being
expressed in the same modality (a 3G language like C++ or
Python), even if they are produced from different levels of
abstraction (hand-tooled by a developer vs generated code). A
consequence of this is that reusability is considered only in
the contexts supported by those lower-level expressions, such
as linking against third-party C++ libraries or using pypi
or pip to add packages. Considerable software scaffolding
efforts at various levels attempt to compensate: popular C++
class libraries like Trilinos, package managers such as Spack,
software configuration frameworks based on CMake, HPC-
compatible recontextualizations of software reuse constructs
such as containers. These efforts add to the corpus of code
that humans must maintain, but are also ideal participants
in an automated workflow generation ecosystem. Automation
provides an opportunity to directly address their contributions
to technical debt — no debt accrues from code that can be
efficiently deleted and regenerated when needed. In sum, we
want to differentially raise both the level of abstraction in
which a particular software expression becomes permanently
stored and reused, and the level of automation supporting its
development and deployment.

Here, we achieve the goal of raising the abstraction by
laying out specific stages within each of our gauge categories.

Our basis for this model comes from a wealth of experience
with not only the DAG and Bag-of-Tasks workflow engines
but also from our investment in streaming, in situ, and online
workflows for Big Data, both of the scientific and the cloud-
scale kinds. Although the specific levels of each gauge may
seem somewhat abstract, each of them has been chosen so that
they can represent specific, testable, and modelable metadata
for the constituent workflow, executable, and data quantities.

This approach does not require a user to adopt a ‘one right’
platform or approach. Instead, a progressive characterization
of the functional workflow models produces a reusability
context for whatever code and data is generated. Further, we
demonstrate how these gauges and models can aid in the
reusability and portability through a particular set of tools,
but the metadata expressions are intended to be open for any
tools or users within the broader ecosystem.

For each of the gauges as listed in Figure[I]we have included
some of the lowest tier levels of the assessment that we have
identified. These are not intended to be exhaustive lists; rather,
as models for autonomous reusability and interoperability
become more sophisticated, we expect that there will be
continued extensions and refinements on the gauge properties.
We discuss each of them in greater depth here.

Data Access: As described in the introduction, the data
access gauge is useful for assessing the degree of explicitness
and automatability of the access to data. The type of represen-
tation (e.g., POSIX file or database), the library interface(s)
available to interface it (e.g., POSIX read, HDF5, ADIOS,
or mySQL), and the types of data query (e.g., linear access,
random element access, or SQL query) are all necessary infor-
mation if one were to automatically construct new interfaces
to reuse pre-existing work. As you reach higher tiers of the
gauge, there are dependencies on other gauge properties. For
example, to capture information on a relevant SQL query
beyond just its existence, one would need some minimal
degree of data schema characterization to be available.

Data Schema: Schema management is probably the most
familiar of the six gauges. Workflow components produce and
consume data in a variety of formats, ranging from simple
strings of bytes to more complex structures such as typed
arrays, tables, graphs, meshes, and many others. Such data
objects can be represented with file formats ranging from
human-readable ASCII formats (e.g. CSV, JSON), to self-
describing binary formats (ADIOS, HDFS), to custom binary
formats (e.g., MatML). The more sophisticated the schema in-
formation, the more full-functioning other automated services
can be in creating automated format conversion, templatized
configurations, and other similar requests that are supported
through other gauges.

Data Semantics: In our abstraction, the data semantics
gauge is used to assess and capture the semantics of intended
use or production of data, independent of any specific software
that is consuming it. Is ordering important? Are data items
consumed in a window or element by element? There is an
entire ontology of automatable format transactions that can be
explored in future work, but here we lump all of these together

Workflow Semantics

C

i)

5

SM | QuerySupport| | Self-describing Dataset I/O Semantics Model Bxportability

£ Sermantics Parametrization

3 Libra Format Format Bxplicit Variable Campaign

g Y \ersion BEvolution Configuration Identification Knowledge

= Protocol T Format Data Fusion Component Configuration Per-execution

ype Information Requirement Demarcation Template Capture
Access Scherma Semantics Granularity Customizability Provenance
\ Y J \ Y J
Data Software

Fig. 1. Example properties for assessing workflow automatability using the six gauge principles.

into the ‘data fusion’ category. At a next layer above, the
‘format evolution’ tier leverages format version information to
capture the conversions that would take a particular materials
format back to an earlier version. Finally, information on
how individual data elements should be engineered to be
part of a complete dataset are in the data semantics tier. For
example, designating a set of images as containing cancerous
and healthy tissue samples (useful for a training workflow on
segmentation algorithms) would be expressly captured through
the dataset semantics gauge.

Software Granularity: The granularity of a reusable work-
flow component may be a code fragment, an individual ex-
ecutable code, a bundled workflow, or an internal service.
This flexibility allows a workflow to evolve its reusability
expression over time; you can always start by describing the
entire multi-tier operation as a single component before pro-
gressing to teasing it apart. At whatever scale the constituent
components are captured, making the configuration support
explicit allows for the creation of templates for building,
launching, and execution of the component. In order to support
more automatable reuse, however, it is useful to capture the
I/0 semantics of the component, which needs to leverage rich
information about the schema and semantics of the data it
is consuming. For example, the component may process data
one element at a time, but the first data element read is used
for calculating deltas against all subsequent data. This ‘first
precious’ data semantic would impact correctness if it is not
respected in reuse scenarios, but it is also easy enough to
capture as part of a machine-actionable plan for deployment.

Software Customizability: Customization of a reusable
software component requires packaging that makes explicit
which configuration characteristics can be modified as part
of packaging the component for others to use. Within that
larger list, there is a subset of relevant variables that re-
flect how a component might need to be customized. As
we will see in the following section, we leverage previous

work with the Skel system for model-driven code generation
as an example for how such variable identification can be
formalized into a machine-actionable model. At the next tier of
model parameterization, the customization profile would also
include understanding of how different variables are related
to one another, and to how they change in the context of
the campaign setting as laid out in the Provenance gauge’s
Campaign Knowledge tier.

Software Provenance: Although we place Provenance un-
der the software banner, it is perhaps better to leave it
unlabeled as just “Provenance”, since it touches all of the
areas above. The literature on provenance is deep, and we
will only do a surface summary in this paper. What is most
relevant for our model is to recognize that there are some key
differences to reasoning about automation for reusability and
interoperability of provenance data. One needs the standard
provenance data and logs for each component and execution
instance, but to support better automation, it is helpful to also
have explicit context for the campaign in which that execution
took place [28]. Tools can then summarize, evaluate and enable
queries over hetereogeneous provenance logs. In order to go
beyond self-usage, it is also important to capture what we
have labeled as “Exportability”. Intuitively, not all provenance
that is useful to the original author is appropriate to include
in a distributable, reusable research object. However, some
provenance is crucial when reusing workflow components in
a new context. So the policies of tracking the amenability and
relevance of the gathered provenance for the generation of
reusable components is tracked through this exportability tier.

A. Model Implications

There are two important facets to this approach. First, we
are using the term gauge rather than metric because we feel
it is important to distinguish between a measure that allows
one to track the provenance of change toward community
embrace of a particular workflow and a measure that would

provide an absolute score of ‘reuse’ to compare any two
arbitrary workflows. Although this may appear as a needless
distinction, it helps to address the key difficulty in discussing
the human-in-the-loop aspects of technical debt management
and reuse. There isn’t an ideal amount of automation that
would apply uniformly across all scientific software systems;
some problems will always require more investment of human
insight. A metric capable of comparing a biological machine
learning workflow and an astrophysical image processing task
might reasonably be created, but we assert that it would be
less useful than something more descriptive and actionable.

Second, the particular gauge properties we’ve identified are
each tied to abstract extensions that can aid in the creation of
new runtime system optimizations. For instance, not only is
data access a gauge property that can demarcate changes in
how explicit the representation of access (e.g., it’s a POSIX
file, but no info on whether it’s a custom binary blob or some
fixed format). It also defines an ontology of terms that can be
mapped into machine-queriable form. The gauges are useful
from a human-driven provenance auditing perspective, while
they can also be made machine-actionable. From this and the
tools described in the following section, we construct a frame-
work resembling a model-driven software engineering ap-
proach. It represents domain-specific computational elements
as first-class, reusable entities from which specific executable
expressions can be generated. Using such a framework, we can
realize the benefits of model-based design in the definition of
science workflows or ensemble computations.

IV. TooLs & ENVIRONMENTS

To provide some concrete implementation of the concepts
discussed above, we have leveraged a collection of existing
tools offering features that support the FAIR principles. In
addition to the tools we have developed that are shown in more
detail below, we have also exploited best practices for using
standard tools and environments within the templates, models,
and workflow components that we demonstrate in Section
We leverage a number of standard features and libraries of
scientific python usage, including Dask, numpy, and pip, but
in a context where we can use the enhanced metadata of
the reusability gauge abstraction to manage the technical debt
associated with their use. Similarly, we exploit some of the
advanced data access and schema markup capabilities of the
Adaptable I/0O System (ADIOS) while managing the configu-
rational challenges of deploying it in novel circumstances. We
have deployed customized versions of several tools as well to
achieve our goals, as follows:

Skel: Model-driven Code Generation: Skel is a generative
tool originally developed to produce skeletal I/O applica-
tions [29], [30]. Skel provides a model-driven code generation
mechanism that couples a model of a desired action with one
or more textual templates that drive the creation of files that
implement the action. By defining a model that is a concise
representation of the user decisions required for an action, and
automating the way that the elements of the model impact
the code, we can avoid the need for a user to have extensive

interactions with the code itself. The user simply updates the
model to reflect the current task, and the implementation is
regenerated to reflect the new task.

Cheetah: Workflow Campaign Composition: The composi-
tion aspect of the toolset allows the science user to construct
codesign campaigns aimed towards exploring several parame-
ters. To build a high-level model, Cheetah’s [27]] composition
interface provides an API that allows focusing on expressing
parameters across the software stack, while omitting low-level
system details from this high-level interface. The composition
engine further adopts its own directory schema to represent a
campaign end-point. The directory hierarchy represents simu-
lation runs, and campaign metadata is hidden from the user.
An API to submit a campaign and query its status is provided
to investigate and interact with the campaign. It is important
to note that the end user is focused on the description of the
codesign process as opposed to fine details about instantiating
a campaign, its storage schema, and its execution.

Savanna: Campaign Execution: Savanna [27]], the execu-
tion engine of the toolset, runs all experiments in a campaign
on the target system. It translates a high-level campaign
description into actual system and scheduler calls, and pro-
vides a simple pilot runner to run experiments on available
resources. Cheetah and Savanna communicate via an inter-
operability layer designed to represent an abstract manifest
of the campaign. This layer implements a JSON schema
to describe the full campaign, which includes the science
applications, parameter sweeps declared by the user. While
Savanna provides a simple job runner for the campaign, this
design allows us to import existing workflow tools that provide
efficient implementations for workflow patterns such as bag-
of-tasks, pilot-based system, large-scale MPI runs etc.

V. EXPERIMENTS

Each of our experiments has been chosen to demonstrate
some of the practical implications and systems capabilities
that arise from using the reusability gauge abstraction. The
first two experiments are constructed to highlight specific
capabilities of individual gauges, while the last two synthesize
complex capabilities and solutions for services and real-world
applications, respectively.

A. GWAS: Improving reusability at input

As a first demonstration, we built upon an initial imple-
mentation of GWAS workflow components as described in
Section [[I-A] The goal was to increase its software granularity
and customizability gauge values to enhance reusability. In the
workflow we examined, one particular step involves column-
wise pasting of a large number of individual tabular files
into a single large file. We used the UNIX paste command
to accomplish this column-wise pasting, but the size of the
datasets generally precludes using a single paste. In fact,
the paste operations become very slow if too many files are
merged at once. Thus there was a two-phase paste, where a
series of “sub-pastes” were performed to reduce the number of
files, then a final paste was done to merge the pasted subsets.

In practice, this simple concatenation step is a fairly human-
centric process, for several reasons. First, careful planning is
required to divide the pasting into parallelizable subjobs that
each have a reasonably short runtime. This is necessary not
only for parallelization, but also to avoid filesystem bottlenecks
from working with a large number of files simultaneously.
Though setting up and running each of the subjobs that are
needed to accomplish the preparation of a large data set
requires only a small amount of thought and attention, this
attention is spread over a longer period because successive
queued jobs are run only after an indeterminate delay. Even
preparing all jobs ahead of time, the scientist must check to
see that jobs are completing successfully and keep track of
which jobs remain to be submitted.

As such, the workflow becomes difficult to package for
reuse, as so many of the steps involve unwritten, human-
only operations. In order to eliminate this user overhead and
opportunity for errors, we leveraged a generative solution
to capture the correct granularity and customizability of the
workflow components. Specifically, we used two tools, Skel
and Cheetah, in concert.

We have defined a focused model for the paste operation
that allows us to specify input and output data sets. The model
includes information about the dataset under consideration
(path and naming conventions), machine-specific details about
resources to be used (such as limits on number of nodes
and walltime, and relevant user account), and strategy for
pasting. This model is provided as a JSON input file and is the
single point of user interaction to specify the current problem
specifications. Skel is then used to process the model by
instantiating a set of templates to produce the set of files that
implements a concrete workflow. These files include simple
scripts that perform pasting of subsets and the final joining
of the pasted subsets, a cheetah specification that details the
set of individual tasks to be performed, as well as scripts for
controlling and querying the progress of the work.

The model provides a focused point of interaction for
the user, and reduces the need to parse and understand the
structure of the code repeatedly during use. A side-by-side
representation of the two formats is shown in Figure [2]
In a traditional script, the user must fix any job scheduler
parameters, directory paths, and hard-code any partitions of the
data. Once complete, the user runs a series of separate jobs,
each of which requires several manual perturbations of the
script. In our Skel-driven approach, the user only modifies the
script once, creating a cheetah campaign that manages running
all of the necessary tasks during one or more jobs.

B. Dynamic Checkpoint-Restarts in HPC Simulations

As an example of setting the right degree of granularity and
customization for a workflow service component, consider the
well-studied area of dynamic checkpoint-restart. Compared to
solutions that treat it as a single library [31]], [32], treating it
as a workflow component with explicit, model-driven policies
offers interesting reuse possibilities. This demonstration is,
however, not intended to innovate in checkpoint-restart tech-

Traditional SLURM script

#!/bin/bash
#SBATCH ACTXXX

SKEL

outdir=output_FileSetA
indir=/path/to/input/files

= - NPs-Fil
#SBATCH -J step0-pasteSNPs-FileSetA et o

#SBATCH -N 1
#SBATCH -t 1:00:00

#SBATCH --output=step0-paste-FileSetA.out Start=0

Stop=64
Step=32

¥

CHEETAH

outdir=output_FileSetA
mkdir -p $Soutdir

instub=FileSetA

#Step1

paste ${indir}/${instub}{0..99}.tsv > ${outdir}_Set1.tsv
paste ${indir}/${instub}{100..199}.tsv > ${outdir}_Set2.tsv
paste ${indir}/${instub}{200..299}.tsv > ${outdir}_Set3.tsv

paste ${indir}/${instub}{900..999}.tsv > ${outdir}_SetN.tsv

#Step2
paste ${outdir}_Set{1..N}.tsv > ${outdir}_FinalSet.tsv

1
1
1
I
1
|
|
|
|
1
1
indir=/path/to/input/files 1
1
|
|
|
1
|
|
1
1
1

Automated runnini
Manual running 9

Fig. 2. A traditional manual script versus Skel-based automated script. Red
text indicates fields or actions that require manual intervention by the user
for a new run configuration.

niques, but instead to leverage the existing knowledge base to
apply it in the context of workflow construction.

A common practice is to implement a simple checkpointing
mechanism in which a checkpoint is generated after a preset
number of ‘timesteps’ in a simulation. This frequency is
determined beforehand and depends on the failure rate of the
underlying system and the overhead of checkpoint I/O. As
checkpoint data is typically large in size, the output frequency
is a trade-off between cost of I/O and cost of recovering from
a failure. Consequently, the checkpointing frequency varies
from one system to another, and requires tuning an efficient
checkpointing frequency for a particular application use case.

It can be argued that this approach does not capture the true
intent behind checkpoint-restarts. The number of timesteps
between checkpoints is a representation of the wall clock time
gap between checkpoints and the underlying characteristics
of the system, such as the mean-time-to-failure (MTTF) and
the transient load on the system. A dynamically adaptive
checkpointing approach that automatically determines the right
set of parameters for checkpointing based upon user input
and tunes them at runtime based upon the state of the system
can help build a reusable checkpointing system. While fully
dynamic and autonomous checkpointing is non-trivial, expos-
ing the right set of parameters can be a first step towards
developing policies for checkpoint-restarts. We gauge the
reusability of checkpointing policies using the manual effort
required to determine the checkpointing mechanism used on
the system for production runs.

Some of the application-level parameters that can be used to
set policies are 1) wall clock time gap between checkpoints,
and 2) acceptable overhead of checkpoint I/O. Policies can
then be constructed using a combination of some of all of
the exposed parameters. As an example, we present a use
case where checkpoints are written using I/O overhead as
the checkpointing condition. In our experiments, applications
declare the maximum allowable checkpointing I/O overhead
as a percentage of the total application runtime. The I/O
middleware issues a checkpoint only as long as the current I/O
overhead is within the preset value. Further fine-tuning may be
done to ensure a certain minimum frequency of checkpointing.

50

40

38
36
30 26
20
20
14

) I

0

10% 20% 30% 40% 50%
1/0 Threshold

No. of checkpoints written

Fig. 3. Writing simulation checkpoints depending on the runtime overhead
of checkpoint I/0O, as opposed to writing a checkpoint every x timesteps.
Exposing the I/O overhead as one of the parameters allows building flexible
policies for checkpoint-restarts.

30

20 18
14
11 10
ol
0
1 2 3 4

Experiment trial #

No. of checkpoints written

Fig. 4. The variation in the number of output checkpoints between multiple
runs when maximum I/O overhead is set to 10% of the total application
runtime. The overhead-driven policy takes into account runtime variations
and changes in application behavior to determine checkpoint output.

The advantage of this approach is that the system may
allow more frequent checkpointing if the cost of I/O is low,
thereby allowing the simulation to restart from a more recent
checkpoint in case of a failure. Additionally, the checkpointing
library may set a policy in which an abnormally high I/O cost
may be indicative of a system more prone to failure, and thus
force a checkpoint to be issued.

Figure [3] shows the results of writing checkpoints based
upon I/O overhead for a common reaction-diffusion bench-
mark on Summit, a leadership-class supercomputer at Oak
Ridge National Laboratory. Depending on the runtime over-
head, the I/O library determines if a checkpoint must be
written to storage or not. Experiments were run using 4096
MPI processes spread evenly over 128 nodes. The applica-
tion simulated 50 timesteps (thus, 50 maximum checkpoints
possible), where each timestep generated a Terabyte of data.
First, as expected, we observe that the number of checkpoints
written to storage increases as the permitted I/O overhead
increases. Figure [] shows multiple runs of the application
when the overhead is set to 10%. The changes in the number of
checkpoints written is reflective of the changes in application
behavior (configured to perform more/less computations and
communication) and the state of the HPC system including
the overhead on its file system.

Structured streaming
data

Data Selection/ Scheduling

Buffering / Routing

Local buffering

Selection Policy

Slidingwindow ~ MEm—"

(events, time steps)

Direct selection
from input

Control/ punctuation
stream

User-specified at
runtime

Forward to subscribers

Fig. 5. Finer granularity in workflow construction allows greater reuse.
In this instance, data selection criteria is separated from data movement
infrastructure, reducing the amount of technical debt introduced by new
workflow development.

C. Model-derived reusability in a synthetic workflow

The reusability gauge abstraction allows us to identify
commonalities across workflows and encapsulate functionality
which can be effectively reused. In a data-flow graph view of
a workflow, such encapsulations appear as repeated subgraphs.
Perhaps the most basic of these is a workflow in which
data is collected in discrete units (e.g. individual observations
or measurements) and forwarded to an aggregation or “data
scheduling” component. Individual data items may be sum-
marized, transformed, or left alone before being forwarded
further along paths in the workflow graph. An important
consideration in improving the reusability of a given workflow
is the degree to which such structure and substructure (and
the code that implements it) can be reused directly. In a
collection/selection/forwarding workflow, the communication
pieces (collection and forwarding) can be generated automat-
ically given sufficient knowledge of data access patterns, data
schema and semantics, as well as the degrees of granularity
and customizability allowed by the software stack in use.

Consider the demonstration workflow of Figure [5] which
represents data capture at an instrument and dissemination to
one or more downstream consumers. In this workflow, all data
formats are known beforehand, and so the communication
code necessary can be automatically generated (given suffi-
cient data description and marshalling support, complete a
priori knowledge is not necessary even in high-performance
binary data exchanges; cf.). For this workflow to be
maximally reusable, however, it has to be able to incorporate
different selection policies at runtime — including policies not
known at code generation or compile time.

In this example, the workflow begins with a simple data
scheduling policy: forward each data item received to sub-
scribers. A different instantiation of this data scheduling
subgraph could be generated with a different policy which
implements a sliding window based on time or item count over
the incoming data. Using a skeleton-based approach for the
communication components of the subgraph, while customiz-
ing the data scheduling action for each set of generated code,
can be straightforwardly implemented in the Skel framework
described earlier while providing efficient data transport and
selection performance.

Further extending this example more completely illustrates
the potential of combining model-driven code generation with
run-time specialization of the resulting workflow. Consider
a remote steering process which introduces a data schedul-
ing policy into the workflow which was unknown at code-
generation time. Using a control input (or “data punctuation”
input, signaling abstract divisions between groups of data),
a policy which implements (for instance) direct selection of
queued data items is installed and made active. This is an
extremely powerful mechanism on its own, enabling varied
monitoring and steering inputs from outside the workflow
which can themselves be informed by the data flowing through
the graph. However, the combination of this capability with
generated code provides exactly the benefits described above:
reuse of code which does not change often (the communication
components) and highly-granular specialization of code which
needs to change at runtime (data scheduling).

This demonstration workflow supports the simultaneous
installation of multiple data scheduling policies in its workflow
subgraph; those policies can be selectively invoked using input
from the control channel. In this way, the data scheduler
implements a number of virtual data queues, each defined
by its own selection policy. The usefulness of this approach is
underscored by a history of developing efficient data-transfer
middleware, from event-based publish-subscribe systems sup-
porting rich subscriber customizations [34f], to service lay-
ers providing flexible distributed rendezvous and notification
facilities [35], to frameworks for structured data staging in
high-performance I/O environments [36]]. These systems offer
the encapsulations and capabilities necessary to manage and
implement virtual data queues and other structures, reducing
the technical debt created by workflow development while
remaining flexible enough to evolve with ongoing scientific
inquiry.

D. Reusable Workflows for Iterative Random Forests for Pre-
dictive Expression Networks

As described in Section [[I-Bf composing the iRF-LOOP
workflow for predictive expression networks on a cluster
requires a manual pre-processing phase in which the end
user generates the execution scripts for the underlying system
depending on the number of nodes allocated to the batch job.
The script creates the directory hierarchy for the runs and
submits them in groups or ‘sets’ with explicit synchronization
at the end of a set. However, the explicit synchronization has
the inherent disadvantage that all experiments in a set must
be complete before the next set is run. Straggler processes
can severely limit the performance of the overall workflow.
Additionally, the researchers are responsible for tracking the
progress of their jobs, and addressing failures and provenance
for their large ensemble of runs. Furthermore, as the workflow
is driven by constraints of the underlying system, it can vary
from one system to another.

Creating a more portable and reusable workflow requires
demarcation between a science application and the underlying
system. We use the Cheetah and Savanna suite of tools that

[
,,,,,,,,,,,,,,,,,, !
Node 1| | Run 1 i Idle ! Run4
. 0 0 00 1
Bb Node2|| Run2 Run 5
=
S I |
Node 3| | Run3 | dle | Run 6
Node I | Run 1 Run 4 Run 8
=
S
3 Node2 | Run2 Run 6 Run 10
=
)

Node3 | Run3 Run 5 Run 7 Run 9

Time (hours)

Fig. 6. Comparison of workflows between the original iRF-LOOP workflow
and the improved Cheetah workflow. The original workflow required all runs
within a set to complete before moving to the next set, resulting in idle nodes.
This is eliminated using Cheetah.

provide an abstraction to set up ensemble runs of parameters
in an easy way while transparently handling job submission
on the target system. We gauge the reusability of this system
using the manual effort required to set up, track, and submit
additional runs for different parameters using differently-sized
allocations. This is determined by two aspects of the user’s
participation - 1) ease of setting up parametric runs, and 2)
ease of submitting and tracking jobs on the system.

We use Cheetah — the composition engine of the workflow
suite — to create a campaign of iRF-LOOP runs. The Campaign
abstraction in Cheetah allows creating a large ensemble study
composed of one or more parameter ‘Sweeps’, which may
be grouped into ‘SweepGroups’. The Python-based compo-
sition API allows high-level expression of application-level,
middleware-level, and system-level parameters. The Savanna
workflow engine uses one of its several executor backends
to translate the abstract campaign specification into low-level
scheduler calls for the target system. It consists of a resource
manager that dynamically schedules and tracks runs on the al-
located nodes, thereby no longer requiring synchronizing runs
and leading to better resource utilization. Users may simply
re-submit a partially completed SweepGroup of parameters
to continue execution. That is, the scientist’s participation
is limited to composing the parameter sweeps; execution
is transparently and fully addressed by the workflow tool.
Figure [shows how Savanna dynamically tracks the allocated
nodes and leads to better overall resource utilization.

Figure [7| shows the performance gains obtained when using
the Cheetah-Savanna workflow suite. It shows the time to
run a Campaign on the 2019 American Community Survey
produced by the United States Census Bureau [37]]. Creating
an all-to-all network of this data set can inform the user
of relationships between the various demographic, socioeco-
nomic, and housing features. 1606 features for 3220 counties
were obtained using the R package tidycensus [38]. The
Campaign specification creates a parameter sweep over all
the 1606 features. Cheetah automatically generates directory
hierarchy and metadata for the Campaign. Savanna launches
the campaign and manages execution of individual runs. If all

Number of parameters explored

280.0

Original
53.11

Fig. 7. Performance improvements in the iRF-LOOP workflow using the
Cheetah-Savanna workflow suite. Values shown represent the average number
of parameters explored in 2-hour allocations of 20 nodes on the Summit
supercomputer at Oak Ridge National Laboratory.

runs in the SweepGroup cannot be run in the allotted time, the
SweepGroup is simply re-submitted, and Savanna resumes ex-
ecution of the experiments. We observe over 5x improvement
in total runtime using the Cheetah-Savanna toolsuite.

VI. RELATED WORK

The literature on scientific workflows, open science, and
effective systems for managing both of them is extensive. We
have noted much of this prior art throughout this paper, and
here highlight a handful of the relevant efforts that have helped
inspire our approach. There are numerous projects aimed
at workflow management, including Parsl [3], Pegasus [39],
Swift-T [40]], and Radical-Pilot [41] to name just a few.
Maestro [42] is a workflow management tool with generative
capabilities that also focuses on managing the execution of a
collection of workflow components.

Many other efforts address efficiently managing data move-
ment between processes and from process to disk, leveraging
community standard data protocols and schemas. Related
examples include Apache Parquet [43]], a library for interacting
with disk-based column stores; HDF5 [44]], which provides a
widely-used self-describing format organized around a hierar-
chical model; and the Adaptable I/O System (ADIOS) [36],
a self-describing data solution offering storage and communi-
cation options for large-scale data. ADIOS provides a mature
implementation of data staging [45]], a technique for leverag-
ing additional compute nodes to improve I/O performance on
HPC platforms. Some existing codes might take advantage of
this sort of library, although many still rely on custom I/O
solutions or delimited text formats.

VII. CONCLUSION

Data-centric computing is increasingly important for scien-
tific progress, and the FAIR principles have come to represent
an important way forward for open science datasets. In this
paper, we have shown that these same principles also need
to be applied to the workflows that represent the interplay
of consuming and generating those data sets. Leveraging the
idea of technical debt from software engineering we recognize
that the default for reuse always involves human intervention.
Making software more reusable will therefore depend on
making metadata explicit (so that it can be audited by humans),
but also machine actionable (in order to significantly automate

the management of technical debt inherent in the use of other’s
software and data). This is completely in keeping with the
original definition of FAIR, and, as such, can be seen as a
refinement of the requirements for community-specified meta-
data for Reusability and Interoperability (particularly points
R1.2, R1.3, and I3 from [11]).

The six gauge principles — three for data (access, format, and
semantics), three for software (granularity, customization, and
provenance) — are specific components of metadata extensions
that can be exercised by automated systems in order to better
connect an original use to a reuse context. The examples we
have described here demonstrate a variety of potential appli-
cations for this perspective. The GWAS workflow example
shows the importance of data encapsulation as a vehicle for
automating ingress of data to workflow components. With
the co-design for checkpoint restart and the sliding window
technical demonstration we show how system automation can
be brought to bear in support of more extensive application
of these explicit metadata characterizations. Finally, the iRF-
LOOP workflow demonstrates the synthesis of applying both
software and data encapsulation and how that synthesis not
only makes the code more reusable but, in this case, also
improves the portability and performance of the resulting
workflow instance. Through application of novel systems and
tools that are based on our reusability gauge abstraction,
these experimental workflows are refactored to right-size the
granularity of workflow components, efficiently filling the gap
between end-user simplicity and general customizability.

Our work makes it easier to selectively reason about and au-
tomate the connections between trade-offs across user and de-
veloper concerns when exposing degrees of freedom for reuse.
Looking toward future development, we see great potential for
more powerful and granular metadata representation, automa-
tion of reusable workflow composition, and applications across
diverse areas of computational science (including climate,
materials research, computational systems biology, and hybrid
experimental/simulation platforms). Workflows represent the
connections between data, computation, and human decision-
making, and making them more reusable and automatable will
have benefits across the science ecosystem.

ACKNOWLEDGMENT

This manuscript has been authored by UT-Battelle, LLC under contract no.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a nonexclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government pur-
poses. The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan, last accessed September
16, 2020).

This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-ACO05-000R22725. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter-
national Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525 (SAND2021-XXXXC).

[1]

[2]

[4]

[5

[ty

[7]

[8

[t

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future generation computer systems, vol. 25, no. 5, pp. 528-540, 2009.
J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences,” Genome biology, vol. 11, no. 8,
pp. 1-13, 2010.

Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive parallel programming in python,” in
Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC *19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 25-36. [Online].
Available: https://doi.org/10.1145/3307681.3325400

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219-237, 2005.
J. 1. Billings, A. R. Bennett, J. Deyton, K. Gammeltoft, J. Graham,
D. Gorin, H. Krishnan, M. Li, A. J. McCaskey, T. Patterson,
R. Smith, G. R. Watson, and A. Wojtowicz, “The Eclipse Integrated
Computational Environment,” arXiv:1704.01398 [cs], Mar. 2017, arXiv:
1704.01398. [Online]. Available: http://arxiv.org/abs/1704.01398

J. Ison, M. Kala§, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam,
J. Malone, R. Lopez, S. Pettifer, and P. Rice, “Edam: an ontology
of bioinformatics operations, types of data and identifiers, topics and
formats,” Bioinformatics, vol. 29, no. 10, pp. 1325-1332, 2013.

J. J. Billings and S. Jha, “Toward common components for open
workflow systems,” arXiv preprint arXiv:1710.06774, 2017.

P. Amstutz, M. R. Crusoe, N. Tijani¢, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich,
M. Scales, S. Soiland-Reyes, and L. Stojanovic, “Common Workflow
Language, v1.0.” Figshare, 2016. [Online]. Available: https://doi.org/
10.6084/m9.figshare.3115156.v2

B. Chapman, J. Gentry, M. Lin, P. Magee, B. O’Connor, A. Prabhakaran,
and G. Van der Auwera, “OpenWDL,” 2019.

C. R. Prause, R. Reiners, and S. Dencheva, “Empirical study of tool
support in highly distributed research projects,” in 2010 5th IEEE
International Conference on Global Software Engineering, 2010, pp.
23-32.

M. D. Wilkinson, M. Dumontier, 1. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne et al., “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, pp. 1-9, 2016.

A. lena Lamprecht, L. Garcia, M. Kuzak, C. Martinez, R. Arcila,
E. Martin Del Pico, V. Dominguez Del Angel, S. Van De Sandt, J. Ison,
P. Martinez, P. Mcquilton, A. Valencia, J. Harrow, F. Psomopoulos,
J. Gelpi, N. Chue Hong, C. Goble, S. Capella-gutierrez, P. Groth,
P. Groth, and M. Dumontier, “Towards fair principles for research
software,” Data Science, vol. 3, no. 1, pp. 37-59, Jun. 2020.

C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil,
M. R. Crusoe, K. Peters, and D. Schober, “FAIR Computational
Workflows,” Data Intelligence, vol. 2, no. 1-2, pp. 108-121, 01 2020.
[Online]. Available: https://doi.org/10.1162/dint_a_00033

W. Cunningham, “The wycash portfolio management system,” in
Addendum to the Proceedings on Object-Oriented Programming
Systems, Languages, and Applications (Addendum), ser. OOPSLA °92.
New York, NY, USA: Association for Computing Machinery, 1992, p.
29-30. [Online]. Available: https://doi.org/10.1145/157709.157715

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing tech-
nical debt in software engineering (dagstuhl seminar 16162),” Dagstuhl
Reports, vol. 6, 01 2016.

National Academies of Sciences, Engineering, and Medicine, Data
science for undergraduates: Opportunities and options. National
Academies Press, 2018.

A.Y. Kim and J. Hardin, ““playing the whole game”: A data collection
and analysis exercise with google calendar,” Journal of Statistics and
Data Science Education, vol. 29, no. supl, pp. S51-S60, 2021.

B. Baumer, “A data science course for undergraduates: Thinking with
data,” The American Statistician, vol. 69, no. 4, pp. 334-342, 2015.

J. Hardin, R. Hoerl, N. J. Horton, D. Nolan, B. Baumer, O. Hall-Holt,
P. Murrell, R. Peng, P. Roback, D. Temple Lang et al., “Data science

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

in statistics curricula: Preparing students to “think with data”,” The
American Statistician, vol. 69, no. 4, pp. 343-353, 2015.

A. Loy, S. Kuiper, and L. Chihara, “Supporting data science in the
statistics curriculum,” Journal of Statistics Education, vol. 27, no. 1, pp.
2-11, 2019.

Y. Xie, “knitr: A general-purpose package for dynamic report generation
in 1,” R package version, vol. 1, no. 7, 2013.

N. J. Horton, B. S. Baumer, and H. Wickham, “Setting the stage for
data science: integration of data management skills in introductory and
second courses in statistics,” arXiv preprint arXiv:1502.00318, 2015.
D. Verma, J. Gesell, H. Siy, and M. Zand, “Lack of software engineering
practices in the development of bioinformatics software,” ICCGI, vol.
2013, pp. 57-62, 2013.

A. CIiff, J. Romero, D. Kainer, A. Walker, A. Furches, and D. Jacobson,
“A high-performance computing implementation of iterative random
forest for the creation of predictive expression networks,” Genes, vol. 10,
no. 12, p. 996, 2019.

S. Basu, K. Kumbier, J. B. Brown, and B. Yu, “Iterative random forests
to discover predictive and stable high-order interactions,” Proceedings
of the National Academy of Sciences, vol. 115, no. 8, pp. 1943-1948,
2018.

“Existing workflow
existing-workflow-systems,
K. Mehta, B. Allen, M. Wolf, J. Logan, E. Suchyta, J. Choi, K. Taka-
hashi, I. Yakushin, T. Munson, I. Foster, and S. Klasky, “A codesign
framework for online data analysis and reduction,” in 2019 IEEE/ACM
Workflows in Support of Large-Scale Science (WORKS), 2019, pp. 11—
20.

J. Logan, K. Mehta, G. Heber, S. Klasky, T. Kurc, N. Podhorszki,
P. Widener, and M. Wolf, “A vision for managing extreme-scale data
hoards,” in IEEE International Conference on Distributed Computing
Systems (ICDCS), 2019.

J. Logan, S. Klasky, H. Abbasi, Q. Liu, G. Ostrouchov, M. Parashar,
N. Podhorszki, Y. Tian, and M. Wolf, “Understanding I/O performance
using I/O skeletal applications,” in Euro-Par 2012 Parallel Processing.
Springer Berlin/Heidelberg, 2012, pp. 77-88.

J. Logan, J. Y. Choi, M. Wolf, G. Ostrouchov, L. Wan, N. Podhorszki,
W. Godoy, E. Lohrmann, G. Eisenhauer, C. Wood, K. Huck, and
S. Klasky, “Extending Skel to support the development and optimization
of next generation I/O systems,” in 2017 IEEE International Conference
on Cluster Computing, ser. CLUSTER 17, 2017, pp. 563-571.

A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror et al., “Unifyfs: A dis-
tributed burst buffer file system-0.1. 0,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1EEE, 2019, pp. 911-920.

M. Wolf, Z. Cai, W. Huang, and K. Schwan, “Smartpointers: Person-
alized scientific data portals in your hand,” in SC’02: Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing. 1EEE, 2002, pp.
20-20.

G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: Opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’09. New York, NY, USA: Association for
Computing Machinery, 2009. [Online]. Available: https://doi.org/10.
1145/1619258.1619261

F. Bustamante, P. Widener, and K. Schwan, “Scalable directory services
using proactivity,” in SC ’'02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, 2002, pp. 65-65.

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: the challenges and lessons of developing leadership
class /O frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453-1473, May 2014. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3125

United States Census Bureau, American Community Survey:
Data Profiles, 2019, Accessed: Mar. 11 2021. [Online].
Available: |https://www.census.gov/acs/www/data/data-tables-and-tools/
data-profiles/2019/

systems,” https://s.apache.org/

https://doi.org/10.1145/3307681.3325400
http://arxiv.org/abs/1704.01398
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1145/157709.157715
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://doi.org/10.1145/1619258.1619261
https://doi.org/10.1145/1619258.1619261
http://doi.wiley.com/10.1002/cpe.3125
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2019/
https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2019/

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

K. Walker and M. Herman, tidycensus: Load US Census Boundary
and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames, 2021,
r package version 0.11.4. [Online]. Available: https://CRAN.R-project.
org/package=tidycensus

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, pp. 219-237, 2005.

J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/T: Scalable data flow programming for many-task
applications,” in Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2013, pp. 309-310.
A. Merzky, M. Santcroos, M. Turilli, and S. Jha, “Radical-pilot: Scalable
execution of heterogeneous and dynamic workloads on supercomputers,”
CoRR, abs/1512.08194, 2015.

“Maestro workflow conductor: Developing sustainable
computational workflows,” https://computing.llnl.gov/projects/
maestro-workflow-conductor, accessed: 2020-12-22.

“Apache parquet,” https://parquet.apache.org/, accessed: 2020-12-11.
M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson,
“An overview of the HDF5 technology suite and its applications,”
in Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, ser. AD ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 36—47. [Online]. Available:
https://doi.org/10.1145/1966895.1966900

H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just in
time: Adding value to the IO pipelines of high performance applications
with JITStaging,” in Proceedings of the 20th International Symposium
on High Performance Distributed Computing, ser. HPDC *11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
27-36. [Online]. Available: https://doi.org/10.1145/1996130.1996137

https://CRAN.R-project.org/package=tidycensus
https://CRAN.R-project.org/package=tidycensus
https://computing.llnl.gov/projects/maestro-workflow-conductor
https://computing.llnl.gov/projects/maestro-workflow-conductor
https://parquet.apache.org/
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1996130.1996137

	Introduction
	Motivating Scenarios
	Genome-Wide Association Studies at Scale
	iRF-LOOP for Genome Knowledge Graph Generation
	Model-driven Abstractions for Codesign Campaigns

	Model
	Model Implications

	Tools & Environments
	Experiments
	GWAS: Improving reusability at input
	Dynamic Checkpoint-Restarts in HPC Simulations
	Model-derived reusability in a synthetic workflow
	Reusable Workflows for Iterative Random Forests for Predictive Expression Networks

	Related Work
	Conclusion
	References

